
15-441 Computer Networking

TCP & Congestion Control

Copyright ©, 2007-11 Carnegie Mellon University

2

Good Ideas So Far…

• Flow control

• Stop & wait

• Parallel stop & wait

• Sliding window

• Loss recovery

• Timeouts

• Acknowledgement-driven recovery (selective repeat or

cumulative acknowledgement)

Outline

• TCP flow control

• Congestion sources and collapse

• Congestion control basics

3

Outline
(the Halloween Version…)

• THE SPOOKY PARTS of Transport Protocols
• If it doesn’t scare you now… it will on the Final!

• TCP flow control

• The Candy-exchange Protocol (TCP)

• Congestion sources and collapse

• The horror of zombie networks

• Congestion control basics

• Avoiding the death-traps of overloaded routers

4

5

Sequence Numbers (reminder)

• How large do sequence numbers need to be?

• Must be able to detect wrap-around

• Depends on sender/receiver window size

• E.g.

• Max seq = 7, send win=recv win=7

• If pkts 0..6 are sent succesfully and all acks lost

• Receiver expects 7,0..5, sender retransmits old 0..6!!!

• Max sequence must be  send window + recv window

6

Sequence Numbers

• 32 Bits, Unsigned  for bytes not packets!

• Circular Comparison

• Why So Big?

• For sliding window, must have

 |Sequence Space| > |Sending Window| + |Receiving Window|

• No problem

• Also, want to guard against stray packets

• With IP, packets have maximum lifetime of 120s

• Sequence number would wrap around in this time at 286MB/s

0 Max

a

b

a < b

0 Max

b
a

b < a

7

TCP Flow Control

• TCP is a sliding window protocol
• For window size n, can send up to n bytes without

receiving an acknowledgement

• When the data is acknowledged then the window
slides forward

• Each packet advertises a window size
• Indicates number of bytes the receiver has space for

• Original TCP always sent entire window
• Congestion control now limits this

8

Window Flow Control: Send Side

Sent but not acked Not yet sent

window

Next to be sent

Sent and acked

9

acknowledged sent to be sent outside window

Source Port Dest. Port

Sequence Number

Acknowledgment

HL/Flags Window

D. Checksum Urgent Pointer

Options…

Source Port Dest. Port

Sequence Number

Acknowledgment

HL/Flags Window

D. Checksum Urgent Pointer

Options...

Packet Sent Packet Received

App write

Window Flow Control: Send Side

10

Acked but not

delivered to user

Not yet

acked

Receive buffer

window

Window Flow Control: Receive Side

New

What should receiver do?

11

TCP Persist

• What happens if window is 0?

• Receiver updates window when application reads data

• What if this update is lost?

• TCP Persist state

• Sender periodically sends 1 byte packets

• Receiver responds with ACK even if it can’t store the

packet

12

Performance Considerations

• The window size can be controlled by receiving
application

• Can change the socket buffer size from a default (e.g.
8Kbytes) to a maximum value (e.g. 64 Kbytes)

• The window size field in the TCP header limits the
window that the receiver can advertise

• 16 bits  64 KBytes

• 10 msec RTT  51 Mbit/second

• 100 msec RTT  5 Mbit/second

• TCP options to get around 64KB limit  increases
above limit

13

Outline

• TCP flow control

• Congestion sources and collapse

• Congestion control basics

14

Congestion

• Different sources compete for resources inside
network

• Why is it a problem?
• Sources are unaware of current state of resource

• Sources are unaware of each other

• Manifestations:
• Lost packets (buffer overflow at routers)

• Long delays (queuing in router buffers)

• Can result in throughput less than bottleneck link (1.5Mbps
for the above topology)  a.k.a. congestion collapse

10 Mbps

100 Mbps

1.5 Mbps

15

Causes & Costs of Congestion

• Four senders – multihop paths

• Timeout/retransmit

Q: What happens as rate

increases?

16

Causes & Costs of Congestion

• When packet dropped, any “upstream transmission

capacity used for that packet was wasted!

