
15-441 Spring 2007: Project # 3
Reliable Sliding-Window Transport

Out: Thursday, Mar 24th, 2007
Due: Thursday, April 19, 2007, 11:59 pm

1 Introduction

In the previous projects, you implemented an application layer service (SMTP), and the routing layer (IP
forwarding and routing). In this project you will implement a transport layer. You will implement a reliable
transport layer similar to TCP.

IMPORTANT: If your IP forwarding code does not already meet the requirements of Project 2, you must
fix the remaining bugs and implement the remaining features in order to successfully complete this project.
If you believe your IP forwarding code is hopelessly broken, please bring it to our attention as soon as
possible. Your routing daemon need not be working to complete this project; static routes will suffice.

2 Logistics

2.1 Handouts

The project directory (which will be referred to as <projdir> can be located at

/afs/andrew/course/15/441-sp07/project3

The support code has been slightly modified, but it should not affect your Project 2 implementations, and
should link with your code seamlessly.

We reserve the right to change the support code as the project progresses to fix bugs :) and to introduce new
features that will help you debug your code.

2.2 Groups

Since you will be extending the code written for Project 2, we assume that all groups will remain the same.
If you need to change your group for whatever reason, you must come and talk to us by Friday, March 23,

1



and no later.

You are not permitted to share code of any kind with other groups. Each member of the group is responsible
for both sharing the work equally, and for studying the work of their partner to the point they understand
it and can explain it unassisted. Please also indicate a breakdown of what each group member did (see
Section 6).

3 Your Assignment

In this assignment, you will implement a reliable, in-order-delivery transport protocol. The transport layer
provides the means for delivering data from one network application to another. Your transport protocol
must support the following:

• Multiple simultaneous connections concurrently. This means you will need to multiplex and demulti-
plex using port numbers and use proper synchronization mechanisms to ensure thread-safety.

• Reliability. Your protocol must detect lost packets and retransmit them. You will implement a reliable
sliding-window transport protocol that allows multiple packets in flight at the same time. This has
better performance than a “stop-and-wait” protocol.

• In-order delivery. No duplication or reordering of packets as observed by the user.

• Flow control through window advertisement

3.1 Read Chapter 5 in the book

Although the book is optional for this course, it would be really helpful to have in order to help you get
started on this project. If you don’t have a copy, borrow a friend’s or head over to Professor Kesden’s office
to check out his copy.

Section 5.1 (UDP) discusses how to multiplex and demultiplex using ports. You should start your transport
protocol by implementing this.

Section 5.2 (TCP) discusses the details of the different components of TCP: Section 5.2.2 discusses the
packet format for TCP, which you will use. Section 5.2.3 discusses connection establishment and termina-
tion. You will spend a large chunk of time getting this right, so read and make sure you understand this
section before attempting to implement it. Section 5.2.4 discusses the sliding window mechanism. This is
the second piece that you will spend a lot of time on. Note that you will be using a packet-stream, not a
byte-stream as this section describes. This means sequence numbers will be associated with packets, not
bytes and retransmissions will be at the level of packets. You do not need to worry about the sequence
number wraparound problem in this assignment (make sure your initial sequence numbers are less than half
the maximum value, and we will make sure to transfer less than two gigabytes per connection).

You do not need to worry about Nagle’s Algorithm, adaptive retransmission, congestion control, or any
subsequent chapters in the book, although these things may come in handy for the extra-credit section.

2



3.2 Timers

Your TCP implementation will need to use three timers: initial connect timer, retransmission timer, and
close timer.

• The initial connect timer is used to detect connection failures. This timer is set when a call to connect
is made and is canceled when TCP reaches the established state. If the timer expires, the connection
should be closed.

• The retransmission timer is used to detect a packet loss. If this timer expires, then a packet or its
ack has been lost. TCP should retransmit the packet with sequence number one greater than the last
packet acknowledged.

• The close timer is used to catch any FINs being retransmitted. Chapter 5.2.3 explains this in more
detail.

