
ARTICLES

A~UDRE~: A BISTWBUTED PERSONAL
COMPUTING ENVIRONMENT

The Information Technology Center (ZTCJ, a collaborative effort between
IBM and Carnegie-Mellon University, is in the process of creating Andrew,
a prototlype computing and communication system for universities. This
article traces the origins of Andrew, discusses its goals atid strategies, and
gives an overview of the current status of its implementation and usage.

JAMES H. MORRIS, MAHADEV SATYANARAYANAN, MICHAEL H. CONNER,
JOHN H. HOWARD, DAVID S. H. ROSENTHAL, and F. DONELSON SMITH

In October 1982, Carnegie-Mellon University (C-MU)
and IBM agreed to create the Information Technology
Center (ITC), an organization consisting of about 39
people, with the task of designing and developing com-
puting technology to support C-MU’s needs by the fall
of 1986. Ten members of the organization would be
IBM employees on assignment, and the system-named
Andrew, after two benefactors of C-MU, Andrew Carne-
gie and Andrew Mellon-would be based partly on IBM
hardware.

Several other organizations were assigned formidable
and complementary activities: The Computation Center
would deploy and maintain the system, the Center for
Development of Educational Computing would facili-
tate the production of course-related software, and
IBM’s Academic Information Systems independent
business unit would develop and market related and
derived IBM products.

The project will affect university education in four
main areas:

l Computer-aided instruction. For many years, some
pioneering institutions have used computers to de-
liver instruction. Perhaps the largest effort is the
Plato Project [26] at the University of Illinois where
over 10,000 hours of course material have been de-
veloped. We expect the presence of ubiquitous and
powerful graphics workstations to greatly stimulate
efforts to develop computer-aided instruction-pro-
ducing computer-animated demonstrations is a new
art, and the universi.ty is well poised to develop it.

l Creation and use of new tools. A research university
like C-MU is just as devoted to improving the meth-
ods of professional work as to teaching them. A pro-
fessor’s research on a new tool can often be aided by
teaching it, while students form a good set of users

O1966ACM OOOl-0782/86/0300-0184 756

and sometimes assist in the creation of new software.
Virtually every department at C-MU is pursuing the
development of computer tools. Beyond the expected
activity in engineering and science, there are also
developments in writing, historical research, social
science, music, painting, psychology, and many other
fields as well.

l Communication. With every member of a university
community plugged into a smoothly operating com-
munication system, one can expect far-reaching ef-
fects [lo, 27, 311. Class discussions held on a com-
puter bulletin board will last longer, involve more
participants, and allow time for more reflection and
analysis. The use of graphics, formula manipulation,
and automatic typesetting can improve the form and,
indirectly, the content of much of our communica-
tion. We do not expect computer-mediated communi-
cation to supplant the more traditional methods, but
it will broaden and deepen the community’s ability to
communicate.

l Information access. A mark of tomorrow’s profes-
sional will be the ability to navigate in large informa-
tion repositories. A university’s primary database is
its library of books and journals, and our communica-
tion system will provide better access to it. In addi-
tion, it will provide access to the growing number of
worldwide databases. Finally, we expect universities
to develop extensive new databases devoted to partic-
ular courses and areas of specialization.

(See a recent paper from M.I.T.‘s Project Athena [3] for
a more extensive catalog of possibilities.)

THE TECHNICAL FORERUNNERS OF ANDREW
The Xerox Alto System [ll] has been a powerful inspi-
ration for our system, which is based on four key com-
ponents: personal computers, raster graphics, high band-
width networks, and time-sharing file systems.

104 Communications of the AC,+4 March 1986 Volume 29 Number 3

Articles

Personal Computing
The era of personal computing was ushered in by the
introduction of stand-alone microprocessor-based com-
puters by companies such as Apple and IBM. The iden-
tifying characteristic of this class of machines was their
cost-they had to be affordable to small businesses and
individuals. This constraint and the available technol-
ogy dictated the architecture, hardware implementa-
tion, and software aspects of these machines; and thus
floppy disks, 8-bit data paths, character displays, and
Basic were the order of the day. From a user’s point of
view, the major real difference between using such a
machine and using a time-sharing system was the fact
that the performance of the former was constant and
predictable, unaffected by the activities of other users.

Raster Graphics
The designers of the Alto [33] realized that, once a
terminal was replaced with a powerful computer,
higher bandwidth between the computer and its user
could be exploited to present information in a signifi-
cantly more appealing way. Integral to the design was a
pixel-addressable display mapped into main memory,
and a pointing device (a mouse). The software for this
machine treated the screen as a two-dimensional col-
lage of text and graphical images rather than a one-
dimensional string of text. Small graphical icons were
used to symbolize actions or states, and mouse move-
ments and button clicks rather than key strokes were
used to communicate with the machine. The model of
human-machine communication first demonstrated in
this project has now come to be accepted as highly
desirable, particularly for novices.

