

Lecture 8 – IPv6, NAT, VPNs, Tunnels ATM and MPLS

•ATM and MPLS

Internet Control Message Protocol (ICMP)

- Short messages used to send error & other control information
- Examples
 - Ping request / response
 - Can use to check whether remote host reachable
 - Destination unreachable
 - Indicates how packet got & why couldn't go further
 - Flow control
 - Slow down packet delivery rate
 - Redirect
 - Suggest alternate routing path for future messages
 - Router solicitation / advertisement
 - · Helps newly connected host discover local router
 - Timeout
 - Packet exceeded maximum hop limit

IP MTU Discovery with ICMP 10^{10}

- Typically send series of packets from one host to another
- Typically, all will follow same route
 - Routes remain stable for minutes at a time
- Makes sense to determine path MTU before sending real packets
- Operation
 - Send max-sized packet with "do not fragment" flag set
 - If encounters problem, ICMP message will be returned
 - "Destination unreachable: Fragmentation needed"
 - Usually indicates MTU encountered

- When successful, no reply at IP level
 - "No news is good news"
- Higher level protocol might have some form of acknowledgement

•ATM and MPLS

IPv6

- "Next generation" IP.
- Most urgent issue: increasing address space.
 - 128 bit addresses
- Simplified header for faster processing:
 - No checksum (why not?)
 - No fragmentation (?)
- Support for guaranteed services: priority and flow id
- Options handled as "next header"
 - reduces overhead of handling options

IPv6 Addressing

- Do we need more addresses? Probably, long term
 - Big panic in 90s: "We're running out of addresses!"
 - Big worry: Devices. Small devices. Cell phones, toasters, everything.
- 128 bit addresses provide space for structure (good!)
 - Hierarchical addressing is much easier
 - Assign an entire 48-bit sized chunk per LAN use Ethernet addresses
 - Different chunks for geographical addressing, the IPv4 address space,
 - Perhaps help clean up the routing tables just use one huge chunk per ISP and one huge chunk per customer.

IPv6 Autoconfiguration

Serverless ("Stateless"). No manual config at all.

- Only configures addressing items, NOT other host things
 - If you want that, use DHCP.
- Link-local address
 - 1111 1110 10 :: 64 bit interface ID (usually from Ethernet addr)
 - (fe80::/64 prefix)
 - Uniqueness test ("anyone using this address?")
 - Router contact (solicit, or wait for announcement)
 - Contains globally unique prefix
 - Usually: Concatenate this prefix with local ID \rightarrow globally unique IPv6 ID
- DHCP took some of the wind out of this, but nice for "zero-conf" (many OSes now do this for both v4 and v6)

IPv6 Cleanup - Router-friendly

- Common case: Switched in silicon ("fast path")
- Weird cases: Handed to CPU ("slow path", or "process switched")
 - Typical division:
 - Fast path: Almost everything
 - Slow path:
 - Fragmentation
 - TTL expiration (traceroute)
 - IP option handling
 - Slow path is evil in today's environment
 - "Christmas Tree" attack sets weird IP options, bits, and overloads router.
 - Developers can't (really) use things on the slow path for data flow.
 - If it became popular, they'd be in the soup!
- Other speed issue: Touching data is expensive. Designers would like to minimize accesses to packet during forwarding.

IPv6 Header Cleanup

- Different options handling
- IPv4 options: Variable length header field. 32 different options.
 - Rarely used
 - No development / many hosts/routers do not support
 - Worse than useless: Packets w/options often even get dropped!
 - Processed in "slow path".
- IPv6 options: "Next header" pointer
 - Combines "protocol" and "options" handling
 - Next header: "TCP", "UDP", etc.
 - Extensions header: Chained together
 - Makes it easy to implement host-based options
 - One value "hop-by-hop" examined by intermediate routers
 - Things like "source route" implemented only at intermediate hops

IPv6 Header Cleanup

- No checksum
- Why checksum just the IP header?
 - Efficiency: If packet corrupted at hop 1, don't waste b/w transmitting on hops 2..N.
 - Useful when corruption frequent, b/w expensive
 - Today: Corruption rare, b/w cheap

IPv6 Fragmentation Cleanup IPv4: Large Small MTU MTU MTU Router must fragment IPv6: Discard packets, send ICMP "Packet Too Big"

- Similar to IPv4 "Don't Fragment" bit handling
- Sender must support Path MTU discovery
 - Receive "Packet too Big" messages and send smaller packets
- Increased minimum packet size
 - Link must support 1280 bytes;
 - 1500 bytes if link supports variable sizes
- Reduced packet processing and network complexity.
- Increased MTU a boon to application writers
- Hosts can still fragment using fragmentation header. Routers don't deal with it any more.

