15-441 Computer Networking

TCP & Congestion Control

Copyright ©, 2007-11 Carnegie Mellon University

Good Ideas So Far...

 Flow control

« Sliding window
* Loss recovery

 Timeouts

« Acknowledgement-driven recovery (selective repeat or
cumulative acknowledgement)

Outline

« TCP flow control

« Congestion sources and collapse

« Congestion control basics

Outline

(the Halloween Version...) .“‘

¢ THE SPOOKY PARTS of Tr‘ah‘sport Profocolfs

o it doesn t scare you now. .. it will on the Finall

« TCP flow control
° 'D\e Qan'cb—exchange Erotoco! (TCP)

« Congestion sources and collapse

o ‘n\e ‘\orror o‘f zombie r\etworks

« Congestion control basics
¢ Avdtﬁng the t’eaﬂ'\~fr‘aps o)(overloaded routers

Sequence Numbers (reminder)

 How large do sequence numbers need to be?
* Must be able to detect wrap-around
« Depends on sender/receiver window size

- E.Q.
 Max seq =7, send win=recv win=7

 If pkts 0..6 are sent succesfully and all acks lost
* Receiver expects 7,0..5, sender retransmits old 0..6!!!

« Max sequence must be > send window + recv window

Sequence Numbers

« 32 Bits, Unsigned - for bytes not packets!
« Circular Comparison

b
Q/-\
a
a
b
Max O Max O
b<a a<b

 Why So Big?
* For sliding window, must have
|Sequence Space| > |Sending Window| + |Receiving Window|
* No problem
» Also, want to guard against stray packets

« With IP, packets have maximum lifetime of 120s
» Sequence number would wrap around in this time at 286MB/s

CP Flow Control “

 TCP iIs a sliding window protocol

* For window size n, can send up to n bytes without
receiving an acknowledgement

* When the data is acknowledged then the window
slides forward

» Each packet advertises a window size
* Indicates number of bytes the receiver has space for

 Original TCP always sent entire window
« Congestion control now limits this

Window Flow Control: Send Side

window

Sent and acked |Sent but not acked

T

Next to be sent

Window Flow Control: Send Side “

Packet Sent Packet Received

Dest.Port Dest. Port

Sequence Number
| HUFlags | Window” HL/Flags —
| D. Checksum | Urgent pbinter S D. Chegksum | Urgent Pointer
N\ Optons../ |NEN / Options..

App write
} } } }

O O o o >

acknowledged sent to be sent outside window

Window Flow Control: Recelve Side “

Receive buffer

What should receiver do?

X

Acked but not Not yet
delivered to user acked

b

window

S A

10

CP Persist “

« What happens if window is 07
* Receiver updates window when application reads data
« What if this update is lost?

« TCP Persist state
« Sender periodically sends 1 byte packets

« Receiver responds with ACK even if it can’ t store the
packet

11

Performance Considerations “

* The window size can be controlled by receiving
application

« Can change the socket buffer size from a default (e.qg.
8Kbytes) to a maximum value (e.g. 64 Kbytes)

 The window size field in the TCP header limits the
window that the receiver can advertise
« 16 bits - 64 KBytes
* 10 msec RTT = 51 Mbit/second
« 100 msec RTT = 5 Mbit/second

« TCP options to get around 64KB limit = increases
above limit

12

Outline

« TCP flow control

» Congestion sources and collapse

» Congestion control basics

13

Congestion

10 Mbps
>© 1.5 Mbps

100 Mbps

 Different sources compete for resources inside
network

 Why is it a problem?
« Sources are unaware of current state of resource
« Sources are unaware of each other

« Manifestations:
 Lost packets (buffer overflow at routers)

« Long delays (queuing in router buffers)

« Can result in throughput less than bottleneck link (1.5Mbps
for the above topology) - a.k.a. congestion collapse

14

Causes & Costs of Congestion “

* Four senders — multihop paths Q: What happens as rate
« Timeout/retransmit Increases?

Host A Host 8

77N
B (\./)
Host D ("') R 'l
f' .% RO Host C

15

Causes & Costs of Congestion

C/Q E N
5
O HostD) ORI ~
('< - — RO Host C
%M s (D -
/ N\[TTTTT] —

\v)IIIIIII e —
A
iN

« When packet dropped, any “upstream transmission
capacity used for that packet was wasted!

