
15-451 Homework 3

Feb 18, 2008

March 6, 2008

Please hand in each problem on a separate sheet and put your name and recitation

(time or letter) at the top of each page. You will be handing each problem into a separate
box, and we will then give homeworks back in recitation.

Remember: written homeworks are to be done individually. You must try to solve
the problems on your own. If you need to get help from others or from Google, this
is acceptable provided that you acknowledge where the ideas came from and write the
solution in your own words. You will not lose points for giving proper credit to where
your ideas came from.

Direct questions to Bryant Lee (bryantl@cs.cmu.edu)

1 Question 1

Hashing. As discussed in class, the notion of universal hashing gives us guarantees that hold for
arbitrary (i.e., worst-case) sets S, in expectation over our choice of hash function. In this problem,
you will work out what some of these guarantees are.

1. Describe an explicit universal hash function family from U = {0, 1, 2, 3, 4, 5, 6, 7} to {0, 1}.
Hint: you can do this with a set of 4 functions.

2. Let H be a universal family of hash functions from some universe U into a table of size m.
Let S subset of U be a set of m elements we wish to hash. Prove that if we choose h from H
at random, the expected number of pairs (x, y) in S that collide is <= (m − 1)/2.

3. Prove that with probability at least 3/4, no bin gets more than 1+2
√

(m) elements. Hint: use
part (2). To solve this question, you should use “Markov’s inequality”. Markov’s inequality is
a fancy name for a pretty obvious fact: if you have a non-negative random variable X with
expectation E[X ], then for any k > 0, P r(X > kE[X ]) <= 1/k. For instance, the chance
that X is more that 100 times its expectation is at most 1/100. You can see that this has to
be true just from the definition of expectation.

1



2 Question 2

In the carnival game of Whack a mole, there are n moles numbered 1, 2, ..., n all in a line. Neighboring
moles are distance 1 apart. Each mole sits in a hole. Each second, one of the moles sticks its head
out of its hole. You then have 1 second to whack the mole with a (cartoonish) mallet. If you are
successful you get some points.

Let’s say you know in advance the sequence of moles that will be popping up. Let mt denote
the mole that will pop up at time t, 1 <= t <= T . If you successfully whack that mole you get pt

points. Also, the mallet is heavy, so that in 1 second you can only move the mallet a distance of
1. Thus the sequence of choices of what to whack must have the property that two whacks that are
k apart must occur at times that differ by at least k. You are allowed to pick any desired starting
point for the mallet.

For example, if the moles will stick out their heads in the order < 2, 3, 1 >, then you can get
Max{p2 + p3, p2 + p1} but cannot get p2 + p3 + p1. Give an algorithm to efficiently compute the
optimal sequence of moles to hit. The output should be a trajectory for the mallet - that is, an array
indicating the position xt of the mallet at time t. If xt = mt then this means that we hit the mole
at time t, and get pt points. Otherwise we get 0 points at time t. Write-up your algorithm formally
in pseudo-code. Try to make your algorithm as efficient as possible. Its running time should be
polynomial in n and T .

2



3 Question 3

The number of combinations of n things taken m at a time,
(

n

m

)

, can be computed using the following
recurrence:

(

n

m

)

=

(

n − 1

m

)

+

(

n − 1

m − 1

)

for 0 < m < n

and
(

n

0

)

=

(

n

n

)

= 1

1. Write a recursive algorithm to compute
(

n

m

)

using the above recurrence.

2. Analyze the worst case running time of your algorithm as a function of m and n.

3. Produce a memoized version of your algorithm. Note: recall that a memoized algorithm is a
recursive algorithm that stores information so that sub-problems do not have to be recomputed.

4. Give a dynamic programming algorithm to compute
(

n

m

)

.

5. Analyze the running time of your dynamic programming algorithm as a function of m and n.

3



4 Question 4

BSTs and dynamic programming. Consider a binary search tree storing a set of keys x1 < x2 < x3 <
... < xn. Lets define the cost of handling a request for some key to be the number of comparisons
made in searching for it (1 plus the distance of the node from the root of the tree). For example, if
the root is requested, the cost is 1. Given a particular sequence of requests, one can calculate the
cost that would be incurred on that sequence by different possible binary search trees. The tree that
attains the minimum cost is called the optimal binary search tree for that sequence.

For example, for requests < 1, 2, 1, 3, 1 > in this order, the tree

1

\

2

\

3

costs 8, whereas the tree

2

/ \

1 3

costs 9.

1. For a fixed tree, the cost of a given sequence of requests clearly only depends on the number
of times each key is requested, not on their order. Suppose that n = 4 and that x1 is accessed
once, x2 is accessed 9 times, x3 is accessed 5 times, and x4 is accessed 6 times. Find an optimal
binary tree for this set of requests. (There is more than one possible answer.)

2. In general, suppose the optimal binary search tree for a given set of requests has xi at the
root, with L as its left subtree and R as its right subtree. Prove that L must be an optimal
binary search tree for the requests to elements x1, ..., xi1 and R must be an optimal binary
search tree for the requests to elements xi+1, ..., xn.

3. Give a general algorithm for constructing the optimal binary tree given a sequence of counts
c1, c2, ..., cn (ci is the number of times xi is accessed). The running time of your algorithm
should be O(n3). Hint: use dynamic programming.

Note #1: the notion of an optimal binary search tree is a lot like the notion of a Huffman tree,
except that we also require the keys to be in search-tree order. This requirement is the reason that
the greedy Huffman-tree algorithm doesnt work for finding optimal BSTs.

Note #2: its actually possible to improve the running time to O(n2) by a simple modification
to this dynamic-programming solution. But proving correctness for this faster version is very tricky.

4


