
15-441 Computer Networking

Lecture 9 –
ARP, RARP, BOOTP, DHCP
Layer 2 and 3 Switch Fabric

Distributed Agreement

2

Outline

•ARP, RARP, BOOTP, DHCP

•Switch Fabric

•Distributed Agreement

Address Resolution Protocol (ARP)
...and friends

• ARP
• Used to get Layer 2 address from Layer 3

address, e.g. by router.
• Request, e.g. “Who has IP address X?” is

broadcast as IP address is not known.
• Can also be used as an announcement to

periodically update caches
• Reply is unicast to requestor.

ARP is totally unauthenticated

• Bogus message (intentionally) mismapping the router
• Disconnects a large chunk of the network

• Bogus message directing a particular host to another host
with IP Forwarding
• Misdirect messages and enable IP Forwarding to form man-in- middle

• Flood the network with bogus ARPs
• Switch tables become full of junk
• Real messages get flooded to all interfaces
• Enables sniffing across network segments

ARP Hacks

• Network broadcast to request IP address given MAC address
• Server replies via Layer 2 message, providing IP address
• Used as a configuration protocol
• Nominally replaced by BOOTP (and really by DHCP) to eliminate

the dependency upon broadcast messages, which limited scope to
a single network segment

Reverse ARP (RARP)

• UDP-based alternative to ARP
• Can carry more than just IP address
• Uses address to unicast via UDP if client knows it

• Can cross network boundaries
• Sends broadcast message if client does not know IP

• Not much different than RARP
• Mostly short-lived RARP replacement

• World quickly moved on to DHCP
• Still makes occasional appearances for simplicity and

flexibility

Boot Protocol (BOOTP)

• Configuration information
• IP Address, subnet, gateway, DNS, time server, etc.
• IP address can be static or dynamic. Dynamic can prefer stickiness.
• Different servers can manage different pools, or the same pool if on the same

network
• DORA (Discovery, Offer, Request, Acknowledgment)
• “Discovery” Request via UDP broadcast

• Can include old/expired IP address to request it
• Relay's can proxy for local client to cross network boundaries for initial

request,before IP is assigned
• “Offer” Reply via link-layer unicast

• IP address of server, so future messages can be unicast
• Multiple servers can exist, so multiple offers can be received
• Offered IP address
• Subnet mask
• Lease length

Dynamic Host Configuration Protocol
(DHCP)

• “Request” accepts offer
• This is multicast. This lets all servers know, so unused offers can be canceled And, is

pedantically correct, since the assignment is not made until request received and
ACKed.

• “Acknowledgment”
• Confirms assignment
• Provides lease duration
• Provides other configuration information

• Renewals
• Start requesting at ½ lease duration
• Sent via UDP unicast to grating server
• Expires and returned if not renewed

Dynamic Host Configuration Protocol
(DHCP), cont.

• Things done right
• Multiple servers for reliability
• Synchronization is cheap (via broadcast)
• Unicast, once able, reduces traffic
• Agents to extend beyond network boundaries
• Leases instead of grants

• Lessons not learned: Authentication, anyone?
• Imposter DHCP servers deny or redirect services
• Imposter clients gain access
• DoS by claiming all available IPs

Dynamic Host Configuration Protocol
(DHCP), cont, cont.

Outline

•ARP, RARP, BOOTP, DHCP

•Switch Fabric

•Distributed Agreement

Revisiting Switch Internals:
Earlier Picture

• Switches
• circuit switch
• Ethernet switch
• ATM switch
• IP router

Line Cards

 Switch Fabric

Control Processor

Line Cards

• Switch fabric
• high capacity

interconnect

• Line card
• address lookup in the

data path (forwarding)

• Control Processor
• load the forwarding

table (routing or
signaling)

• Ports can be used for input and/or output
• Input and output aren't instantaneous

• Messages arrive over time and are buffered until complete and
verified

• Deciding what to do with a message at an input port takes time
• More time for complex “routing” than simple “switching”

• It takes machinery to get from an input port to an output port
• If aspects of this machinery are busy, time may be spent

queued/buffered
• The output port might be busy, which may result in

queuing/buffering
• (Any queue prior to the input port would need to be at the sender)
• Input and output can operate at different rates, e.g. 1Gbps input

ports and 100Gbps output ports, or the reverse.