—_—
—

16

Congestion Collapse “

 Definition: Increase In network load results In
decrease of useful work done

* Many possible causes

« Spurious retransmissions of packets still in flight
 Classical congestion collapse
« How can this happen with packet conservation
 Solution: better timers and TCP congestion control

« Undelivered packets

» Packets consume resources and are dropped elsewhere in
network

 Solution: congestion control for ALL traffic

17

Congestion Control and Avoidance

* A mechanism which:
» Uses network resources efficiently
* Preserves fair network resource allocation
* Prevents or avoids collapse
« Congestion collapse is not just a theory
« Has been frequently observed in many networks

18

Approaches Towards Congestion \
Control i

« Two broad approaches towards congestion control:

« End-end congestion * Network-assisted
control: congestion control:

* Routers provide feedback to

* No explicit feedback from
end systems

network . e
o Single bit indicating
« Congestion inferred from congestion (SNA
end-system observed loss, DEChit, TCP/IP ECN,
delay ATM)
« Approach taken by TCP « EXxplicit rate sender

should send at

 Problem: makes routers
complicated

19

Example: TCP Congestion Control “

* Very simple mechanisms in network
* FIFO scheduling with shared buffer pool
» Feedback through packet drops

« TCP interprets packet drops as signs of congestion and
slows down

* This is an assumption: packet drops are not a sign of congestion in
all networks

* E.g. wireless networks

* Periodically probes the network to check whether more
bandwidth has become available.

20

Outline

« TCP flow control

» Congestion sources and collapse

« Congestion control basics

21

ODbjectives

Simple router behavior

Distributedness

Efficiency: X = 2xi(t)

Fairness: (£x)?/n(Zx:?)

« What are the important properties of this function?
Convergence: control system must be stable

22

Basic Control Model “

* Reduce speed when congestion Is perceived

« How is congestion signaled?
 Either mark or drop packets

* How much to reduce?

 Increase speed otherwise
* Probe for available bandwidth — how?

23

Linear Control

« Many different possibilities for reaction to
congestion and probing

« Examine simple linear controls
* Window(t + 1) = a + b Window(t)
- Different a/b, for increase and a4/b,for decrease
e Supports various reaction to signals
 Increase/decrease additively
 Increased/decrease multiplicatively
* Which of the four combinations is optimal?

24

Phase Plots

« Simple way to
visualize behavior
of competing
connections over
time

User2’s
Allocation
X2

User 1’ s Allocation x,

25

Phase Plots “

« What are

deSIrable - Fairness Line
properties?

+ What if flows are | e
not equal? Allosatior e optmalpom

Unq.efhtilization

Efficiency Line

User 1’ s Allocation x,

26

Additive Increase/Decrease “

« Both X; and X,

Increase/ decrease N
by the same amount - FaimessLine
over time

« Additive increase ,
. . User 2 s
Improves fairness and | aiocation
additive decrease X2
reduces fairness

Efficiency Line

User 1’ s Allocation x,

27

Muliplicative Increase/Decrease

«

« Both X; and X,
Increase by the
same factor over
time

« Extension from
origin — constant

fairness

User2’s
Allocation
X2

.~ [Fairness Line

Efficiency Line

User 1’ s Allocation x,

28

Convergence to Efficiency

Fairness Line

User 1’ s Allocation x,

29

Distributed Convergence to Efficiency

User 2’s
Allocation x,

a<0 & b<1 (i3

a<0 & b>1

_~ a>0&b>1
a=0
b=1
XH

< < 4 <

}}}}}
<<<<<
?????
{{{{{{
>>>>>>
<<<<<<
}}}}}}
{{{{{{
>>>>>
{{{{{{
>>>>>
<<<<<
}}}}}
<<<<<
}}}}}
<<<<<
R -

a>0 & b<1

Fairness Line

Efficiency Line

User 1’ s Allocation x,

30

Convergence to Fairness

A

Fairness Line

Line

iciency

Eff

User 2’s
Allocation
X

User 1’ s Allocation x,

31

Convergence to Efficiency & Fairness

* Intersection of valid regions
 Fordecrease: a=0&b<1

.~ Fairess Line

User 2’s
Allocation
X2

Efficiency Line

User 1’ s Allocation x,

32

What is the Right Choice?

e Constraints limit
us to AIMD

« Can have
multiplicative
term in increase
(MAIMD)

* AIMD moves
towards optimal
point

«

User2’s
Allocation
X2

Xy

.~ [Fairness Line

Efficiency Line

User 1’ s Allocation x,

33

Important Lessons “

« Transport service

« UDP - mostly just IP service

 TCP -> congestion controlled, reliable, byte stream
Types of ARQ protocols

« Stop-and-wait = slow, simple

* Go-back-n = can keep link utilized (except w/ losses)
« Selective repeat - efficient loss recovery

Sliding window flow control

TCP flow control
 Sliding window - mapping to packet headers
« 32bit sequence numbers (bytes)

34

Important Lessons “

* Why Is congestion control needed?