High Bandwidth Communications
In moving away from time-sharing to personal comput-
ing, it would indeed be unfortunate if users lost the
ability to communicate among themselves. Normal
asynchronous communication at kilobit rates has been
a bottleneck when transferring files or doing anything
besides interacting with a time-sharing system. Local-
area networks (LANs) provide megabit rate communi-
cation. Originating with the Ethernet [14] in the Alto
project, the linking of workstations by a LAN has be-
come standard practice in laboratory environments.
LANs make possible the shared use of relatively expen-
sive peripherals such as large disks, laser printers, and
tape drives, and small files can be transferred between
machines with hardly noticeable delays.

Time-Sharing File Systems
An unexpected benefit of time-sharing was the use of
computers as a vehicle for communication among
users. Sharing of information via a common file system
is now taken for granted. In fact, there are many users
for whom the communication and information-sharing
aspects of a computer are far more important than its
computational capability.

In a time-sharing environment, cooperation between
users is particularly simple because of the existence of
common logical name spaces. For example, two users
who are sharing a file refer to it using the same name;

the physical locations at which they are logged in are
immaterial. As another example, mail from one user to
another need only specify the recipient’s name; no in-
formation need be given about the terminal at which
the latter will log in to read mail.

Although a networked personal computing environ-
ment provides connectivity, it does not automatically
imply the same ease of sharing. Each workstation in
such an environment has a unique network address
that has to be specified when accessing files. In addi-
tion, explicit user actions are usually required to
achieve sharing: Before using a file, a user must run a
program to transfer it to the network node where he or
she is currently located; changes made by that user are
not visible to other workstations until the modified file
has been transferred to them or to a central repository.
User mobility is also limited-one cannot create a file
at one workstation, walk to another workstation, and
access the file with the effortlessness that is possible
when using geographically separated terminals of a
time-sharing system.

BASIC DECISIONS
The computing paradigm envisioned in Andrew is a
marriage between personal computing and time-
sharing. It incorporates the flexibility and visually rich
user-machine interface made possible by the former,
with the ease of communication and information-
sharing characteristic of the latter. This model is de-
picted in Figure 1 (p. 186).

The VICE-VIRTUE interface has two distinctive
characteristics:

1. If is a relafively sfafic programming inferface. En-
hancements to this interface will typically be made
in an upwardly compatible manner. This allows ad-
vances in technology to be taken advantage of,
without systemwide trauma. A new type of work-
station will require some software development to
integrate it with VICE. However, existing worksta-
tions will not be affected in any way. In the long
run, therefore, one can expect a situation where
nonhomogeneous workstations are attached to
VICE, but will share its resources in a uniform
manner.

2. If is the boundary of trustworthiness. All computing
and communication elements within VICE may be
assumed to be secure. This guarantee is achieved
through physical and administrative control of
VICE computers. No user programs are executed in
VICE, and it is therefore an internally secure envi-
ronment. Workstations, however, are owned by in-
dividuals who are free to modify their hardware
and software in any way they wish. Encryption-
based authentication and transmission will be
used to ensure the security of VICE-VIRTUE
communication.

Workstation Hardware
The model we chose for our personal computer was
much more powerful than any existing one. The C-MU

March 1986 Volume 29 Number 3 Communications of the ACM 185

Articles

ANDREW

11 Printer

I workstai
Big computer v

s.,.-.*r+.z.tinrr
VICE: I b ther networks

8 8
1 woZtzZion (

The amoebalike structure in the middle, called VICE, is a
collection of communication and computational resources
serving as the backbone of a user community. Individual
workstations, called VIRTUES, are attached to VICE and pro-
vide users with the computational cycles needed for actual
work as well as a sophisticated user-machine interface.
(VICE stands for “Vast, Integrated Communications Environ-
ment”; VIRTUE, for “Virtue is reached through UNIX@ and
EMACS.“)

FIGURE 1. VICE and VIRTUE

Computer Science Department had created a carefully
thought-out machine specification for its Spice Project
[4] that included such advanced requirements as a
million-instruction-per-second processor, a bit-map dis-
play with a million pixels, virtual memory, a megabyte
of real memory, and a LAN connection. They predicted,
accurately, that such machines could be had for
$10,000 in the mid eighties; so it seemed that subse-
quent price reductions would make it an affordable ma-
chine for students a few years later.

Although we agreed on the ki.nd of workstation that
was needed, IBM had no such product. Laboratory pro-
totypes existed, but were not ready to be used at C-MU.
We chose the SUN workstation as our development ma-
chine since it had most of the characteristics of a Spice
machine. At the time (April 1983) SUNS had barely
started production, so we suffered through some of
their growing pains, but have been generally happy
with the decision.

