15-498: Distributed Systems
Project #1: Design and Implementation of a RMI Facility for Java

Dates of Interest

Assigned: During class, Friday, January 26, 2007
Due: 11:59PM, Friday, February 13, 2007

Credits

Although this handout was prepared locally, this project was design€dhisy Hondaand
published among the support materials for the Coulouris, et al textbook. Prof. Honda is a
member of the Department of Computer Science, Queen Mary and Westfield Odiegesity
of London. He authored the source code provided on the project page.

Overview

This project asks you to design and implement a Remote Method Invocation (Riktl) far

Java. In other words, you are asked to provide a mechanism by which objects withimeone Ja
Virtual Machine (JVM) can invoke methods on objects within another JVM, even if thé targe
object resides within a JVM hosted by a different, but network accessible nmachi

Pedagogy

This project is designed to reinforce your understanding of the basic chalfenmey the
developers of middleware, and the techniques used to overcome them. Specifically, watope t
this project will reinforce your understanding of the following:

* Naming objects (or programs) that reside among many hosts

» Locating objects (or programs) within many hosts

* Marshalling methods (or procedures) and their parameters

» Constructing a natural and largely transparent abstraction for the applidatieloper
using lower-level network abstractions, e.g. sockets

Since this project is Java-specific, we do hope that you'll take some time tderadeva’s
native JVM facility and to consider the design decisions made by its implesidxémdless to
say, in many ways Java’s own RMI might be a good inspiration for the RMI thaieggndnd
implement. By doing so, we hope that you'll gain some valuable insights:

* A hands-on and in-depth understanding of RMI in Java
» A considered and critical understanding of both the design decisions made by the
developers of Java’s RMI and the trade-offs present in these decisions

The Requirements

The requirements are, if open-ended, very straight-forward. Without using J&fadiity,
which includes everything in the java.rmi package, design and implement an RNy} faci
Java.

Once this is complete, prepare a professional-looking report that desaibvegegign, the major
design decisions, including trade-offs, and anything that is broken or incompletepbdhedoes
not have to be large or fancy. Rather than counting pages or investing time in ifificat®
concentrate on effectively communicating to us those things that we have ashedeiewest
possible words and simplest figures.

You Can’t Do It All

We recognize that there will be components of the facility that you simplyt Wwawé time to
complete. In general we expect your solution to implement the followingeeals:

» the ability to name remote objects, e.g., remote object references

» the ability to invoke methods on remote objects, including those methods that pass and/or
return remote objects references and those methods that pass and/or reamcesfer
local objects.

* The ability to locate remote objects, e.g. a registry service

We don’t expect you to create all of the tools that would be part of a commerdiagpaEor
example, the following would be nice, but aren’t required:

* A stub compiler (this is a bit time consuming but mechanical)

* The automatic retrieval of .class files for stubs (this isn’'t bad, if yogote little extra
time)

» A distributed garbage collector (we wouldn’t even have time to think about this in the
time provided)

Furthermore, Java’s native RMI facility is not perfect. For example, yghtriry playing with

the .equals, clone(), or hashCode(). You'll soon discover that these don’t work. We certainly
don’t expect you to fix these — but we’d like for you to understand the limitations arehdons
that they exist.

For things you would have liked to have done, but did not, we would like you to do three things:

1) Ensure that these things are possible given the rest of your solution. For exasapli
you don’t implement a stub compiler, it should be possible to implement one — without
magic (or intuition).

2) Provide a work-around so that we can test your project. For example, if you don’t provide
a stub compiler, prepare some examples for us for which you have hand-writterbghe s

3) Document the not-yet-implemented components in your report, with as much of a
description of their design as you have prepared.

Grading

In grading your project, we will consider the design and implementation of thdaRNitly, as
well as the report. The most important factor in your grade is the quality ofyadndave built
from the perspective of the application programmer. The next most importmtisathe
quality of your analysis of your design and implementation, as expressed iregotit The
third major grading consideration is the quality of your implementation and datatina from
the perspective of a maintainer, peer, or review committee.

A Suggested Framework

Although we are leaving the design completely up to you, we do want to suggegtraach for
tackling this assignment. In particular, we’d like to suggest that yowatakey careful look at
Java’s native RMI mechanism and understand how it works and the trade-offs therdesigne
made. We’'d like to further suggest that you emulate what you like and rework auhdo't.

We suggest that you explore it not only through documentation, such as that provided by Sun,
but also through experimentation, by writing RMI applications to illuminate théanemms and
behaviors of Sun’s RMI.