Migration from IPv4 to IPv6

- Interoperability with IP v4 is necessary for gradual deployment.
- Alternative mechanisms:
 - Dual stack operation: IP v6 nodes support both address types
 - Translation:
 - Use form of NAT to connect to the outside world
 - NAT must not only translate addresses but also translate between IPv4 and IPv6 protocols
 - <u>Tunneling</u>: tunnel IP v6 packets through IP v4 clouds

•ATM and MPLS

Altering the Addressing Model

- Original IP Model
 - Every host has a unique IP address
- Implications
 - Any host can find any other host
 - Any host can communicate with any other host
 - Any host can act as a server
 - Just need to know host ID and port number
- No Secrecy or Authentication
 - Packet traffic observable by routers and by LANconnected hosts
 - Possible to forge packets
 - Use invalid source address

- Don't have enough IP addresses for every host in organization
- Security
 - Don't want every machine in organization known to outside world
 - Want to control or monitor traffic in / out of organization

(Most) machines within organization don't need actual IP addresses!

• Outside world doesn't need to know about internal addresses

NAT: Opening Client Connection

- Client 10.2.2.2 wants to connect to server 198.2.4.5:80
 - OS assigns ephemeral port (1000)
- Connection request intercepted by firewall
 - Maps client to port of firewall (5000)
 - Creates NAT table entry

Int Addr	Int Port	NAT Port
10.2.2.2	1000	5000

• Intercepts message from client and marks itself as sender

Relabels destination to local addresses

Requests forwarded to server

Properties of Firewalls with NAT

Advantages

- Hides IP addresses used in internal network
 - Easy to change ISP: only NAT box needs to have IP address
 - Fewer registered IP addresses required
- Basic protection against remote attack
 - Does not expose internal structure to outside world
 - · Can control what packets come in and out of system
 - Can reliably determine whether packet from inside or outside

Disadvantages

- Contrary to the "open addressing" scheme envisioned for IP addressing
- Hard to support peer-to-peer applications
 - Why do so many machines want to serve port 1214?

NAT Considerations

- NAT has to be consistent during a session.
 - Set up mapping at the beginning of a session and maintain it during the session
 - Recall 2nd level goal 1 of Internet: Continue despite loss of networks or gateways
 - What happens if your NAT reboots?
 - Recycle the mapping that the end of the session
 - May be hard to detect
- NAT only works for certain applications.
 - Some applications (e.g. ftp) pass IP information in payload
 - Need application level gateways to do a matching translation
 - Breaks a lot of applications.
 - Example: Let's look at FTP
- NAT is loved and hated
- Breaks many apps (FTP)
- Inhibits deployment of new applications like p2p (but so do firewalls!)
- + Little NAT boxes make home networking simple.
- + Saves addresses. Makes allocation simple.

Important Concepts

- Base-level protocol (IP) provides minimal service level
 - Allows highly decentralized implementation
 - Each step involves determining next hop
 - Most of the work at the endpoints
- ICMP provides low-level error reporting
- IP forwarding → global addressing, alternatives, lookup tables
- IP addressing \rightarrow hierarchical, CIDR
- IP service \rightarrow best effort, simplicity of routers
- IP packets \rightarrow header fields, fragmentation, ICMP

•Tunnels

•ATM and MPLS

IP-in-IP Tunneling

- Described in RFC 1993.
 - IP source and destination address identify tunnel endpoints.
- Protocol id = 4.
 - IP
- Several fields are copies of the inner-IP header.
 - TOS, some flags, ..
- Inner header is not modified, except for decrementing TTL.

Tunneling Considerations

Performance.