A decision we have yet to make relates to the use of
disk storage. There are many reasons to dislike work-
stations with hard disks: They are expensive, power
consuming, noisy, and subject to failure. A floppy disk-
based system was obviously unable to support virtual
UNIX is a trademark of AT&T Bell Laboratories.

In choosing such a powerful workstation and a
virtual-memory, multiprocessing operating system, we
distanced ourselves from the mainstream personal com-
puting world-IBM PCs and Apple Macintoshes. Given
IBM’s sponsorship of the project, it might seem obvious
that we should have based our system on IBM PCs.
Why didn’t we? First, the PC does not have very good
support for raster graphics, one of our key criteria. Sec-
ond, while the commercial world of PCs is character-

166 Cottmunications of the ACM March 1986 Volume 29 Number 3

memory, but the SUN system and others had proved
that it was feasible to use a LAN to deliver pages to a
workstation from a dedicated, shared disk server. Nev-
ertheless, we have not committed to diskless worksta-
tions as a basic strategy because of several considera-
tions:

l It would have led to a fundamentally less-robust sys-
tem design; if the network were down or overloaded,
the workstations would be unusable. Diskless ma-
chines greatly increase traffic on’the network, a cen-
tral resource that might be hard to augment.

l When the cost of a disk server was amortized over
the machines it c:ould support well-about 10 for
SUNS-the costs were about the same as providing
each workstation with its own disk.

l It seemed unrealistic for an individual to purchase a
machine that would only work when it was on the
C-MU campus. Some of the C-MU community works
off campus, out of reach of high bandwidth commu-
nications; and students who live on campus are ac-
tually in residence for barely half the year.

l Paging over an open network theoretically precludes
most schemes for guaranteeing privacy.

l The ITC runs a mixture of workstations, some with
disks and some without. Workstations with disks are
much preferred because the performance is perceived
as better and less variable.

Operating System
We chose the Berkeley UNIX operating system [ZO] for
several reasons: It was a well-defined standard, had
several advanced features, and was well liked by many
developers in the university environment. One of the
most important features was that it was portable: This
made it possible to develop Andrew on one machine
and move it to others. C-MU’s Accent operating system
[18] had some superior technical features, but was not
fully developed and not demonstrably portable. The
MS-DOS environment, which was to become the de
facto standard for commercial personal computing, did
not offer a programmers’ environment that was as good;
it lacked multiprocessing features and virtual memory,
and was portable only among PC clones. In retrospect,
this decision was a good one in that it has allowed
rapid development and gives our system access to a
variety of workstations. Nevertheless, it has made the
system rather large and expensive relative to the goal of
providing it on inexpensive student workstations. Our
hope is that the rising tide of hardware technology will
solve this problem if we can avoid raising our ambi-
tions along with it.

Articles

ized by a small number of vendors producing software
for a huge, nonprogramming consumer base, we expect
a high percentage of C-MU’s population to engage in
software development at some level. Therefore, pro-
grammer comforts such as virtual memory and a good
programming environment are important. Many of the
faculty at C-MU use powerful workstations in their
research; it seems more likely that good educational
software and tools will result if the students use a simi-
lar machine. Finally, it seems that the personal com-
puting industry will move to computers and operating
systems with just the technical characteristics we have
chosen. We expect to see a convergence of the personal
computer and the engineering workstation in the next
few years. When this happens, we expect all the com-
mercially available software to be available to our sys-
tem as well.

components: network communication, the shared file
system, and the user interface on an individual work-
station. The next three sections of this article examine
each of these topics.

NETWORK COMMUNICATION
The design strategy that has been chosen exploits local-
ity of reference to reduce network and server utiliza-
tion. Viewed at a finer granularity than Figure 1, VICE
is composed of a collection of semiautonomous clus-
ters connected together by a backbone LAN. Figure 3
(p. 188) illustrates such an interconnection scheme.

The wiring of the campus with the IBM cabling sys-
tem is expected to be completed by the end of 1986.
The plans call for the use of a token ring network de-
veloped at IBM [28] and conforming to the IEEE Stan-
dard 802 [30].

Communications Paradigm
The ITC aspires to interconnect over 5000 workstations.
An academic environment requires a large amount of
information sharing: a high degree of user mobility be-
tween dormitories, faculty offices, libraries, and labora-
tories is essential. It was therefore important to choose
the central communications model carefully.

The Current Reality

We chose to emulate a time-sharing file system in
which each workstation would appear to be sharing a
single large file system. This model was easy to grasp
and had clear advantages over the ambitious ones pre-
sented by the telephone system and electronic mail sys-
tems. We considered technically more ambitious para-
digms such as a distributed database system, but re-
jected them since the pace and content of communica-
tion at a university do not require the interconnected
structure of most database systems. Most of the infor-
mation used by a university is in the form of papers,
memos, and computer programs. Thus, it seemed ac-
ceptable to make the unit of shareable information a
file and to record changes centrally every few seconds.