* How to evaluate congestion control algorithms?
« Why is AIMD the right choice for congestion control?

« TCP flow control
« Sliding window - mapping to packet headers
« 32bit sequence numbers (bytes)

35

Good Ideas So Far...

Flow control

 Sliding window (e.g., advertised windows)

Loss recovery
* Timeouts

« Acknowledgement-driven recovery (selective repeat or cumulative
acknowledgement)

Congestion control
« AIMD - fairness and efficiency

Next Lecture: How does TCP actually implement these?

36

Outline

 TCP connection setup/data transfer

* TCP reliability

 TCP congestion avoidance

37

Sequence Number Space

« Each byte in byte stream is numbered.
« 32 bit value
« Wraps around
« Initial values selected at start up time

 TCP breaks up the byte stream into packets.
« Packet size is limited to the Maximum Segment Size

« Each packet has a sequence number.
 Indicates where it fits in the byte stream

13450 14950 16050 17550

! ! ! !

0\ N 0\ PN
"o " "o U

packet 8 packet 9 packet 10

38

Establishing Connection:
Three-Way handshake

 Each side notifies other of
starting sequence number it SYN: SeqC
will use for sending
* Why not simply chose 0?7
* Must avoid overlap with earlier

|ncarn_at|9n ACK: SeqC+1
e Security Issues SYN: SeqgS

« Each side acknowledges
other’ s sequence number

 SYN-ACK: Acknowledge
sequence number + 1

e Can combine second SYN
with first ACK Client Server

39

CP Connection Setup Example “

09:23:33.042318 IP 128.2.222.198.3123 > 192.216.219.96.80:
S 4019802004:4019802004(0) win 65535
<mss 1260,nop,nop,sackOK> (DF)

09:23:33.118329 IP 192.216.219.96.80 > 128.2.222.198.3123:
S 3428951569:3428951569(0) ack 4019802005 win 5840
<mss 1460,nop,nop,sackOK> (DF)

09:23:33.118405 IP 128.2.222.198.3123 > 192.216.219.96.80:
. ack 3428951570 win 65535 (DF)

* Client SYN

« SeqC: Seq. #4019802004, window 65535, max. seg. 1260
 Server SYN-ACK+SYN

« Receive: #4019802005 (= SeqC+1)

« SeqS: Seq. #3428951569, window 5840, max. seg. 1460
« Client SYN-ACK

* Receive: #3428951570 (= SeqS+1)
40

CP State Diagram: Connection Setup “

Client
CLOSED‘_ I active OPEN
| Server create TCB
passive OPEN CLOSE Snd SYN
create TCB delete TCB
LISTEN CLOSE
delete TCB
rcv SYN SEND v
< snd SYN ACK snd SYN >
SYN rcv SYN JYN
RCVD| [snd ACK SENT
rcv ACK of SYN Rev SYN, ACK
Snd ACK
CLOSE LAA
Send FIN ESTAB

41

earing Down Connection

Either side can initiate tear
down

« Send FIN signal

« “I"m not going to send any more

data”

Other side can continue
sending data

« Half open connection

* Must continue to acknowledge

Acknowledging FIN

« Acknowledge last sequence
number + 1

«

A B

FIN, SegA

\

ACK, SeqA+1

ACK

\

FIN, SeqB
ACK, SeqB+1

42

CP Connection Teardown Example “

09:54:17.585396 IP 128.2.222.198.4474 > 128.2.210.194.6616:
F 1489294581:1489294581 (0) ack 1909787689 win 65434 (DF)

09:54:17.585732 IP 128.2.210.194.6616 > 128.2.222.198.4474:
F 1909787689:1909787689 (0) ack 1489294582 win 5840 (DF)

09:54:17.585764 IP 128.2.222.198.4474 > 128.2.210.194.6616:

. ack 1909787690 win 65434 (DF)

Session
* Echo client on 128.2.222.198, server on 128.2.210.194
Client FIN
« SeqC: 1489294581
Server ACK + FIN
« Ack: 1489294582 (= SeqC+1)
« SeqS: 1909787689
Client ACK
« Ack: 1909787690 (= SeqS+1)

43

State Diagram: Connection Tear-down “

CLOSE Active Close ESTAB
send FIN [
CLOSE revFIN passive Close
FIN 4 send FIN send ACK : CLOSE
WAIT-1| | WAIT
rcv FIN

lACK snd ACK GLosE

cv FIN+ACK v spd FIN

lrcv ACK of FIN rcv ACK pf FIN
v v

= =T IVIE-VVATT > CLOSED

Timeout=2msl|
snd ACK delete TCB

44

Outline

* TCP connection setup/data transfer

* TCP reliability

 TCP congestion avoidance

45

Reliability Challenges

« Congestion related losses

« Variable packet delays
« What should the timeout be?