For those who take this approach, most of the rest of this document highlights several key
aspects of Java’'s native RMI facility and offers some implementatios. ilésn’t an exacting
definition — it does take some liberties. But, it is a good model for what Java’'s RMllyac
does.

This document concludes with a plan of action that might be helpful for those following an
implementation similar to this one.

The Big Picture

The figure below illustrates the model used by Java’s native RMI faciligy.components and
interactions are described in the sections below.

Cl|ent Server

lookup() of remote object reference

Object A [T RMIregiStry

seemingly local
method invocation

v
Stub for R --------------------------------------- = = P! Proxy dlspatcher
or skeleto

marshalling/unmarshalling
and commuications

seemingly local
method invocation

A4

Object R [* Object B

»
>

local method
invocation

Remote Object References

Java identifies objects usimgferences. References are nothing more than names for objects.
Typical references, such as those contained within Java’s primatarence variables arelocal
references. That is to say that these references are capable of naming object bimyavgingle
JVM.

But, an RMI facility needs a way of naming objects that live within one JVM fronhandvVM.

In otherwords, aemote object reference type is needed. Although this type is transparent from
the application programmer’s perspective, you probably want to creates acctapresent it — it
will be very useful internally.

The attributes of a remote object reference will vary with your designpbutnyght want to
consider including the IP address and port number of the remote host, a local esber@her
identifier, and the name of the interface implemented by the remote object.

Unless your remote object reference explicitly contains the loaakerefe, you'll also need a
mapping table on the server that maps between the remote object referencdauad tgect
reference. And, actually manipulating Java references is harder thanst seem

Client-side Stubs

As discussed in class, Java represents objects to remote callers by pla@ry object, known
as a stub, locally within the caller’'s JVM. lt is the job of this stub to handle trehailing of
the method invocation into a message, the delivery of the message to the comomumicetle,
and the reverse of this process, all the way to the client object, upon the methaods retur

There is at least one instance of the stub class for each remote object imusthe/ii VM. If
there are several remote objects, even if they are of the same typey¢heegeral different
instances of the stub class, one for each. Each instance of the stub class contimstéhe
object reference for the object that it represents.

In order to ensure that only one stub exist for each remote object, Java's Ritdinsaa table
that maps between the remote object reference and the local referdrecsttdot If a stub has
not already been created for a particular remote instance, it is cradteebestered in this table.

If the class for the stub is not already available on the client, it can be ddedlfvam the
server via HTTP.

Server-side Skeletons

In the original version of RMI, there was a server-side compliment to the stubn lasotive
skeleton. The skeleton, like the stub, was responsible for marshalling. Java 2tetirttieaneed
for the server-side skeletons. It did this by factoring this functionalipyrar@n component,
which | call theproxy dispatcher.

This was possible, because no part of the process is necessarily unique todhlaptnyet
object. The unmarshalling of the method call is a mechanical step which ylelds abject
reference, a method to invoke, and the parameters to this method. Once this is known, the
process of invoking the method using the local reference is the same for eti$.ofed, the last
step, the marshalling of the return value, is just as mechanical as theumitiatshalling. The
only trick is maintaining the opportunity for concurrency, without breakinghamy;t throughout
the process.

We suggest eliminating the server-side skeletons — only if you are comfaviiblioing so. It
isn’t a big deal if you do make use of skeletons in your design — and it might make khe RM
mechanism a little less complicated.

Messages

We strongly suggest developing a general format for representinggesdsstween classes.
These messages can include method invocations, return values, and exceptions. In other words
develop a message class to represent the communication that will need to crosgaitke net

If you do this, you will be able to pass the necessary information into the conistaucteate a
new message, send this message object whole over the network to the other sidatanstant
and ask it to unpack itself. If you don’t do this, you'll have to worry about parsing datdhfeom
network in several different places — and this is no fun.

If you want to use three different message types, you might want to consideinhsirigance to
avoid block-copying the implementation of common behaviors.

Communications

We strongly suggest that you develop a class to handle communications. Depending on y
design, the same one might work for either side of the pipe or you might develop two different
classes, one for each side. If you do decide two develop two different classesglyofinah
inheritance useful.

If you've got time, you might want to consider developing a connection cacke’tlt i
uncommon to find that two different JVMs are chattering a good bit — and it can gesierpe
build up and tear down the session with each network connection.

Pass by Value vs. Pass by Reference

In Java, parameters are passed into methods and returned from rbgtredelence. This is
problematic for an RMI facility, because not all objects can be remote ®bjecit all JVMs are
willing to expose any of their objects, never mind all of them. As a result, thed@Nity needs

to determine which object can be passed by reference, and which can’t. And, it needs to have
some mechanism for handling those that can’t be passed by reference.