C-MU already had a large number of Ethernets and a
few ProNets installed by 1983. As it became apparent
that the plan outlined above was going to take consid-
erable time to implement, we decided to build our sys-
tem on top of these existing networks, interconnecting
them and buttressing them where needed. Aside from
reducing the apparent effort, it would give an Andrew
workstation access to many other machines on the
campus immediately without having to construct gate-
ways.

The facility for interconnecting networks was already
at hand in the form of router machines [2]-PDP/lls
programmed by the computer science department-
that allowed physical interconnection of different net-
work technologies and supported a simple broadcast

VICE provides a common name space for files. Users
may thus access files in a uniform manner regardless of
the specific workstations at which they are logged in, or
where the files were created originally. Most other
shared facilities, such as mail, bulletin boards, and
printing, can be built on top of VICE, obviating the
need for machine or location-specific information. One
requests a service by leaving a request file in a desig-
nated directory. Software in each VIRTUE workstation
makes these facilities of VICE appear as a transparent
extension of that workstation’s operating system.

VIRTUE
applications

support

I VICE file
system

communication

C-MU’s relatively small campus and localized stu-
dent residences allowed us to choose high-bandwidth
communications (4 to 10 Mbits per second) as the nor-
mal mode of operation. Nevertheless, we find it neces-
sary to support slower communications as a secondary
goal since faculty and graduate students often work off
campus.

System Components

fie system structure of Andrew was chosen to allow multi-
ple options to be tried for each component, either simultane-
ously or through time. Any workstation that can support
Berkeley UNIX can be used to run VIRTUE. There are no
hard dependencies between the file system and the user
interface; each has been used without the other. Multiple
network implementations are possible.

Figure 2 shows the major components of Andrew. The
1TC development effort has focused on three of these FIGURE 2. The Components of Andrew

March 1986 Volume 29 Number 3 Communications of the ACM 187

Articles

Backbone Ethernet

I
Bridge

_ Cluster
server

I
Bridge

I
Bridge

server

Cluster 0 Cluster 1 Cluster 2

Each cluster consists of a collection of workstations and a
representative of VICE called a cluster server. The bridges
that connect individual clusters to the backbone serve both
as routers and as traffic filters. The routing capability of
these elements provides a uniform network address space
for all nodes, obviating the need for any end-to-and routing
by servers and workstations.

FIGURE 3. VICE Fine Structure

protocol to allow one machine to rendezvous with any
other.

The Computation Center had already managed the
installation of fiber-optic cables connecting all the aca-
demic buildings. Using various products from DEC,
Ungermann-Bass, and American Photonics, we ex-
tended several of the Ethernets over the fiber so that
they could have a representative router machine in a
common building, the University Computation Center.
By connecting those routers to a common Ethernet, we
quickly created an internetwork containing over 600
machines. Figure 4 s:hows the current campus internet.

Remarkably, this network came about through the
voluntary cooperation of several different departments
and centers of the university. In a world where it is not
unheard of for single academic departments to disagree
about a basic network, C-MU has been particularly for-
tunate in being able to manage this. Further informa-
tion about the network may be found in [12] and [13].

This ad hoc networking tactic has allowed us to get
started quickly; Andrew workstations can communi-
cate with many other computers at C-MU today. Never-
theless, it will not suffice for the long term. Network
reliability is often perceived to be a problem, and
troubleshooting is complicated because many different
organizations own pieces of the net and routing ma-
chines. The simple broadcast method of machine ren-
dezvous will need refinement lest it exhaust some re-
source. Even a single Ethernet can present mysteries if
it has not been laid out with a plan for maintenance.

On the brighter side: This tactic exposed us to the
maintenance implications of a campuswide network
early in the project.

Network Protocols
Experience with networking over the last decade has
shown the importance of using standardized communi-
cation protocols for intermachine communication. Pre-
cisely what protocols are used is far less important than
the fact that all interconnected machines use the same
protocol.

Prior to the inception of Andrew, many of the depart-
mental mainframes at C-MU used the DARPA Internet
Standard protocols [7] for communication. Owing to its
sponsorship by the U.S. Department of Defense, this
protocol family has become the lingua franca of the
Arpanet user community, of which C-MU is an active
member. Further, the Berkeley UNIX operating system
already has implementations of these protocols built
into it. Consequently, we adopted the TCP/IP protocol
family as our standard.