Revisiting Switch Internals
Input Port to Output Port?

• The Fabric is everything involved in connecting a message arriving at an input port with
its destination output port.
• Queues provide temporary storage during while waiting
• Buffers provide temporary storage while acted upon
• A Switch or Bus provides the connectivity from input to output
• The Control Plane is responsible for complex decision making, e.g. thinking.

Essentially, it populates forwarding tables
• The control play is traditionally involved in layer-3 functions, e.g. maintenance of

routing and forwarding tables, multicast, IP options processing, etc.
• The Data Plane is responsible for simple decision making, e.g. table lookups. It

basically does the “Look and Go” based on what the control plane set up.
• The data plane did not traditionally handle layer-3 packet processing, but modern

switches can, in situations without complex IP options, handle a variety of layer-2
functions in the data plane.

Revisiting Switch Internals
What is the Fabric?

• Routers and switches were basically computers
• Global buffers shared by all NICs
• Layer-2 used a global table of MAC addresses
• Layer-3 used a global table of destination addresses
• Simple process

• Read into global buffer
• Queue buffer for processing
• Make decision about output port, and do any necessary updating
• Queue for output port
• Drain via port onto network

• Memory throughput is limiting
• Copy from line card, to memory
• Copy from memory to line card
• Table lookups

Revisiting Switch Internals
Old School

• Cache tables on line cards
• Local lookups
• Only needs to interact with main memory for updates
• Memory throughput/bus contention no longer an issue

• Memory bypass
• Use bus to move from line card to line card without buffering in main

memory

• Obviously, this only works for the data plane “switching”, whether layer-2 or
layer-3
• Complex decision making still passes through the control plane, which means

the CPU, main memory, etc.
• Memory might not be a bottleneck – but the bus still is.

Revisiting Switch Internals
Simple Fixes

• Since the shared bus is a bottleneck, we need to address it
• We can make it faster – but scale is not in our favor
• More ports = more opportunities for parallel input
• Battling parallelism with speed is rarely going to win at scale.
• Battling parallelism with parallelism is more likely to win.

• Want a solution with parallelism
• Traffic shows up at multiple ports at the same time

• Queuing is still needed
• Multiple inputs may need to go to the same output.
• Outputs may be slower than inputs
• Architectural artifacts, e.g. head of line blocking

Revisiting Switch Internals
Bye, bye bus

• Replace single bus with parallel switch
• Classic solution is a crossbar, other architectures exist

• Basic process
• Work arrives at input ports and is queued
• Switch is configured
• Work crosses switch and is queued at output ports to be drained to

network as able
• Repeat

• Open questions
• How are buffers managed? Where do they live?
• How do ports map to switch connections/channels?

Revisiting Switch Internals
How to get parallelism?

Revisiting Switch Internals
Crossbar Example

Input
Queues,
One per
Port group

Output queues, one per port group

Although it would be nice to have two crossbar channels/connection per port, one
for input and one for output, the n2 nature makes this expensive. Commonly ports
are grouped together, as on a line card, and contend within a group for a channel
through the crossbar. In any case, input and output buffering are required.

• It would be nice if internal and external capacity, including decision making, were
plentiful and queuing were unnecessary
• {insert reality here}

• Given that we may need to wait for decision making and/or an output port, queuing is
necessary.
• And, beyond that, it can also be generated as an artifact of design

• Queuing strategies trade off scheduling complexity (decision making), memory pressure,
and I/O

Revisiting Switch Internals
Where to queue?

• Input queued
• Queue messages at input port until can be copied to the output port's buffer,
FIFO

• Output queued
• Initial placement in shared memory queue, followed by global scheduling
and local dispatch

• Combined Input-Output Queued (CIOQ)
• Input queues + output queues

•CIOQ + Virtual Output Queues (VoQs)
• Local to each input queue exists a shadow secondary queue for each output
port

Revisiting Switch Internals
Queuing models

Revisiting Switch Internals
Input queued

• Input queued
• This is a relatively simple model.
• Queue messages at input port until can be copied to the output port's
• buffer

• The head of the queue is examined and the output port is determined
• It is written to the output port's buffer, when able

• The output port may be busy
• Another input port may be contending for the output port
• Etc