To implement timers you will use the timeout() and untimeout() functions defined in include/systm.h.
Please refer to Section 9.1 of the simulator handout for details of the timer API. The prototypes are listed
below as a reminder:

typedef void (*timeout_t)(void *);
void timeout(timeout_t, void *arg, int ticks);
int untimeout(timeout_t, void *arg);

Suggested timer values are: 30 seconds for the initial connect timer, 3 seconds for the retransmission timer,
and 75 seconds for the close timer. Remember that a kernel tick in the simulator is 500 ms.

3.3 Hooks

You must register your transport protocol with the socket layer in order for it to receive requests based on
system calls issued by user code. Use sock register transport(&proto tcp) at initialization
time. Please refer to Section 6 of the simulator handout for details. For this assignment, you do not have to
implement the sendto, recvfrom, and setsockopt calls, so set these entry points to NULL.

Next, you must call your init function (i.e., tcp init()) from init.c in the template/kernel directory.

3.4 Functions

The template/kernel directory has tcp.h and tcp.c. Function prototypes are given in these files for
the main functions. You are allowed to change the functions, but you must keep the registered functions
(tcp socket, tcp close, tcp bind, tcp connect, tcp accept, tcp write, and tcp read)
and their arguments the same.

3



3.5 Other important points

• You must bound the size of the receive buffer. The size of the receive buffer determines how much data
transport layer queues at the receiving end, waiting for the data to be consumed by the application.
The size of the receive buffer also defines the maximum receiver window advertised to the sender.
Your receive buffer should be sized to hold somewhere betwee 16 and 256 packets.

• Your protocol should avoid retransmitting more data than is necessary. For example, assume a sender
transmits data segments n, n + 1, n + 2, and data segment n is lost. The acknowledgment number
sent by the receiver would remain at n (TCP’s acknowledgment field identifies the next sequence
number expected) even when data segment n + 1 and n + 2 are received (TCP uses a cumulative
acknowledgment scheme). Upon receiving the acknowledgment for n, the sender should retransmit
data segment n but not data segment n + 1 and n + 2.

• Conceptually, a receive buffer contains two types of segments: in-order segments and out-of-order
segments. In-order segments contain data that are ready to be consumed by the application. Out-of-
order segments are waiting for missing segments with lower sequence numbers, and are not ready to
be consumed by the application. You can choose to put both types of segments in one receive buffer,
or you can break them up into two different buffers. Regardless, the sum of both types of segments
cannot exceed TCP RCVBUF SIZE.

• If the size of the data given by a Write() call fits in one transport segment, then send the data as one
segment. If the size of the data is too large to fit in one segment, you need to break up the data into
multiple segments. The size of segment is limited by interface MTU. Optionally you can pack data
from multiple Write() calls into one transport layer segment, but this is not required. A Write()
of 0 byte data is discarded by your network stack and is not sent over the wire.

• a Read() can read any number of bytes of data greater than zero. However, you are not required
to return the exact size of data requested (the size can be ≤ the requested size). For example, let us
assume you have two in-order segments in your receive buffer, each with 100 bytes. If an application
performs two Read() calls, and each call requests one byte, you must return the first byte from the
first segment and then the second byte from the first segment. On the other hand, if an application
requests 120 bytes, you can choose to return either 100 bytes (the whole first segment) or 120 bytes
(the first segment plus 20 bytes of the second segment). While in theory you could also return seven
bytes, or eleven, or some other silly number, there is no defensible reason for doing so.

• For simplicity, the sequence number and acknowledgment number in the transport layer header will be
units of “packet” rather than “byte”. Thus, the transport protocol is a packet-stream protocol instead
of a byte-stream protocol. However, to the application using your transport protocol, it will appear
to be a byte-stream protocol since the protocol is not required to maintain packet boundaries. The
size of the send buffer and receive buffer are defined in units of packets instead of bytes. These
maximum buffer sizes (TCP SNDBUF SIZE and TCP RCVBUF SIZE, respectively) are defined in
<projdir>/include/systm.h.