« Reordering of packets

« How to tell the difference between a delayed packet
and a lost one?

46

CP = Go-Back-N Variant “

 Sliding window with cumulative acks

« Receiver can only return a single “ack” sequence number to the
sender.

« Acknowledges all bytes with a lower sequence number
« Starting point for retransmission
* Duplicate acks sent when out-of-order packet received
« But: sender only retransmits a single packet.
* Reason???
« Only one that it knows is lost
« Network is congested - shouldn’t overload it

« Error control is based on byte sequences, not packets.

« Retransmitted packet can be different from the original lost packet
— Why?

47

Round-trip Time Estimation “

« Walit at least one RTT before retransmitting

Importance of accurate RTT estimators:

e Low RTT estimate
* unneeded retransmissions

* High RTT estimate
 poor throughput

RTT estimator must adapt to change in RTT
« But not too fast, or too slow!

Spurious timeouts

« “Conservation of packets” principle — never more than
a window worth of packets in flight

48

Original

* Round trip times
exponentially :
averaged:

* NewRTT =a (old RTT)
+ (1 - a) (new sample)]

« Recommended value 05[
for a: 0.8 - 0.9

« 0.875 formost TCP’ s

* Retransmit timer setto (b * RTT), where b = 2
« Every time timer expires, RTO exponentially backed-off

CP Round-trip Estimator

* Not good at preventing spurious timeouts

 Why?

49

RTT Sample Ambiguity

A B A B
W Original transmission
I RTO I RTO

Sample Sample

RTT RTT |

« Karn’s RTT Estimator

 |If a segment has been retransmitted:
« Don’ t count RTT sample on ACKs for this segment
« Keep backed off time-out for next packet
* Reuse RTT estimate only after one successful transmission
50

Jacobson’ s Retransmission

» Key observation:

At high loads, round trip variance is high

e Solution:

Imeout

«

e Base RTO on RTT and standard deviation

e RTO=RTT + 4 * rttvar

* new_rttvar = 3 * dev + (1- 3) old_rttvar

 Dev = linear deviation

* Inappropriately named — actually smoothed linear

deviation

51

Imestamp Extension “

Used to improve timeout mechanism by more
accurate measurement of RTT

When sending a packet, insert current time into
option

4 bytes for time, 4 bytes for echo a received timestamp
Receiver echoes timestamp in ACK

 Actually will echo whatever is in timestamp

Removes retransmission ambiguity
« Can get RTT sample on any packet

52

«

Imer Granularity

 Many TCP implementations set RTO in multiples
of 200,500,1000ms
 Why?
« Avoid spurious timeouts — RTTs can vary quickly due to

cross traffic
« Make timers interrupts efficient

« What happens for the first couple of packets?
* Pick a very conservative value (seconds)

53

Fast Retransmit “

 What are duplicate acks (dupacks)?
* Repeated acks for the same sequence

« When can duplicate acks occur?
« Loss
» Packet re-ordering
« Window update — advertisement of new flow control window
« Assume re-ordering is infrequent and not of large
magnitude
« Use receipt of 3 or more duplicate acks as indication of loss
« Don’ t wait for timeout to retransmit packet

54

Fast Retransmit

Sequence No

B Packets
@ Acks

N N |

ONCN N N N |

coocommmmmmmEK

000000O0

. Retransmission
°%%® <— Duplicate Acks

Time

55

CP (Reno variant)

«

Sequence No

B Packets
@ Acks

N N |

ONCN N N N |

COCONEENEENENE)X

EDP <R > d RN

000000O0

o

Now what? - timeout

Time

56

SACK O\

« Basic problem is that cumulative acks provide little
iInformation

« Selective acknowledgement (SACK) essentially
adds a bitmask of packets received
* Implemented as a TCP option
 Encoded as a set of received byte ranges (max of 4
ranges/often max of 3)
 When to retransmit?