17

Congestion Collapse

• Definition: Increase in network load results in

decrease of useful work done

• Many possible causes

• Spurious retransmissions of packets still in flight

• Classical congestion collapse

• How can this happen with packet conservation

• Solution: better timers and TCP congestion control

• Undelivered packets

• Packets consume resources and are dropped elsewhere in

network

• Solution: congestion control for ALL traffic

18

Congestion Control and Avoidance

• A mechanism which:

• Uses network resources efficiently

• Preserves fair network resource allocation

• Prevents or avoids collapse

• Congestion collapse is not just a theory

• Has been frequently observed in many networks

19

Approaches Towards Congestion
Control

• End-end congestion

control:

• No explicit feedback from

network

• Congestion inferred from

end-system observed loss,

delay

• Approach taken by TCP

• Network-assisted
congestion control:
• Routers provide feedback to

end systems

• Single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

• Explicit rate sender
should send at

• Problem: makes routers
complicated

• Two broad approaches towards congestion control:

20

Example: TCP Congestion Control

• Very simple mechanisms in network

• FIFO scheduling with shared buffer pool

• Feedback through packet drops

• TCP interprets packet drops as signs of congestion and

slows down

• This is an assumption: packet drops are not a sign of congestion in

all networks

• E.g. wireless networks

• Periodically probes the network to check whether more

bandwidth has become available.

21

Outline

• TCP flow control

• Congestion sources and collapse

• Congestion control basics

22

Objectives

• Simple router behavior

• Distributedness

• Efficiency: X = Sxi(t)

• Fairness: (Sxi)
2/n(Sxi

2)

• What are the important properties of this function?

• Convergence: control system must be stable

23

Basic Control Model

• Reduce speed when congestion is perceived

• How is congestion signaled?

• Either mark or drop packets

• How much to reduce?

• Increase speed otherwise

• Probe for available bandwidth – how?

24

Linear Control

• Many different possibilities for reaction to
congestion and probing
• Examine simple linear controls

• Window(t + 1) = a + b Window(t)

• Different ai/bi for increase and ad/bd for decrease

• Supports various reaction to signals
• Increase/decrease additively

• Increased/decrease multiplicatively

• Which of the four combinations is optimal?

25

Phase Plots

• Simple way to

visualize behavior

of competing

connections over

time

User 1’s Allocation x1

User 2’s

Allocation

x2

26

Phase Plots

• What are

desirable

properties?

• What if flows are

not equal?

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s

Allocation

x2
Optimal point

Overload

Underutilization

27

Additive Increase/Decrease

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s

Allocation

x2

• Both X1 and X2

increase/ decrease

by the same amount

over time

• Additive increase

improves fairness and

additive decrease

reduces fairness

28

Muliplicative Increase/Decrease

• Both X1 and X2

increase by the

same factor over

time

• Extension from

origin – constant

fairness

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s

Allocation

x2

29

Convergence to Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s

Allocation

x2

30

Distributed Convergence to Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s

Allocation x2

a=0

b=1

a>0 & b<1

a<0 & b>1

a<0 & b<1

a>0 & b>1

31

Convergence to Fairness

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s

Allocation

x2

xH’

32

Convergence to Efficiency & Fairness

• Intersection of valid regions

• For decrease: a=0 & b < 1

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s

Allocation

x2

xH’

33

What is the Right Choice?

• Constraints limit

us to AIMD

• Can have

multiplicative

term in increase

(MAIMD)

• AIMD moves

towards optimal

point

x0

x1

x2

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s

Allocation

x2

34

Important Lessons

• Transport service
• UDP  mostly just IP service

• TCP  congestion controlled, reliable, byte stream

• Types of ARQ protocols
• Stop-and-wait  slow, simple

• Go-back-n  can keep link utilized (except w/ losses)

• Selective repeat  efficient loss recovery

• Sliding window flow control

• TCP flow control
• Sliding window  mapping to packet headers

• 32bit sequence numbers (bytes)

35

Important Lessons

• Why is congestion control needed?

• How to evaluate congestion control algorithms?

• Why is AIMD the right choice for congestion control?