4



4 Testing your code

In order to test your code, we have provided a reference kernel with packet filtering capability. An ideal way
to test the correctness of your TCP implementation would be to setup the standard 3 node network with the
reference kernel in the middle.

The format of the filter file is as follows

node-id
filter-flags | packet-range

Here filter-flags refers to the TCP flags that the node should drop (ack, syn, fin). packet-range refers to the
range of packets the node should drop. This range refers to any packets that traverse this specific node. So if
you specify the range as 2 4, and the node first receives 1 packet from node 3, then receives 2 packets from
node 2 and finally 1 packet from node 3, it will drop the two packets from node 2 and the last packet from
node 3 only. Note that you can specify either flags or packet range, and the file must be exactly 2 lines long.

So lets say you setup the reference kernel as the middle node (1) in your simulation. If you want the node to
drop packets 5-10, you would write

n1
5 10

If you wanted the node to drop all ack packets, you would write

n1
ack

To run the reference kernel with the filter, name your filter file tcpfilter.config and place it in the same folder
as the reference kernel and run the kernel as usual. The kernel will automatically read the filter. A sample
file and reference kernel has been provided in <projdir>/refipkernel.

5 Evaluation

We will be grading this project by scripts and an in-person demo. You will need to sign up for a 30-minute
time slot. Late submissions will be handled according to the policy given in the syllabus. We intend not to
extend the due date for Project 3. The point breakdown will be approximately as follows.

• (60 points) Sliding-window transport

This part of your grade reflects how well you implemented the protocol features we listed above. We
will check if your protocol can handle packet loss, duplication, reordering using test cases and the.
Note that correctness is more important than performance. It is better to have solid working features
than broken features with optimization.

5



• (15 points) Style

Poor design, documentation, or code structure will reduce your grade by making it hard for you to
produce a working program and hard for the grader to understand it. Compiling errors and warnings
will also reduce your style credits.

• (15 points) Demo

We will run a series test cases to check your implementations during the demo. You will be asked
specific questions related with your design and implementations. This part of grade reflects how well
you understand your implementation choices, and the code written jointly with your project partner.

• (10 points) 2 Checkpoints

There will be 2 graded checkpoints during this lab. Each will be worth 5 points. A brief description
is provided in the “Plan of Attack” section of this handout, but please watch the bboard for specific
details about the each of the checkpoints as it’s time approaches.

– (April 3rd) SYN
– (April 12th) Stop and Wait

6 Handin

6.1 Code Requirements and Restrictions

We will run your program on x86 computers running Linux. We recommend that you use similar machines
for development. Such machines are available in the Wean clusters. Additionally, several Linux servers
(unix44.andrew.cmu.edu through unix49.andrew.cmu.edu) are available for remote login. If you have your
own Linux system, you are welcome to use it for this project. Note, however, that we will test your code on
the Andrew systems. Thus, you must make sure your code runs correctly on the Andrew Linux machines.

You must write your code in C. In addition, your code must compile with gcc using the -Wall -Werror
flag cleanly on an Andrew Linux machine without any warning message.

6.2 Project Writeup

Each group should create a brief report (README file) describing their efforts, in one of the following
formats: plain text, postscript, or pdf. Your report should include the following:

• A description of the design of your sliding-window transport protocol. Note that if there are errors in
your implementation of some functionality, we may still be able to give you credit for having worked
through the design issues for that functionality.

• A description of what works and what does not (use a table for this). For things that do not work, give
your thoughts on what the problem might be.

6



• A breakdown of what each group member did (use a table for this as well).

• Your thoughts on the project: was anything too difficult? What would improve the project? Were
there parts of the project that worked particularly well, and shouldn’t be changed?

Also, each group should create a file called TESTS with a description of the test cases you used, and any
interesting testing strategies that you used.

