
Project 3 - TCP

Original slides - Aditya Ganjam
Rampaged through by – Dave Eckhardt

Modified by – Vinay Chaudhary

What you will implement …

• TCP state machine (connection setup /
teardown)

• Reliability
• In order-delivery
• Flow control

The Functions

• tcp_socket (socket *)
• tcp_bind (socket *, src addr)
• tcp_connect(socket *, dest addr)
• tcp_accept(socket *, from addr)
• tcp_write(socket *, buf, buflen)
• tcp_read(socket *, buf, buflen)
• tcp_close(socket *)
• tcp_receive (pbuf, src, dest)– packet

acceptor

Connection Setup

Connection tear down

Timers (tcp_timer.c)
• Initial connect timer (Time to wait for established

state after connect is called)
• Retransmit timer (If a packet hasn't been acked

for this long, retransmit)
• Close timer (Time to wait between TIME_WAIT

and closed to retransmit lost ACK
• timeout(timeout ftn, void *arg, int ticks);

– Setup a timer
• untimeout(timeout ftn, void *arg);

– Cancel a timer

Interface with Socket Layer
(Setup and Send)

Socket Layer

UDP | TCP

Application (1.. N)

Socket()

tcp_socket()

Socket.h

ksocket.c

Write()

tcp_write()

Create some
connection state

Create some
connection state

(tcpcb)

ip_output()

Send Buffer

tcp_send()

timer Receive ack

Connection Setup

Sending Packets

Interface with Socket Layer
(Receive)

Read()

Socket Layer

ip_input()

tcp_receive(pbuf *pkt, ...)

Receive
Buffer

tcp_read(..., buf, len, ...)

TCP-Header Structure

TCP Header
• Source port - This field identifies the sending port.
• Destination port -This field identifies the receiving port.
• Sequence number - The sequence number has a dual role. If

the SYN flag is present then this is the initial sequence number.
The first data packet will have this sequence number plus 1.
Otherwise if the SYN flag is not present then the sequence
number is the sequence number of the data in the packet.

• Acknowledgement number - If the ACK flag is set then the
value of this field is the sequence number the sender expects
next.

• Data offset - This 4-bit field specifies the size of the TCP
header in 32-bit words. The minimum size header is 5 words
and the maximum is 15 words thus giving the minimum size of
20 bytes and maximum of 60 bytes. This field gets its name
from the fact that it is also the offset from the start of the TCP
packet to the data.

TCP-Header, More
• Reserved - 6-bit reserved field for future use and should

be set to zero.
• Window - The number of packets the sender is willing to

receive starting from the acknowledgement field value
• Checksum - The 16-bit checksum field is used for error-

checking of the header and data.

TCP Flags
• Flags (aka Control bits) - 6 Bit flags

– URG - Urgent pointer field is significant
– ACK - Acknowledgement field is significant
– PSH - Push function
– RST - Reset the connection
– SYN - Synchronize sequence numbers
– FIN - No more data from sender

• Don't need to worry about URG,PSH,RST.
• Current TCP actually has 2 more bit flags, you don't care about them

either
• ACK,SYN,FIN are very important

Flow Control – Advertised
Window

• You need to make sure you don't send
more data then the receiver can handle.

• Each ACK packet has valid
Acknowledgment# and WindowSize fields.

• When sender gets an ACK, he determines
how many more packets to send with the
following equation:
– NumberToSend = Window – (LastPacketSent –

LastPacketAcked)
– LastPackedAcked = Acknowledgment# -1

Flow Control – Sender Buffer
• Application may want to send data faster

than sender can send.
• Have to prevent this. Limit the size of the

send buffer
• LastPacketWritten – LastPacketAcked <=

SendBufferSize.

TCP Control Block
• What might go in a TCP control block?

– Src,Dest address
– Src,Dest port
– Pointer to corresponding socket
– Mutexs and Condition variables
– Send/Receive Queue (pbufs) – Includes out of order

receive
– Current State
– Sequence Number of last packet sent/recv
– Last received ack
– Timers
– ...

Synchronization Fundamentals

Two Fundamental operations

⇒ Atomic instruction sequence

 Voluntary de-scheduling

Atomic instruction sequence
• Problem domain

− Short sequence of instructions
− Nobody else may interleave same

sequence
 or a "related" sequence

− “Typically” nobody is competing

Non-interference in P3
• What you've already seen

– Can't queue two packets to a device at the
same time

• Other issues
– Can't allow two processes to bind port 99 at

the same time
• Would scramble your port ⇔ socket data

structure

Non-Interference –
Observations

• Instruction sequences are “short”
− Ok to force competitors to wait

• Probability of collision is "low"

Synchronization Fundamentals

Two Fundamental operations

 Atomic instruction sequence

 ⇒ Voluntary de-scheduling

Voluntary de-scheduling
• Anti-atomic

− We want to be “interrupted”
• Making others wait is wrong

− Wrong for them – we won't be ready for a
while

− Wrong for us – we can't be ready until they
progress

• We don't want exclusion
• We want others to run - they enable us

Brief Mutual Exclusion

MUTEX_LOCK(sock->mutex);
sock->state = ...
MUTEX_UNLOCK(sock->mutex);

Note: sock refers to whatever
structure is used to keep track
of tcp connection. It is the
tcp control block.

Signaling and Waiting
• COND_WAIT(cond_t * cond, mutex_t * m)
• COND_SIGNAL(cond_t * cond)
• COND_WAIT() will drop the mutex, wait until a
COND_SIGNAL() is called on the condition variable, and
then will try to reacquire the mutex. It will not return until
the mutex is reacquired

• COND_SIGNAL() will signal an arbitrary thread waiting
on the condition variable and cause it to wakeup and
attempt to reacquire the mutex it is waiting for.

Voluntary Descheduling
Thread 1:
MUTEX_LOCK(sock->mutex);
while (sock->state ...) {
 COND_WAIT(&sock->ready, &sock->mutex)
 }
sock->state = ...
MUTEX_UNLOCK(sock->mutex);

Thread 2:
MUTEX_LOCK(sock->mutex)
sock->state = ...
COND_SIGNAL(&sock->ready)
MUTEX_UNLOCK(sock->mutex);

Blocking Example
Write()

Lock(socket)
While (send window/buffer is
full)
 Wait(out_avail, socket)
Copy data...
Enqueue...
Unlock(socket)
Trigger transmit

tcp_write()

ACK ip_input() tcp_input()

Lock(socket)
ACK ⇒ delete 1 pbuf
Signal(out_avail)
Unlock(socket)
Trigger transmit

Warning: “Deadlock”
• A deadlock is...

– A group of threads/processes...
– Each one waiting for something...
– Held by another one of the

threads/processes
• How to get one

– A: lock(tcp_socket_list);
lock(tcp_socket_list[3]);

– B: lock(tcp_socket_list[3]);
lock(tcp_socket_list);

– Now things get quiet for a while

Strategy
• Project handout includes suggested plan of attack

– We really think it will help
• You probably haven't written code like this before

– Asynchronous, state-machine, ...
• Please dive in early!

Questions?
• Questions?
• Examples you want worked out?