- Tunneling adds (of course) processing overhead
- Tunneling increases the packet length, which may cause fragmentation
 - BIG hit in performance in most systems
 - Tunneling in effect reduces the MTU of the path, but end-points often do not know this

Security issues.

- Should verify both inner and outer header
- E.g., one-time flaw: send an ip-in-ip packet to a host. Inner packet claimed to come from "trusted" host. Bypass firewalls.

Tunneling Applications

- Virtual private networks.
 - Connect subnets of a corporation using IP tunnels
 - Often combined with IP Sec
 - (Amusing note: IPSec itself an IPv6 spinoff that was backported into IPv4)
- Support for new or unusual protocols.
 - Routers that support the protocols use tunnels to "bypass" routers that do not support it
 - E.g. multicast
- Force packets to follow non-standard routes.
 - Routing is based on outer-header
 - E.g. mobile IP

- Concept
 - Appears as if two hosts connected directly

Usage in VPN

- Create tunnel between road warrior & firewall
- Remote host appears to have direct connection to internal network

Host creates packet for internal node 10.6.1.1.1 Entering Tunnel

- · Add extra IP header directed to firewall (243.4.4.4)
- · Original header becomes part of payload
- · Possible to encrypt it
- **Exiting Tunnel**
 - · Firewall receives packet
 - · Strips off header
 - · Sends through internal network to destination

- Operation
 - Running echo server on CMU machine 128.2.198.135
 - Run echo client on laptop connected through DSL from non-CMU ISP

Without VPN

server connected to
dhcp-7-7.dsl.telerama.com
(205.201.7.7)

- CS has server to provide VPN services
- Operation
 - Running echo server on CMU machine 128.2.198.135
 - Run echo client on laptop connected through DSL from non-CMU ISP
- With VPN server connected to VPN-18.NET.CS.CMU.EDU (128.2.216.18)
- Effect
 - For other hosts in CMU, packets appear to originate from within CMU

Tunnels

•ATM and MPLS

Packet Switching

- Source sends information as self-contained packets that have an address.
 - Source may have to break up single message in multiple
- Each packet travels independently to the destination host.
 - Routers and switches use the address in the packet to determine how to forward the packets
- Destination recreates the message.
- Analogy: a letter in surface mail.

Circuit Switching

- Source first establishes a connection (circuit) to the destination.
 - Each router or switch along the way may reserve some bandwidth for the data flow
- Source sends the data over the circuit.
 - No need to include the destination address with the data since the routers know the path
- The connection is torn down.
- Example: telephone network.

Circuit Switching Discussion

- Consider traditional circuits: on each hop, the circuit has a *dedicated* wire or slice of bandwidth.
 - Physical connection clearly no need to include addresses with the data
- Advantages, relative to packet switching:
 - Implies guaranteed bandwidth, predictable performance
 - Simple switch design: only remembers connection information, no longest-prefix destination address look up
- Disadvantages:
 - Inefficient for bursty traffic (wastes bandwidth)
 - Delay associated with establishing a circuit
- Can we get the advantages without (all) the disadvantages?

Virtual Circuits

- Each wire carries many "virtual" circuits.
 - Forwarding based on virtual circuit (VC) identifier
 - IP header: src, dst, etc.
 - Virtual circuit header: just a small index number
 - A path through the network is determined for each VC when the VC is established
 - Use statistical multiplexing for efficiency
- Can support wide range of quality of service.
 - No guarantees: best effort service
 - Weak guarantees: delay < 300 msec, ...
 - Strong guarantees: e.g. equivalent of physical circuit

Packet Switching and Virtual Circuits: Similarities

- "Store and forward" communication based on an address.
 - Address is either the destination address or a VC identifier
- Must have buffer space to temporarily store packets.
 - E.g. multiple packets for some destination arrive simultaneously
- Multiplexing on a link is similar to time sharing.
 - No reservations: multiplexing is statistical, i.e. packets are interleaved without a fixed pattern
 - Reservations: some flows are guaranteed to get a certain number of "slots"

Virtual Circuits Versus Packet Switching

- Circuit switching:
 - Uses short connection identifiers to forward packets
 - Switches know about the connections so they can more easily implement features such as quality of service
 - Virtual circuits form basis for traffic engineering: VC identifies longlived stream of data that can be scheduled
- Packet switching:
 - Use full destination addresses for forwarding packets
 - Can send data right away: no need to establish a connection first
 - Switches are stateless: easier to recover from failures
 - Adding QoS is hard
 - Traffic engineering is hard: too many packets!

