
15-441 Spring 06
Project 2: Network Layer

Mike Cui



1

Network Layer

• Gets data from host A to host B
– Global addressing uniquely identifies A and B

– Data finds its way to host B, directly or
indirectly

– Don’t care how how they are connected, as
long as they are.

• Where is host B, and how to get there?



2

Forwarding
• Finds host B by looking up in a forwarding table.

1.1.2.1

1.1.1.1
1 2

1.1.3.1
1

1

21.1.3.1

11.1.2.1

IFDest

11.1.3.1

11.1.1.1

IFDest

11.1.2.1

11.1.1.1

IFDest

Who makes these
forwarding tables?



3

Routing

• Finds the paths to host B

• Fills in forwarding tables with the “best”
path

• How?
– Static

• Manually set it (part 1)

– Dynamic
• Use a routing algorithm (part 2)



4

Your Mission

• Implement the network layer for a
simulated operating system kernel
– IPv4 (RFC 791)

– Relay bytes between transport and physical
layers

– Forward packets between hosts

– Not required: fragmentation and reassembly

• Implement a simple routing daemon
– Using OSPF protocol



5

IPv4
• You must handle

– Checksum
– Header length
– Packet length
– Source and destination address
– Protocol number
– TTL
– IP version number

• Your implementation need not handle
– Fragmentation
– Options
– Multicast/broadcast
– ToS



6

When You Are All Done

Host

Host Host

routed

routed App App routed

Socket
Transport
Network

Link
Physical

Socket
Transport
Network

Link
Physical

Socket
Transport
Network

Link
Physical



7



8

Simulator: Logical View

Host

Host Host

AppApp

App App App App

Socket
Transport
Network

Link
Physical

Socket
Transport
Network

Link
Physical

Socket
Transport
Network

Link
Physical



9

Simulator: Implementation

Simulator
Kernel

Simulator
Kernel

Simulator
Kernel

App

App

App
App

App

Legend (Shapes)

Unix Process

Unix IPC

App



10

Simulator: Full Picture

Socket
Transport
Network

Link
Physical

Socket
Transport
Network

Link
Physical

Socket
Transport
Network

Link
Physical

Legend (Shapes)

Unix Process

Unix IPC

Legend (Colors)

User

Kernel

Network
Stack



11

Link

Sending a Packet

Transport

ip_output()

Forwarding
Table

Interface
List

IP_NOROUTE

ifp->if_start()

Add IP header

!IP_NOROUTE



12

Receiving a Packet

Transport

Forwarding
Table

Link

ip_input()

Interface
List

For me?

Yes!

ip_forward()

No…

ifp->if_start()

Strip IP header

Modify IP header
(TTL, checksum)

udp_receive()



13

• Linked list of fixed-size (512 byte) buffers

• Why?
– Dynamic, variable-sized memory allocation is

expensive
• Takes time, function of size of heap

• Wastes space due to fragmentation

pbuf

512 512 512 512



14

Inside a pbuf
p_next

p_nextpkt

p_data

p_len

p_type

p_flags

….

Next pbuf of this packet

Next packet in list of packets

First byte of data in this pbuf

Length of data in this pbuf

There’s room to
grow!

User-defined
p_dat



15

pbuf Chain

Packet 1

Packet 2

p_len is the length of a pbuf

p_pktlen() is total length
of data in the packet

sizeof(struct pbuf)

p_nextpkt

p_next



16

IP Interface
• When ip_input() is called…

– p_data points to beginning of IP header
– Strip off IP header before passing onto transport

layer

• When ip_output() is called…
– p_data points be beginning of IP payload
– Prepend an IP header before handing to link layer
– Can assume there’s enough room to prepend a IP

header
• Should not need to allocate more pbufs 

• Helper functions in pbuf.h
– p_prepend, p_strip



17

Connecting to the Simulator
• #include <project2/include/Socket.h>

• Use Socket-API functions with first letter capitalized
– Socket(), Bind(), Connect() …

• Make sure to Close()
– Simulator isn’t an operating system, it doesn’t clean up after you



18

Testing Your Network Layer

• Use fdconfig to set up static routes

• Try UDP applications
– unreliable-server,
unreliable-client

– Your P1 TFTP server (single client)



19

Simulator Internals
• Multithreaded implementation

– System call interface
• User processes must register with simulator

• One thread to handle registration requests

• One thread per process to handle system calls

– Network devices
• One thread per network device

• Wakes up when packet arrives

• What does this mean for you?
– Your code will be executed by multiple threads..

– Your code must be re-entrant!



20

Concurrency Reminder

• What you think
ticket = next_ticket++; /* 0 ⇒ 1 */

• What really happens (in general)
ticket = temp = next_ticket; /* 0 */

++temp; /* invisible to other threads */

next_ticket = temp; /* 1 is visible */



21

Murphy's Law (Of Threading)
• The world may arbitrarily interleave execution

– Multiprocessor
• N threads executing instructions at the same time

• Of course effects are interleaved!

– Uniprocessor
• Only one thread running at a time...

• But N threads runnable, timer counting down toward zero...

• The world will choose the most painful
interleaving
– “Once chance in a million” happens every minute



22

Your Hope

21Final Value

2n_tkt = tmp

2++tmp;

1tkt = tmp =n_tkt;

1n_tkt = tmp;

1++tmp;

0tkt = tmp =n_tkt;

T1T0



23

Your Bad Luck

11Final Value

1n_tkt = tmp

1n_tkt = tmp;

1++tmp;

1++tmp;

0tkt = tmp =n_tkt;

0tkt = tmp =n_tkt;

T1T0

Two threads have the same “ticket” !



24

What To Do

• What you think
MUTEX_LOCK(m);

ticket = next_ticket++;

MUTEX_UNLOCK(m);

• Now no other thread's execution of the
“critical section” can be interleaved with
yours



25

IP Dataflow Revisited

Transport

ip_output()

Link ifp->if_start()

ip_input() ip_forward()

Two threads of execution!

Problem! Link layer
can only send out
one packet at a time.



26

One at a Time
• Only one thread can send through a particular

device at a time
– Otherwise the device will fail and cause kernel to

panic.

• Need mutual exclusion
– Use a mutex (pthread_mutex_t) for each device
– Declared in if.h, Mutex wrappers in systm.h

MUTEX_LOCK(&ifp->if_mutex);

ifp->start(ippkt);
…

MUTEX_UNLOCK(&ifp->if_mutex);

Critical section! Mutex
ensures that only one
thread can enter at a time.



27

IP Dataflow Revisited (again)

Transport

Link       ifp->if_start()

Transport

Socket Socket

Link       ifp->if_start()

App App

ip_output()
Two threads can call ip_output()
concurrently, that should work!
Make sure it does!



28

Many at a Time

• More than one thread could invoke an IP
layer function at the same time
– Each invocation has to be independent of one

another

– Each invocation needs to have its own state
• Stack variables are independent, global variables

are shared

– Shared state needs to be protected



29

Debugging Multiple Threads

• Using gdb
– info thread lists all running threads

– thread n switches to a specific thread

– bt to get stack trace for the current thread

– Look for the function thread_name in stack
trace, name of thread is in the argument

• “link n:i to k:j” device thread for interface i on node
n to interface j on node k

• “user_pid” system call handling thread for user
process pid.