• Processing is FIFO, so Head of Line (HoL) blocking can occur, preventing
 other queued messages from being dispatched to available output ports

• Output queued, Model Idea
•The model idea is to buffer at the input port, but to queue directly for
 the output port

• This would tie up the input port, preventing the arrival of new
 packets

• Until a decision is made
• And, until contention for the output queue is resolved
• And, until the copy is complete, but that isn't new

Revisiting Switch Internals
Output queued

• Output queued, In reality
• Initial placement in shared memory
• Global scheduler maps input buffer to output queue(s)
• Output port scheduler drains its output queue to its output buffer,
 recycling global memory

• Primary challenges
• Making the access to global shared memory fast enough to handle all of
 the inputs

• Making it fast enough, given contention resulting from concurrent queue
 access

• Historically, not favored
• Shared memory is hard

• Future unclear
• SoC, etc, is making shared memory easier
• Demand for speed is unrelenting
• Fewer memory copies

Revisiting Switch Internals
Output queued, cont.

• Given the challenges of shared memory, separate queues are more common

• Initial Idea: Have Input queues in addition to the Output queues
• Make decisions on input queue
• Move to output queue, when able

• Reality: Can't always immediately get to output queue
• Internal bandwidth limitations
• Blocking necessitated by contention

• Impact:
• Head of Line (HOL) blocking, again.

Revisiting Switch Internals
Combined Input-Output Queued (CIOQ)

• Solution: Virtual Output Queues (VoQs)
• Have separate queues for each output port at each input port.
• No more head of line blocking – each output queues path is separate

• Nuances
• Each may be queued twice, once at input and once at output
• Tons of queues

Revisiting Switch Internals
Virtual Output Queues (VoQs)

Revisiting Switch Internals
Lest We Forget: Overarching Considerations

• How to connect
• Common bus
• Parallel switch, e.g. crossbar, banyon switch, etc

• Memory architecture
• Global shared?
• Per port or port group?
• Two of above? Three of above?

• Where and how to buffer
• Input port, output port, both?
• How to partition? Fixed? Agile?

• Data structure(s) and algorithm(s) for scheduling
• How to maintain table data structure
• Algorithm to perform mapping
• May be distinct global (input side) and local (output side) processes
• Traffic is not uniform, efficiently selecting from inputs is hard

Revisiting Switch Internals
Random Lingo

• Arbitration
• Ensuring that there is not concurrent access to a shared resource

(that can't be concurrently used)
• e.g., Arbitrating access to a VoC

• Scheduling
• Given a resource and a bunch of work for it, deciding which work

should get done when
• e.g., given a whole bunch of messages we know are destined for

an output port, deciding in which order they should be drained

Revisiting Switch Internals
Surprise!

• Energy is
• A huge concern in switch design and data center management
• Expensive
• Not always available
• Hard to remove from the chassis in the form of transfer and cooling
• Expensive to remove from chassis in the form of cooling, where possible

• What consumes energy?
• Fabric is most energy dense
• But, line cards dominate by shear number.

• Mitigation?
• Bigger switches to amortize fabric cost.
• Moore's law still seems to apply to processing ability within switches

• Outpaces traffic growth in many applications

Outline

•ARP, RARP, BOOTP, DHCP

•Switch Fabric

•Distributed Agreement

Routing Is A Hard Problem
Distributed Agreement

• Maintaining Routing Tables Is Intrinsically a hard problem
• Distributed Agreement in a dynamic system

• The goal
• Routers should communicate with each other and maintain a global understanding of

the topology of the network, such that they can each, individually, make globally
good forwarding decisions.

• No magic
• Routers must communicate via the same network connections as everyone else
• These are the same network links that can be too slow, too congested, too lossy, or

just plain failed.
• The state of the network can change at any time, without warning
• It takes time to communicate

Routing Is A Hard Problem
Convergence

• Convergence versus absolute agreement
• Once a change happens, it take time to communicate
• Once a change happens, it take time to figure out what to do about it
• Participants continue to (otherwise) function, even when, as a result

of these changes, agreement is not perfect
• Participants converge toward agreement – whether or not agreement

has actually been reached is never known to any participant

Routing Is A Hard Problem
Examples

• Unseen Loops

• False Partitioning

• Stale Information Looks New

• Messages Travel Forever

	15-441 Computer Networking
	Outline
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