 Still need to deal with reordering - wait for out of order
by 3pkts

57

SACK

«

Sequence No

B Packets
@ Acks

N N |

ONCN N N N |

COCONEENEENENE)X

EEE EEXE NN

000000O0

Now what? — send
retransmissions as soon
as detected

Time

58

Performance Issues

Timeout >> fast rexmit

Need 3 dupacks/sacks

Not great for small transfers
« Don’t have 3 packets outstanding

What are real loss patterns like?

59

Outline

* TCP connection setup/data transfer

* TCP reliability

 TCP congestion avoidance

60

Additive Increase/Decrease “

« Both X; and X,

Increase/ decrease N
by the same amount - FaimessLine
over time

« Additive increase ,
. . User 2 s
Improves fairness and | aiocation
additive decrease X2
reduces fairness

Efficiency Line

User 1’ s Allocation x,

61

Muliplicative Increase/Decrease

«

« Both X; and X,
Increase by the
same factor over
time

« Extension from
origin — constant

fairness

User2’s
Allocation
X2

.~ [Fairness Line

Efficiency Line

User 1’ s Allocation x,

62

What is the Right Choice?

e Constraints limit
us to AIMD

* Improves or
keeps fairness
constant at
each step

* AIMD moves
towards optimal
point

«

User2’s
Allocation
X2

Xy

. Fairness Line

Efficiency Line

User 1’ s Allocation x,

63

CP Congestion Control “

* Changes to TCP motivated by ARPANET
congestion collapse

» Basic principles
e AIMD
 Packet conservation

« Reaching steady state quickly
« ACK clocking

64

AIMD “

 Distributed, fair and efficient

« Packet loss is seen as sign of congestion and results in a
multiplicative rate decrease
« Factor of 2

« TCP periodically probes for available bandwidth by
Increasing its rate

Rate

Time

65

Implementation Issue “

« Operating system timers are very coarse — how to pace
packets out smoothly?

* Implemented using a congestion window that limits how
much data can be in the network.
« TCP also keeps track of how much data is in transit

- Data can only be sent when the amount of outstanding
data is less than the congestion window.

« The amount of outstanding data is increased on a “send” and
decreased on “ack”

+ (last sent — last acked) < congestion window

« Window limited by both congestion and buffering
¢ Sender’ s maximum window = Min (advertised window, cwnd)

66

Packet Conservation “

« At equilibrium, inject packet into network only
when one is removed
 Sliding window and not rate controlled

« But still need to avoid sending burst of packets =
would overflow links
* Need to carefully pace out packets
» Helps provide stability
* Need to eliminate spurious retransmissions
* Accurate RTO estimation

« Better loss recovery techniques (e.g. fast retransmit)

11-01-07 Lecture 19: TCP Congestion Control 67

TCP Packet Pacing “

« Congestion window helps to “pace” the transmission of
data packets
* |n steady state, a packet is sent when an ack is received

e Data transmission remains smooth, once it is smooth
 Self-clocking behavior

Pb —
—>
-, [[P || ——
Sender Receiver
4—
| A NI n [A | —
> Ab «—>

11-01-07 Lecture 19: TCP Congestion Control 68

Congestion Avoidance

* If loss occurs when cwnd =W

* Network can handle 0.5W ~ W segments

« Set cwnd to 0.5W (multiplicative decrease)
« Upon receiving ACK

 Increase cwnd by (1 packet)/cwnd
 What is 1 packet? - 1 MSS worth of bytes

 After cwnd packets have passed by - approximately increase
of 1 MSS

* Implements AIMD

69

Congestion Avoidance Seguence Plot

|
|
|
|
|
|
|
|
|
|
| (@)
] o
| (o)
| o
| o)
Sequence No B o
o
] o)
u o
| o
|)
| o
| o
|)
| o
] o
] o
o
o
o
o
o
B Packets °
O Acks
Time

70

Congestion Avoidance Behavior

Congestion
Window

. Time
Packet loss c C“tt. Grabbing
+ retransmit ongestion back
Window Bandwidth

and Rate

71

Important Lessons “

« Transport service

« UDP - mostly just IP service

 TCP -> congestion controlled, reliable, byte stream
Types of ARQ protocols

« Stop-and-wait = slow, simple

* Go-back-n = can keep link utilized (except w/ losses)
« Selective repeat - efficient loss recovery

Sliding window flow control

TCP flow control
 Sliding window - mapping to packet headers
« 32bit sequence numbers (bytes)

72

Important Lessons “

« TCP state diagram —> setup/teardown

« TCP timeout calculation = how is RTT estimated

 Modern TCP loss recovery

* Why are timeouts bad?
 How to avoid them? - e.g. fast retransmit

73