High-level communication between VICE and
VIRTUE is based on a client-server model using remote
procedure calls (RPCs) for transfer of data and control
[15]. An RPC subroutine package has been imple-
mented on top of the Internet protocols [ZZ]. The dis-
tinctive features of this package are the following:

The transfer of bulk data objects, such as files, as
side effects of RPCs. This capability is used exten-
sively in the file system for caching of files at work-
stations.
Built-in authentication facilities that allow two mu-
tually suspicious parties to exchange credentials via
a three-phase encrypted handshake. This mecha-
nism will be used by servers in VICE to authenti-
cate users.
Optional use of encryption for secure communica-
tion, using session keys generated during the au-
thentication handshake.

In order to communicate with various future IBM
systems, we implemented SNA (in particular, Logical
Unit Type 6.2 [9]) under UNIX. We currently use this
package to communicate with IBM 3820 laser printers.

THE SHARED FILE SYSTEM
Network file systems have been the subject of investi-
gation in a number of projects over the last few years
[l, 17, 291. These designs have typically been intended
for networks with at most a few hundred nodes. With
our ambition to span an order of magnitude more
nodes, we felt it essential to approach the design from
first principles. We had little confidence that an adapta-
tion of an existing design would prove adequate to the
task.

The description of the Andrew file system is in two
parts. Pages 189-191 describe the basic architecture,
whose rationale has been discussed elsewhere [23].
Pages 191-194 then provide details of the implementa-
tion and usage experience with this system. More de-
tails on this aspect of Andrew may be found in [34].

100 Communications of the ACM March 1986 Volume 29 Number 3

Articles

Naming
From the point of view of application programs on
workstations, the space of file names is partitioned into
two subspaces: local and shared. Figure 5 (p. 190) illus-
trates this partitioning. In practice, almost all files ac-
cessed by users are in the shared name space. Conse-
quently, users can move at will from one workstation
to another and continue to see a consistent image of
their files. Both the local and shared name spaces are
hierarchically structured and are similar to a time-
sharing UNIX file system. In UNIX terminology, the
local name @ace is the root file system of a workstation,
and the shared name space is mounted on the node
“/emu” during workstation initialization. Figure 6

(p. 190) depicts this situation,
UNIX expects to find system files in its local name

space. Through the use of symbolic links, however, we

have been able to place the vast majority of system files
in the shared name space. For example, on a SUN
workstation, the local directory /usr/local/bin is a sym-
bolic link to the remote directory /cmu/unix/sun/usr/
local/bin; on a VAX, /usr/localjbin is a symbolic link to
/cmu/unix/tiax/usr/local/bin. In this way, accesses to
most common system files are automaticaIly translated
to remote accesses. This greatly reduces the amount of
disk space required locally and simplifies the distribu-
tion of new releases of system software. As indicated in
the example, symbolic links are also of value to us in
supporting diversity in workstation hardware.

Intercept and Caching
Entire files are cached on demand at workstations.
When an application program makes a system call to
open a file, the request is first examined by the work-

/ / -_--

L&end

03 Router machine - - - - ProNet
- Ethernet @ Number of
& Fiber-optic link Andrew workstations

The current campus internet contains 17 Ethernets and 2
ProNet rings linked by interbuifding fiber-optic cables and
routing computers. Over 600 computers can communicate
on this internet using DARPA protocols, afthough only 120
are VfRTUE workstations. The backbone is the net marked

UCC. iwd duster servers on the net. marked IfC serve
about 60 madhines attached to that net. Four cluster servers
on the backbone support another 60 workstations scattered
over all the other nets.

FIGURE 4. The Current C-MU Internet

March 1986 Volume 29 Number 3 Communications of the ACM 189

The shared filh name qpm ii iclf$ntic~~ on all w&etat&$~s
and, though di$@btrt@ a&?sS nI@ple -til& Sei%er&j apPearS
totally tiomogeneottq, tQ, &plicafi9n RrbgM+s; 8frq fiie
names do not &nt:tii~~~e iUe&ity Of, seiver+ier~ is t$3
means by which an applicatipn f?mgram Far? q+ttnmiqe which
file server is storing b $@%irql~r file. The. fo&$. f.te@e spa@3 is
smalt, i% distinct foi. each work&at&t, and co$lns’ii!es’ @at
are either qzjential ioi &3rj@$tion ~itia~~~t.~n,~ @fe t&&o-

rary files such as those cdntainiflg in~e~~iate,~~t~t~~~
compiter phases. .’

FIGURE 5. Shared and Local Name Spaces

station operating system to determine whether the file
is local or shared. In the former case, the open request
is satisfied exactly as in a stand-alone system. For a
shared file, the request is relayed to a local process,

tmD bin lib vmunix

Local files

Shared files

In UNIX t&minol~y, the local naine space is ~~~Y~J@&
sysfent of a wotlqtati&, &$f the shared tiam&sl)&e 1s.
mou&d on the n&e u&mu” during wot’kstatiol?.i~ton,
Since .&I sharea file naties gefierated an ~e,~r~~t~~on
have ‘[emu” as a ijrefrx of ttiair peth name, it isjrivi$l Zo
disambiguate between loyal and sh&d files.