Connections and Signaling

- Permanent vs. switched virtual connections (PVCs, SVCs)
 - static vs. dynamic. PVCs last "a long time"
 - E.g., connect two bank locations with a PVC
 - SVCs are more like a phone call
 - PVCs administratively configured (but not "manually")
 - SVCs dynamically set up on a "per-call" basis
- Topology
 - point to point
 - point to multipoint
 - multipoint to multipoint
- Challenges: How to configure these things?
 - What VCI to use?
 - Setting up the path

• Global VC ID allocation -- ICK! Solution: Per-link uniqueness. Change VCI each hop.

 Input Port
 Input VCI
 Output Port
 Output VCI

 R1:
 1
 5
 3
 9

 R2:
 2
 9
 4
 2

 R4:
 1
 2
 3
 5

Label ("tag") Swapping

- Result: Signalling protocol must only find per-link unused VCIs.
 - "Link-local scope"
 - Connection setup can proceed hop-by-hop.
 - Good news for our setup protocols!

PVC connection setup

- Manual?
 - Configure each switch by hand. Ugh.
- Dedicated signaling protocol
 - E.g., what ATM uses
- Piggyback on routing protocols
 - Used in MPLS. E.g., use BGP to set up

Virtual Circuits In Practice

ATM: Telco approach

- Kitchen sink. Based on voice, support file transfer, video, etc., etc.
- Intended as IP replacement. That didn't happen. :)
- Today: Underlying network protocol in many telco networks. E.g., DSL speaks ATM. IP over ATM in some cases.

MPLS: The "IP Heads" answer to ATM

- Stole good ideas from ATM
- Integrates well with IP
- Today: Used inside some networks to provide VPN support, traffic engineering, simplify core.
- Other nets just run IP.
- Older tech: Frame Relay
 - Only provided PVCs. Used for quasi-dedicated 56k/T1 links between offices, etc. Slower, less flexible than ATM.

Asynchronous Transfer Mode: ATM

- Connection-oriented, packet-switched
 - (e.g., virtual circuits).
- Telco-driven. Goals:
 - Handle voice, data, multimedia
 - Support both PVCs and SVCs
 - Replace IP. (didn't happen...)
 - Important feature: Cell switching

Cell Switching

- Small, fixed-size cells [Fixed-length data][header]
- Why?
 - Efficiency: All packets the same
 - Easier hardware parallelism, implementation
 - Switching efficiency:
 - Lookups are easy -- table index.
 - Result: Very high cell switching rates.
 - Initial ATM was 155Mbit/s. Ethernet was 10Mbit/s at the same time. (!)
- How do you pick the cell size?

ATM Features

- Fixed size cells (53 bytes).
 - Why 53?
- Virtual circuit technology using hierarchical virtual circuits.
- Support for multiple traffic classes by adaptation layer.
 - E.g. voice channels, data traffic
- Elaborate signaling stack.
 - Backwards compatible with respect to the telephone standards
- Standards defined by ATM Forum.
 - Organization of manufacturers, providers, users

ATM Discussion

- At one point, ATM was viewed as a replacement for IP.
 - Could carry both traditional telephone traffic (CBR circuits) and other traffic (data, VBR)
 - Better than IP, since it supports QoS
- Complex technology.
 - Switching core is fairly simple, but
 - Support for different traffic classes
 - Signaling software is very complex
 - Technology did not match people's experience with IP
 - deploying ATM in LAN is complex (e.g. broadcast)
 - supporting connection-less service model on connection-based technology
 - With IP over ATM, a lot of functionality is replicated
- Currently used as a datalink layer supporting IP.