6.3 Hand-in Procedure

You should submit the following files:

• Makefile, *.c, *.h

• Project writeup README and TESTS

• (optional) Code or documentation (EXTRA) on any extra credit items you have worked on (see Section
10).

All your submission files are to be placed in

/afs/andrew/course/15/441-sp07/handin/lab2/andrewid1-andrewid2/.

Use the same version notation as in previous labs. Note that submissions by e-mail will not be accepted.

Similar to Project 2, your Makefile should be written such that we can build your binary from source
by simply running make (with no arguments) in your submission directory. The binary produced must be
called kernel. If your code does not build according to this procedure, your submission will lose points.
You do not need to include any library files (such as the C library, or the simulator’s libraries) in your
submission directory.

7 Resources and Hints

• Start early! Not only for your sake but for the common good. Read the handout, think about the
issues, ask us questions. There is an inherent tension between giving you freedom of design and
having to evaluate your submissions. Where ambiguities arise as to what we require, they are best
resolved as early on as possible. If you find yourself plagued by doubts and frustrations in week 3 of
a 4-week project, the fault lies partly with you.

• RFC 793 (http://www.ietf.org/rfc/rfc0793.txt) specifies the functions of TCP proto-
col as your reference of a sliding-window transport layer. Note while reading the TCP literature, you
will come across many features not required by this project. So we suggest you be selective in reading
the RFC. Please start reading the RFC immediately, as it will take some time and you need to read
some parts several times.

7



• There are several things to note about the interface between transport layer and socket layer:

– A server must call Bind() to bind to a port number before calling Accept(). If not, Accept()
should return a failure. A Bind() to a client socket is optional, and thus you must support both
implicit binding (Socket → Connect → ...) and explicit binding (Socket → Bind →
Connect→ ...) on a client socket.

– Accept() returns 0 (instead of a new file descriptor as in UNIX) upon success, and -1 upon
failure. Thus, Accept() does not create a new file descriptor (unlike the Berkeley Socket
specification), and uses the same file descriptor for the subsequent socket calls.

– Since Accept() does not return a new socket descriptor, after Accept() returns and the
incomming connection is handled, the socket will be destroyed upon Close(). The server
needs to recreate the socket and bind it with the Socket()/Bind() sequence before listening
for new connection by calling Accept() again.

– The socket starts accepting client connection requests only after the Accept() call has been
successfully made, i.e., SYN packets arriving before the Accept() call should be discarded.

– Write() should return almost immediately, except in the case where the send buffer is full.
This means that if your transport layer cannot deliver the data right away, you should queue the
data in a send buffer for later transmission. However, if the send buffer is full, Write() blocks
until enough space in the send buffer is freed to enqueue another packet.

8 Plan of Attack

The following is a suggested plan of attack intended to help you get started. While you may not choose to
do everything in this order, it may provide you with some guidance. There will be one milestone and two
checkpoints during the course of this project.

1. Verify your IP forwarding layer. Throughout the course of the project, we will release reference
kernels agaist which you can test your TCP implementation. But first, you need to make sure that
your IP layer works against ours. Initially, we will release a reference project 2 kernel that you can
use to test. Please verify your IP layer by running a network simulation involving both your kernel
and the reference kernel and make sure that they can communicate with each other and agree on all
the bits in the IP header.

2. Write the socket call, which involves allocating and attaching a control block to the socket, and
deallocate it in close. For now, your control block can have only two things in it, just the source and
destination addresses. Have bind and connect fill in these addresses. Since you do not yet have
port numbers, you can only support one socket per host. However, your protocol does have enough
information to send packets, so implement a dumb version of write and see if you can correctly
send a packet to the destination host. Verify that tcp receive gets the packet that write sends
out.

3. Implement a simple receive buffer. Note that the pbuf structure contains a nextpkt pointer that you
can use to link packets together; therefore, you shouldn’t have to write any queue structures. Have

8



tcp receive enqueue to it while read dequeues from it. Also make sure that your receive buffer
is thread safe. In addition, implement the signalling mechanism necessary for read to block when
the receive buffer is empty, and wake up only when a packet has come in. Now figure out a way
for close to signal ’EOF’ to the other side. At this point, you should have enough functionalities
implemented to perform a simple file transfer.