FIGURE 6. A Workstation’s View of the File System

Venus, running on behalf of the file system. Venus man-
ages the local cache and the communication with the
remote file server. For an open of a shared file, Venus
checks the cache for the presence of a valid copy. If
such a copy exists, the open request is treated as an
open request to the cached copy. If the file is not pres-
ent in the cache, or if the copy is not current, a fresh
copy is fetched from the appropriate file server. All
these actions are transparent to application programs:
They merely perform a normal file open.

After a file is opened, individual read and write oper-
ations on a shared file are directed to the cached copy:
No network traffic is generated on account of such re-
quests. On a close request, the cached copy is first
closed as a local file; if it has been modified, the up-
dated copy is then transmitted to the appropriate file
server. The cache thus behaves as a write-through
cache on closes.

The caching mechanism allows complete mobility of
users with minimum performance penalty. If users
place all their files in the shared name space (the de-
fault), their workstations become “personal” 041~ in the
sense that they are owned by them. Users can move to
any other workstation attached to VICE and use it ex-
actly as they would use their own workstation. The
only observable difference would be an init.ial perfor-
mance degradation as the cache on the new worksta-
tion is filled with the users’ working sets of files.

The caching of entire files, rather than portions of a
file, also has a beneficial effect on performance. Net-
work overheads are minimized because servers are
contacted only on file opens and closes, and not on
individual reads and writes. Cache management on
workstatiohs is also simplified, since there are far fewer
files than pages of files. To be successful, whole-file
transfer requires that each workstation possess ade-
quate secondary storage to cache a typical user’s work-
ing set of files. Whether this is provided by a disk phys-
ically associated with the workstation or is provided by
a disk server is an issue that is orthogonal to the design
presented here. For reasons mentioned earlier, we pre-
fer to use workstations with local disks.

Inevitably, there are some files that are far too large
to fit in workstation caches. These are typically data-
bases, such as the on-line card catalog of the university
library. The current design does not address this class
of files; separate mechanisms for accessing such data-
bases have to be developed. Except in such cases, ac-
tual usage experience has shown that the need to cache
entire files is not a problem. We have been able to
accommodate files up to a few megabytes in size with-
out any serious difficulties. Studies of file usage pat-
terns in real systems have, in fact, shown that most
files tend to be small [16, 211.

Data Location and Replication
Each cluster server in VICE runs a file server process
that supports operations such as storing and retrieving
files in response to requests from Venii on worksta-
tions. The hierarchical file name space is partitioned
into disjoint subtrees, and each such subtree is served

190 Communications of the ACM March 1986 Volume 29 Number 3

by a single server, called its custodian. Storage for a file,
as well as servicing requests for it, is the responsibility
of the corresponding custodian. Changing the custodian
of a subtree is a relatively heavyweight operation: The
design is predicated on the tissumption that such
changes do not occur on a minute-to-minute basis.

Certain subtiees that contain frequently read, but
rarely modified, files may have read-only replicas at
other cluster servers. Such read-only copies are created
by a process called cloning, initiated by system adminis-
trators. Read-only copies are typically created for sys-
tem files, in order to enhance availability and to evenly
distribute server load.

Each server contains a copy of a fully replicated loca-
tion database that may be queried by Venii to ascertain
the custodian of any file. The size of this replicated
database is relatively small because custodianship is on
a subtree basis: If all files in a sdbtree have the same
custodian, there need only be an entry foi the root. The
location database changes relatively slowly for two rea-
sons. First, most file creation and deletion activity oc-
curs at depths of the naming iree far below that at
which the assignment of custodians is done. Second.
reassignment of custodians is infrequent and is initiated
via administrative procedures. Consequently, a special-
ized propagation mechanism that slowly updates custo-
dianship information at all servers is feasible.

For performance reasons, the assignment of custodi-
ans to files is done in a way that maximizes the proba-
bility that a user’s workstation and custodian cluster
server are on the same cluster. Faculty members, for
instance, would be assigned a custodian on the same
cluster server as the workstation iri their offices. This
assignment does not affect their mobility, since work-
station caching would allow them to transparently ac-
cess their files from any other cluster.

Security
Security is a matter of serious concern to tis since indi-
viduals may tamper with the hardware and software on
workstations they own, and since it is not feasible to
guarantee the integrity of an interconnecting network
that spans the entire campus. Consequently, our design
is not predicated on the trustworthiness of either the
woikstations or the network. In this respect, Andrew is
fundamentally different from other distributed file sys-
tems reported in the literature.