IP Switching

- How to use ATM hardware without the software.
 - ATM switches are very fast data switches
 - software adds overhead, cost
- The idea is to identify flows at the IP level and to create specific VCs to support these flows.
 - flows are identified on the fly by monitoring traffic
 - flow classification can use addresses, protocol types, ...
 - can distinguish based on destination, protocol, QoS
- Once established, data belonging to the flow bypasses level 3 routing.
 - never leaves the ATM switch
- Interoperates fine with "regular" IP routers.
 - · detects and collaborates with neighboring IP switches

IP Switching Example

IP Switching Example

IP Switching Example

Another View

IP Switching Discussion

- IP switching selectively optimizes the forwarding of specific flows.
 - Offloads work from the IP router, so for a given size router, a less powerful forwarding engine can be used
 - Can fall back on traditional IP forwarding if there are failures
 - IP switching couples a router with an ATM switching using the GSMP protocol.
 - General Switch Management Protocol
- IP switching can be used for flows with different granularity.
 - Flows belonging to an application .. Organization
 - Controlled by the classifier
- IP switching can be set up quickly, e.g. before a TCP connection starts sending data!

Multi Protocol Label Switching -MPLS

- Selective combination of VCs + IP
 - Today: MPLS useful for traffic engineering, reducing core complexity, and VPNs
- Core idea: Layer 2 carries VC label
 - Could be ATM (which has its own tag)
 - Could be a "shim" on top of Ethernet/etc.:
 - Existing routers could act as MPLS switches just by examining that shim -- no radical re-design. Gets flexibility benefits, though not cell switching advantages

Layer 3 (IP) header	Layer 3 (IP) header
Layer 2 header	MPLS label
	Layer 2 header

MPLS + IP

- Map packet onto Forward Equivalence Class (FEC)
 - Simple case: longest prefix match of destination address
 - More complex if QoS of policy routing is used
- In MPLS, a label is associated with the packet when it enters the network and forwarding is based on the label in the network core.
 - Label is swapped (as ATM VCIs)
 - Potential advantages.
 - Packet forwarding can be faster
 - Routing can be based on ingress router and port
 - Can use more complex routing decisions
 - Can force packets to followed a pinned route

MPLS use case #3: Traffic Engineering

- As discussed earlier -- can pick routes based upon more than just destination
- Used in practice by many ISPs, though certainly not all.

MPLS Mechanisms

- MPLS packet forwarding: implementation of the label is technology specific.
 - Could be ATM VCI or a short extra "MPLS" header
- Supports stacked labels.
 - Operations can be "swap" (normal label swapping), "push" and "pop" labels.
 - VERY flexible! Like creating tunnels, but much simpler -- only adds a small label.

MPLS Discussion

- Original motivation.
 - Fast packet forwarding:
 - Use of ATM hardware
 - Avoid complex "longest prefix" route lookup
 - Limitations of routing table sizes
 - Quality of service
- Currently mostly used for traffic engineering and network management.
 - LSPs can be thought of as "programmable links" that can be set up under software control
 - on top of a simple, static hardware infrastructure

Important Concepts

- Ideas in the Internet
 - Base-level protocol (IP) provides minimal service level
 - Allows highly decentralized implementation
 - Each step involves determining next hop
 - · Most of the work at the endpoints
 - Use ICMP for low-level control functions
- Changes to Addressing Model
 - Have moved away from "everyone knows everybody" model of original Internet
 - Firewalls + NAT hide internal networks
 - VPN / tunneling build private networks on top of commodity network

Take Home Points

- Costs/benefits/goals of virtual circuits
- Cell switching (ATM)
 - Early high-speed, general-purpose networking
 - Fixed-size small pkts and virtual circuits: Fast hardware
 - Packet size picked for low voice latency and jitter.
- Tag/label swapping
 - Basis for most VCs.
 - Makes label assignment link-local. Understand mechanism.
- MPLS IP meets virtual circuits; MPLS tunnels used for
 - VPNs,
 - traffic engineering,
 - reduced core routing table sizes
Next Lecture

- A look inside switches and routers
 - What is the "Fabric"?

EXTRA SLIDES

Now for some really bad jokes...

- TTL jokes are short lived
- 10.0.0.1 jokes best told in private

IP jokes is that they can arrive out-oforder The most annoying thing about