To address the first concern, Java has a very simple rule. Any object that isroteyre
accessible must be an instance of a class that implements the Remaiean@bjects that
implement the Remote interface are passed by reference into methods and whea the
returned from methods. Other objects are pabgedlue, in other words by creating local
copies.

Java passes object by value using a process knosenaszation. Basically, this means that
Java flattens out the object, copies it, and sends this copy to the other side. At teelethiee
object is recreated from the serialized copy, and a reference to tieistegcobject is used. Java
needs to have an object’s .class file to reconstitute it from the serializgd cop

In order to recreate an object from a serialized copy, the object’sfidassneeded. To
facilitate this, Java sends the URL for the .class file along with theized copy. If the
recipient doesn't already have the .class file, it can download it via HThE ti& provided
URL.

The result of this process is that there are two copies — one on each side. ThelvlMritas
one copy and the server's JVM has another. Each acts on its own copy. The object has been
passed by value.

When Java passes an object by reference, it does this by passing a renesteerédethe object,
along with the URL of the stub class. This enables the recipient to recreatgitiobject just as
it did objects passed by value. As before, if the recipient doesn’t already lcapy of the
defining .class file, it can download it using HTTP via the provided URL.

The process of recreating a remote object or stub on the local system isocaliedtion. Pass
by value localizes the remote object, pass by reference localizes ardtud femote object.

You are welcome to use Java’s serialization methods, writeObject() ad®Beat, which can
be found inObjectlnputStream andObjectOutputStream. But, these probably will not prove to
be as effective as you would like, since they won't treat your remote objertnces specially.

Failure and Exceptions

Unlike local method calls, remote method calls can fail. As an example, the nebwtitlbe
down or partitioned. Java’s native RMI handles this by requiring that all methodsaiérem
objects throw RemoteException. This, in turn, requires that each use of a rentaid oath
the RemoteException.

Finding Remote Objects

Most remote objects are “found” when references to them are returned by metiukesl on
other remote objects. But, for obvious reasons, this mechanism does not explain how all remote
objects are found -- we need to find the first object somehow.

Java does this using a mechanism known as the RMIregistry. Servers thatecned¢eobjects
designed to be the first point of contact by a client can register these jeatts using bind()
or rebind(), which take a common, URL-style name and the local refererieedbjéct.

Once that happens, a client can connect to the RMIregistry on that server and asibjecta
by name. In return, the client will get a reference to the remote objederi chn also invoke
the list() method on the RMIregistry, which will return an array contaiiegiames of all of
the registered objects. The RMIregistry isn’t global, instead there igasrserver. Clients need
to connect to a particular server's RMIregistry, which can tell them dadytehe objects
registered on the same server.

One Possible Plan of Action

1. Play with Java’s RMI. Become comfortable with iest out example that include remote and local ¢bjgs
parameters and return values.

2. Take alook at ObjectinputStream and ObjectOutpe&si.
3. Write toy code capable of serializing an objecifing it to a file, recreating it, and using theamnmstance.

4. Write toy code capable of serializing an objechdseg it over a socket, recreating it at the otide, recreating
it, and using the recreated copy.

5. Write the RMIMessage class capable of encapsulatimgthod invocation. Test it out by marshallingethod
invocation, unmarshalling it, and invoking it.

6. Enhance the RMIMessage class so it can handlenretlwes, and then exceptions, if applicable ta yasign.
Test this out after each step.

7. Write toy code which accepts a method invocatioarghals it using your RMIMessage, unmarshals infro
your RMIMessage class, invokes the method on anathss, marshals the return value, unmarshalsetiien
value, and then returns the value

8. Develop youRemoteObjectReference class

9. Develop youd98Remote interface, make sure you can use getinterfacesigtermine if an object implements
this interface.

10. Write a sample class that implements488Remote interface. Write a very simple sample client dhythand.
This stub should accept a local reference and rabtisé method invocation to a local instance ofdhpect.

11. If you are using server skeletons, write one ferghmple remote class.

12. Write your communication modules. At this pointpdaise the network. Use a file. This is easiemtunitor
for debugging purposes.

13. Get the whole process working without the netwadidst, test, test, test — it doesn’t get easier thighnetwork
— and there is no file to observe.

14. Eliminate the file interaction and add in full-blowmetwork interaction. Once this is done, you'viually got a
working RMI.

15. Implement a registry and add support for it.

16. If you are interested add support to download ¢tess files using HTTP.

17. If you are interested, add support for connectiaching.

18. If you are interested, write the RMI compiler

19. Clean up everything

20. Organize some of your test code, or produce sommpbes for us that demonstrate your work.

21. Write your report.