We attempt only to safeguard against the unautho-
rized release or modification of information and do not
attempt to prevent instances where legitimate users are
denied resources. The latter situation can arise, how-
ever, when malicious users modify their workstation to
flood the network with packets. We believe that peer
pressure and social mores are the only effective deter-
rents in such situations.

When a user initiates activity at a workstation,
VIRTUE authenticates itself td VICE on behalf of that
user. After authentication, all future communication on
behalf of that user is encrypted with a key generated
at the beginning of each session. Authentication and
secure transmission are supported by the underlying

RPC package. At the present time, these functions are
operational, but await integration. We are also awaiting
the installation of hardware encryption devices on the
workstations. Encryption, which we believe to be an
indispensable building block for secure distributed
computing, has been made relatively inexpensive by
VLSI technology.

VICE uses access lists to protect data stored in it.
Entries on an access list are from a protection domain
consisting of users and groups. which are collectiorts of
hsers and other groups. Information about users and
groups is stored in a protection database that is repli-
cated at each cluster server. The users rights on a pro-
tected object are the union of the rights specified for all
the groups they belong to. either directly or indirectly.
Access lists are associated only with directories. Files
within a directory may be individually protected
against access or modification. but it is not possible to
specify selective access to different individuals.

Mail, Printing, and External Communication
The basic architecture of the file system has simplified
support for services such as mail and printing. There is
no need for special servers to sbool anything as long as
the sender and receiver of information are both clients
of VICE. The mail-transport mechanism is trivial. Each
user has a subdirectory called “mailbox” of his or her
home directory. Sending the user mail simply consists
of storing a file in the mailbox. Although it is clear that
one can build an excellent mail system without basing
it on a file system [5. 61, we feel that interleaving its
functions with a file system will make it more useful.
Similarly, spooling a file for printing oh a particulai’
printer consists of putting a directive in a subdirectory
it owns, and pointing to a file iri one’s own directory.
The flexible, access-list-based protection system makes
these operations possible. For example, one’s mailbox
allows anyone to insert files, but allows only the owner
to read files. Official bulletin boards can be achieved by
allowing anyone read access, but only officials are al-
lowed write access, to a particular subdirectory.

This simple structure is of no help. however, when
one wants to communicate with non-Andrew users at
C-MU or elsewhere; we use standard file transfer pro-
grams (FTP) and mail gateways to cope. For example. to
stoi-e a file in VICE from any machine on campus one
cari perform an FTP to any Andrew workstation, as-
suming one has a valid password.

Implementation and Experience
The Andrew file system has gone through the normal
developmental stages of architecture, prototype, experi-
ence, and refinement. In this section, we describe the
evolution of the Andrew file system, paying particular
attention to our experiences with it, and the lessons we
have learned from its design and implementation.

The high-level architecture and key design decisions
such as caching and whole-file transfer that were pre-
sented earlier were determined quite early in the de-
sign. We built a prototype, VICE-I, to deiermine the
viability of this architecture. This system was deployed

March 1986 Volume 29 Number 3 Communications of the ALi 191

Articles

to a user communit,y of about 400 users with access to
about 100 workstations. Based on our experience with
VICE-I, we refined the basic architecture and produced
a completely new implementation called VICE-II. Both
VICE-I and VICE-II were built Ion top of the UNIX oper-
ating system; but, because users cannot log in to file
servers directly, we retain the option to reimplement it
in any environment we like. We have used SUNS and
VAXes as file servers, each with two or three LOO-
Mbyte disks.

The following section describes the implementation
of VICE-I, while the section following that discusses
what we learned from it. The succeeding sections will
then describe the implementation and status of VICE-II.

VICE-I Implementation. In VICE-I, a client would ren-
dezvous with a server process listening at a well-known
network address on a cluster server. This process then
forked a dedicated process to d’eal with all future re-
quests from the client. The dedicated process vanished
when its client terminated the connection to it. In
steady state, therefore, a VICE-I cluster server operated
with at least as many server processes as there were
active clients. Since UNIX does not allow sharing of
address spaces between processes, locking was imple-
mented by a dedicated lock server process that serial-
ized requests from the dedicated server processes and
maintained a lock table in its address space. All other
sharing between the latter processes took place via files
in the underlying file system.

Data and VICE status information were both stored in
files. Each server contained a UNIX directory hierarchy
exactly mirroring the structure of the VICE files stored
on it. VICE file status information, such as access lists,
was stored in shallow directories called aimin directo-
ries. The directory h.ierarchy contained stub directories
to represent portions of the VICE name space that were
located on other servers. The location database that
maps files to custodians was thus embedded in the file
tree in VICE-I. If a file were not on a server, the search
for its name would end in a stub directory that identi-
fied the custodian for the file. Below the top levels of
the VICE naming tree, files in the same subtree are
likely to be located on the satne custodian. Hence
clients cached path-name prefix idformation and used
this as the basis of a heuristic to direct file requests to
appropriate servers.