4. Add port numbers to your protocol so you can have more than one socket per host. Update your TCP-
control block, as well as bind and connect so they know about port numbers. Make sure that bind
assigns unique port numbers, and think about race conditions. Also, have close recycle the port
numbers. Now, every packet being sent sent needs to have its the port number identified, so modify
write so that it prepends a simple header identifying the port numbers. Modify tcp receive so
the port numbers are interpreted and used to demultiplex between sockets. (You will need a datastruc-
ture to map port numbers to sockets). Congratulations, you have implemented a complete transport
layer protocol (a.k.a. UDP). Now your protocol should be able to handle two simultaneous transfers.
You should reach this milestone by March 27.

5. From now on, you will be implementing TCP-specific features for reliable transport. Please take some
time to read and re-read the textbook sections on TCP, the RFC, and this project handout. Also, it’s
probably a good time to implement the TCP header and checksums.

6. Implement three-way handshake for establishing a connection reliably. To assist you, we will provide
a reference implementation for you to connect against, for use until your TCP implementation can
connect with itself. This is checkpoint 1, due April 3

7. Implement connection teardown. You also need to properly report ’EOF’ to the user according to the
socket I/O semantics.

8. Implement reliable packet transfer using stop-and-wait. Now you should be able to transfer a file
reliably (even with link-level packet dropping turned on). This is checkpoint 2, due April 12. -
You will download a rogue kernel. A user program we provide will transmit a key (< andrew ID 1
> < group # > < andrew ID 2 >), to a TCP port on the rogue kernel, which will transmit back a
hash string. Then you will send staff-441 the key and hash so we can verify you have completed the
checkpoint.

9. Implement sliding window to allow multiple packets to be in flight. Now you will need a send buffer
as well as a receive buffer. First, only accept packets that are in-order and silently drop out of order
packets. Second, have an out-of-order queue to re-order packets as they come in. (This step will take
the rest of the time)

To summarize, there will be one milestone and two checkpoints, and the key dates are as follows:

1. March 20 - Release

2. March 27 - Milestone: UDP-like transport

3. April 3 - Checkpoint 1

4. April 12 - Checkpoint 2

5. April 19 - DUE!!!!

9



9 Getting Help

• Most questions will be of general interest and should be posted to the class bboard. Please make your
questions clear and specific to increase the chance that we can solve your problem with one response.
You are responsible for reading the bboards to stay up-to-date. We will assume that all students in the
class will read and be aware of any and all information posted to the bboards.

• If you have a question for the TAs – a question that is not appropriate for the bboard – please email
your question to staff-441@cs.cmu.edu. As always, the course staff is available for help during office
hours.

• Talk to your classmates. While you need to write your own original program, we expect conversation
with other people facing the same challenges to be very useful.

• Come to office hours. This is particularly useful if you have questions about how to structure your
code, or questions about other aspects of your design.

10 Extra Credit

Our intent in suggesting extra credit items is to give interested students the opportunity to explore additional
topics in depth that will not be covered in project requirement. The primary reward for working on the
suggested items is the additional experience and knowledge that they give you, not extra credit points. Extra
credit will be granted at the discretion of the teaching staff.

If you work on the suggested topics below, please include in your project submission a file called EXTRA,
describing what you have done.

Transport layer congestion control There are many features related to TCP congestion control that can
be implemented based on a sliding-window transport layer. These include slow start, congestion
avoidance, fast retransimission, and fast recovery. Implement these options in your sliding-window
transport layer, and compare the protocol performance with the one without these features.

Two way connect TCP allows the two parties to both connect at the same time.

Test cases We encourage you to come up with interesting test strategies for checking your work.

Your Own Idea We welcome your suggestions for other interesting extensions to the project.

10


