
15-451 Homework 2

Feb 4, 2008

Due: Mon-Fri, February 11-15

1. This is an oral presentation assignment. You should work in groups of three. At
some point before Sunday, February 10 at 11:59pm your group should sign up
for a 1-hour time slot on the signup sheet on the course web page.

2. Each person in the group must be able to present every problem. The TA/Professor
will select who presents which problem. The other group members may assist the
presenter.

3. Your are not required to hand anything in at your presentation, but you may if you
choose.

4. Direct questions to Bryant Lee (bryantl@cs.cmu.edu)

1 Question 1

[Median of two sorted arrays] Let A and B be two sorted arrays of n elements each. We can
easily find the median element in A - it is just the element in the middle - and similarly we can
easily find the median element in B. (Let us define the median of 2k elements as the element that
is greater than k − 1 elements and less than k elements.) However, suppose we want to find the
median element overall - i.e., the nth smallest in the union of A and B. How quickly can we do
that? You may assume there are no duplicate elements.

Your job is to give tight upper and lower bounds for this problem, in terms of number of com-
parisons. Both bounds should be an exact number of comparisons, and NOT in terms of big O and
big Ω. Specifically, for some function f(n),

1. Give an algorithm whose running time (measured in terms of number of comparisons) is f(n),
and

2. Prove a lower bound showing that any comparison-based algorithm must make f(n) compar-
isons in the worst case.

2 Question 2

[Tight upper/lower bounds]

1. First, show that 2n− 1 comparisons is both a necessary and sufficient number of comparisons
to merge two sorted arrays of size n. This is a (graded) warmup for the question below.

2. Consider the following problem.

INPUT: n2 distinct numbers in some arbitrary order.
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OUTPUT: an n × n matrix of the inputs having all rows and columns sorted in increasing
sorted order.

EXAMPLE: n = 3, so n2 = 9. Say the 9 numbers are the digits 1,...,9. Possible outputs
include:
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2 5 8
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It is clear that we can solve this problem in time O(n2logn) by just sorting the input (remember
that log(n2) = O(logn) and then outputting the first n elements as the first row, the next n
elements as the second row, and so on. Your job in this problem is to prove a matching
Ω(n2logn) lower bound in the comparison-based model of computation.

For simplicity, you can assume n is a power of 2.

Some hints: Show that if you could solve this problem using o(n2log(n)) comparisons (in fact,
in less than n2lg(n/e) comparisons), then you could use this to violate the lg(m!) lower bound
for comparisons needed to sort m elements. You may want to use the fact that m! > (m/e)m.

3 Question 3

[Amortized analysis] In class you saw a binary counter that we can increment efficiently. Now
suppose we want a binary counter that supports both increment and decrement efficiently. One way
to do this is to represent a number using *two* binary strings, c1 and c2, such that the number is
actually c1 − c2. Note that numbers can be represented in more than one way.

Suppose you perform a sequence of increments and decrements, starting from (0,0). Write an
algorithm for the following operations:

1. Increment(c1, c2). The operation that increments the number represented by c1 − c2.

2. Decrement(c1, c2). The operation that decrements the number represented by c1 − c2.

Your algorithm should have a constant amortized cost per operation, where we measure cost only
by number of bit flips (all other operations are free). What’s the worst case for a single operation
in the sequence?
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