• TCP flow control

• Sliding window  mapping to packet headers

• 32bit sequence numbers (bytes)

36

Good Ideas So Far…

• Flow control

• Stop & wait

• Parallel stop & wait

• Sliding window (e.g., advertised windows)

• Loss recovery

• Timeouts

• Acknowledgement-driven recovery (selective repeat or cumulative

acknowledgement)

• Congestion control

• AIMD  fairness and efficiency

• Next Lecture: How does TCP actually implement these?

37

Outline

• TCP connection setup/data transfer

• TCP reliability

• TCP congestion avoidance

38

Sequence Number Space

• Each byte in byte stream is numbered.

• 32 bit value

• Wraps around

• Initial values selected at start up time

• TCP breaks up the byte stream into packets.

• Packet size is limited to the Maximum Segment Size

• Each packet has a sequence number.

• Indicates where it fits in the byte stream

packet 8 packet 9 packet 10

13450 14950 16050 17550

39

Establishing Connection:
Three-Way handshake

• Each side notifies other of
starting sequence number it
will use for sending
• Why not simply chose 0?

• Must avoid overlap with earlier
incarnation

• Security issues

• Each side acknowledges
other’s sequence number
• SYN-ACK: Acknowledge

sequence number + 1

• Can combine second SYN
with first ACK

SYN: SeqC

ACK: SeqC+1

SYN: SeqS

ACK: SeqS+1

Client Server

40

TCP Connection Setup Example

• Client SYN

• SeqC: Seq. #4019802004, window 65535, max. seg. 1260

• Server SYN-ACK+SYN

• Receive: #4019802005 (= SeqC+1)

• SeqS: Seq. #3428951569, window 5840, max. seg. 1460

• Client SYN-ACK

• Receive: #3428951570 (= SeqS+1)

09:23:33.042318 IP 128.2.222.198.3123 > 192.216.219.96.80:

S 4019802004:4019802004(0) win 65535

<mss 1260,nop,nop,sackOK> (DF)

09:23:33.118329 IP 192.216.219.96.80 > 128.2.222.198.3123:

S 3428951569:3428951569(0) ack 4019802005 win 5840

<mss 1460,nop,nop,sackOK> (DF)

09:23:33.118405 IP 128.2.222.198.3123 > 192.216.219.96.80:

. ack 3428951570 win 65535 (DF)

41

TCP State Diagram: Connection Setup

CLOSED

SYN

SENT

SYN

RCVD

ESTAB

LISTEN

active OPEN
create TCB

Snd SYN

create TCB

passive OPEN

delete TCB

CLOSE

delete TCB

CLOSE

snd SYN

SEND

snd SYN ACK

rcv SYN

Send FIN

CLOSE

rcv ACK of SYN
Snd ACK

Rcv SYN, ACK

rcv SYN

snd ACK

Client

Server

42

Tearing Down Connection

• Either side can initiate tear

down

• Send FIN signal

• “I’m not going to send any more

data”

• Other side can continue

sending data

• Half open connection

• Must continue to acknowledge

• Acknowledging FIN

• Acknowledge last sequence

number + 1

A B

FIN, SeqA

ACK, SeqA+1

ACK

Data

ACK, SeqB+1

FIN, SeqB

43

TCP Connection Teardown Example

• Session

• Echo client on 128.2.222.198, server on 128.2.210.194

• Client FIN

• SeqC: 1489294581

• Server ACK + FIN

• Ack: 1489294582 (= SeqC+1)

• SeqS: 1909787689

• Client ACK

• Ack: 1909787690 (= SeqS+1)

09:54:17.585396 IP 128.2.222.198.4474 > 128.2.210.194.6616:

F 1489294581:1489294581(0) ack 1909787689 win 65434 (DF)

09:54:17.585732 IP 128.2.210.194.6616 > 128.2.222.198.4474:

F 1909787689:1909787689(0) ack 1489294582 win 5840 (DF)

09:54:17.585764 IP 128.2.222.198.4474 > 128.2.210.194.6616:

. ack 1909787690 win 65434 (DF)

44

State Diagram: Connection Tear-down

CLOSING

CLOSE

WAIT
FIN

WAIT-1

ESTAB

TIME WAIT

snd FIN

CLOSE

send FIN

CLOSE

rcv ACK of FIN

LAST-ACK

CLOSED

FIN WAIT-2

snd ACK

rcv FIN

delete TCB

Timeout=2msl

send FIN

CLOSE

send ACK

rcv FIN

snd ACK

rcv FIN

rcv ACK of FIN

snd ACK

rcv FIN+ACK

ACK

Active Close

Passive Close

45

Outline

• TCP connection setup/data transfer

• TCP reliability

• TCP congestion avoidance

46

Reliability Challenges

• Congestion related losses

• Variable packet delays

• What should the timeout be?

• Reordering of packets

• How to tell the difference between a delayed packet

and a lost one?

47

TCP = Go-Back-N Variant

• Sliding window with cumulative acks
• Receiver can only return a single “ack” sequence number to the

sender.

• Acknowledges all bytes with a lower sequence number

• Starting point for retransmission

• Duplicate acks sent when out-of-order packet received

• But: sender only retransmits a single packet.
• Reason???

• Only one that it knows is lost

• Network is congested  shouldn’t overload it

• Error control is based on byte sequences, not packets.
• Retransmitted packet can be different from the original lost packet

– Why?

48

Round-trip Time Estimation

• Wait at least one RTT before retransmitting

• Importance of accurate RTT estimators:
• Low RTT estimate

• unneeded retransmissions

• High RTT estimate
• poor throughput

• RTT estimator must adapt to change in RTT
• But not too fast, or too slow!

• Spurious timeouts

• “Conservation of packets” principle – never more than
a window worth of packets in flight

49

Original TCP Round-trip Estimator

• Round trip times

exponentially

averaged:

• New RTT = a (old RTT)

+ (1 - a) (new sample)

• Recommended value

for a: 0.8 - 0.9

• 0.875 for most TCP’s
0

0.5

1

1.5

2

2.5

• Retransmit timer set to (b * RTT), where b = 2

• Every time timer expires, RTO exponentially backed-off

• Not good at preventing spurious timeouts

• Why?

50

RTT Sample Ambiguity

• Karn’s RTT Estimator
• If a segment has been retransmitted:

• Don’t count RTT sample on ACKs for this segment

• Keep backed off time-out for next packet

• Reuse RTT estimate only after one successful transmission

A B

Sample

RTT

RTO

A B

Sample

RTT

RTO
X

51

Jacobson’s Retransmission Timeout

• Key observation:

• At high loads, round trip variance is high

• Solution:

• Base RTO on RTT and standard deviation

• RTO = RTT + 4 * rttvar

• new_rttvar = b * dev + (1- b) old_rttvar

• Dev = linear deviation

• Inappropriately named – actually smoothed linear

deviation

52

Timestamp Extension

• Used to improve timeout mechanism by more
accurate measurement of RTT

• When sending a packet, insert current time into
option
• 4 bytes for time, 4 bytes for echo a received timestamp

• Receiver echoes timestamp in ACK
• Actually will echo whatever is in timestamp

• Removes retransmission ambiguity
• Can get RTT sample on any packet

53

Timer Granularity

• Many TCP implementations set RTO in multiples

of 200,500,1000ms

• Why?

• Avoid spurious timeouts – RTTs can vary quickly due to

cross traffic

• Make timers interrupts efficient

• What happens for the first couple of packets?

• Pick a very conservative value (seconds)

54

Fast Retransmit

• What are duplicate acks (dupacks)?
• Repeated acks for the same sequence

• When can duplicate acks occur?
• Loss

• Packet re-ordering

• Window update – advertisement of new flow control window

• Assume re-ordering is infrequent and not of large
magnitude
• Use receipt of 3 or more duplicate acks as indication of loss

• Don’t wait for timeout to retransmit packet

55

Fast Retransmit

Time

Sequence No Duplicate Acks

Retransmission X

Packets

Acks

56

TCP (Reno variant)

Time

Sequence No

X

X

X
X

Now what? - timeout

Packets

Acks

57

SACK

• Basic problem is that cumulative acks provide little

information

• Selective acknowledgement (SACK) essentially

adds a bitmask of packets received

• Implemented as a TCP option

• Encoded as a set of received byte ranges (max of 4

ranges/often max of 3)

• When to retransmit?

• Still need to deal with reordering  wait for out of order

by 3pkts

58

SACK

Time

Sequence No

X

X

X
X

Now what? – send

retransmissions as soon

as detected

Packets

Acks

59

Performance Issues

• Timeout >> fast rexmit

• Need 3 dupacks/sacks

• Not great for small transfers

• Don’t have 3 packets outstanding

• What are real loss patterns like?

60

Outline

• TCP connection setup/data transfer

• TCP reliability

• TCP congestion avoidance

61

Additive Increase/Decrease

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s

Allocation

x2

• Both X1 and X2

increase/ decrease

by the same amount

over time

• Additive increase

improves fairness and

additive decrease

reduces fairness

62

Muliplicative Increase/Decrease

• Both X1 and X2

increase by the

same factor over

time

• Extension from

origin – constant

fairness

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s

Allocation

x2

63

What is the Right Choice?

• Constraints limit

us to AIMD

• Improves or

keeps fairness

constant at

each step

• AIMD moves

towards optimal

point

x0

x1

x2

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s

Allocation

x2

64

TCP Congestion Control

• Changes to TCP motivated by ARPANET

congestion collapse

• Basic principles

• AIMD

• Packet conservation

• Reaching steady state quickly

• ACK clocking

65

AIMD

• Distributed, fair and efficient

• Packet loss is seen as sign of congestion and results in a

multiplicative rate decrease

• Factor of 2

• TCP periodically probes for available bandwidth by

increasing its rate

Time

Rate

66

Implementation Issue

• Operating system timers are very coarse – how to pace

packets out smoothly?

• Implemented using a congestion window that limits how

much data can be in the network.

• TCP also keeps track of how much data is in transit

• Data can only be sent when the amount of outstanding

data is less than the congestion window.

• The amount of outstanding data is increased on a “send” and

decreased on “ack”

• (last sent – last acked) < congestion window

• Window limited by both congestion and buffering

• Sender’s maximum window = Min (advertised window, cwnd)

11-01-07 Lecture 19: TCP Congestion Control 67

Packet Conservation

• At equilibrium, inject packet into network only

when one is removed

• Sliding window and not rate controlled

• But still need to avoid sending burst of packets 

would overflow links

• Need to carefully pace out packets

• Helps provide stability

• Need to eliminate spurious retransmissions

• Accurate RTO estimation

• Better loss recovery techniques (e.g. fast retransmit)

11-01-07 Lecture 19: TCP Congestion Control 68

TCP Packet Pacing

• Congestion window helps to “pace” the transmission of

data packets

• In steady state, a packet is sent when an ack is received

• Data transmission remains smooth, once it is smooth

• Self-clocking behavior

Pr

Pb

Ar
Ab

Receiver Sender

As

69

Congestion Avoidance

• If loss occurs when cwnd = W

• Network can handle 0.5W ~ W segments

• Set cwnd to 0.5W (multiplicative decrease)

• Upon receiving ACK

• Increase cwnd by (1 packet)/cwnd

• What is 1 packet?  1 MSS worth of bytes

• After cwnd packets have passed by  approximately increase

of 1 MSS

• Implements AIMD

70

Congestion Avoidance Sequence Plot

Time

Sequence No

Packets

Acks

71

Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ retransmit

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

72

Important Lessons

• Transport service
• UDP  mostly just IP service

• TCP  congestion controlled, reliable, byte stream

• Types of ARQ protocols
• Stop-and-wait  slow, simple

• Go-back-n  can keep link utilized (except w/ losses)

• Selective repeat  efficient loss recovery

• Sliding window flow control

• TCP flow control
• Sliding window  mapping to packet headers

• 32bit sequence numbers (bytes)

73

Important Lessons

• TCP state diagram  setup/teardown

• TCP timeout calculation  how is RTT estimated

• Modern TCP loss recovery

• Why are timeouts bad?

• How to avoid them?  e.g. fast retransmit