In VICE-I, the VICE-Venus interface named files by
their full path name. There was no notion of a low-
level name, such as the lnode in UNIX. A rudimen-
tary form of read-only replication, restricted to the top-
most levels of the VICE name tree, was present. Each
replicated directory had a single server site to which
all updates were directed. An asynchronous slow-
propagation mechanism reflected changes made at
this site to the read-only replicas at all other sites.

All cache entries were considered suspect in VICE-I.
Before using the cached copy of a file, Venus would
verify that its time stamp matched that of the copy on
the custodian. Rach file open thus resulted in at least

one interaction with a server, even if the file were
already in the cache.

Experience with VICE-I. VICE-I was used for nearly a
year, eventually expanding to encompass six servers
and about 100 workstations. The goals of location trans-
parency and user mobility were met unequivocally and
have proved to be addictive. We would now find it
difficult to put up with an environment where individ-
uals were tied to specific workstations, or where we
had to remember which machine a particular file re-
sided on. Our initial apprehensions about relying solely
on caching and whole-file transfer proved to be bise-
less. Application code compatibility was also met to a
very high degree, and almost every UNIX application
program was able to use VICE files without recompila-
tion or relinking.

Although our experience with VICE-I was mostly
positive, we ran into some problems that we had not
anticipated. Probably the single biggest surprise was the
frequency of stat system calls made by applications. On
a standard file system, this is a relatively cheap call.
Repeated stats of the same file usually involve no disk
activity, since UNIX caches recently read disk blocks in
memory. In VICE-I, however, every stat involved an
RPC to a server to validate the appropriate cache entry
or to fetch it. Under conditions of heavy load, this
caused rather annoying performance degradation.

Another annoyance was the inability to rename di-
rectories in VICE. This turned out to be a consequence
of our using path names in the VICE-Venus interface.
The absence of a low-level identifier that was visible to
Venus and that remained invariant across a directory
rename meant that it would not always be possible to
unambiguously answer cache validation requests on
certain files after the rename. Another heavily used
UNIX feature missing from VICE-I was the ability to
use symbolic links. This was a subtle consequence of
our decision to resolve path names in VICE rather than
Venus.

Measurements indicated that an average cache hit
ratio of over 80 percent was attained during normal
use. Server CPU utilization tended to be quite high,
averaging nearly 40 percent over an 8-hour working
day on the most heavily loaded servers. Disk utilization
tended to be lower, averaging about 14 percent. Short-
term averages were, of course, much higher. A histo-
gram of calls received by servers in actual use showed
that cache validation calls accounted for over 65 per-
cent of the total. Calls to fetch file status information
contributed about 27 percent, while calls to fetch and
store files accounted for 4 percent and 2 percent, re-
spectively. These four calls thus encompassed more
than 98 percent of the calls handled by servers.

VICE-I turned out to be a rather difficult system to
operate and maintain. Our decision to use a dedicated
process per client on each cluster server caused various
resource limits to be exceeded on a number of occa-
sions, effectively crashing the cluster server. It also re-
sulted in excessive context switching overhead and in

192 Communications of the AlCM March 1986 Volume 29 Number 3

Articles

high virtual-memory paging demands. It did, however,
have the virtue of simplicity and resulted in a rela-
tively robust system because the failure of an individ-
ual server process affected only one client. The RPC
package was built on top of the reliable byte-stream
abstraction provided by TCP. Although this yielded a
simple implementation, it caused TCP-related resources
to be exceeded on occasion, thereby denying service to
new clients. Our decision to embed the file location
database in stub directories in the VICE naming tree
made it difficult to move users’ directories between
servers. Finally, Venus based its cache replacement al-
gorithm on the total number of files in the cache rather
than on the total size of these files. This was done
primarily for ease of implementation and worked well
most of the time. Sometimes, however, a user’s cache
would fill his or her local disk to capacity, resulting in
a failure mode that nonexpert users found particularly
disconcerting. The effects of this problem were particu-
larly severe when it involved an unattended worksta-
tion such as a print or mail spooler.

Based on our experience with VICE-I, we set out to
design and build a more efficient and easily operable
implementation of our basic architecture. The result of
this effort was VICE-II, our current file system.

VICE-II. In VICE-II, a single process on each cluster
server services all file server requests from clients to
that cluster server. This process uses a lightweight pro-
cess package (LWP) with nonpreemptible scheduling to
concurrently service many client requests. The RPC
package is integrated with the LWP, thereby allowing
the file server to be concurrently making or servicing
one RPC per lightweight process. The RPC package is
built on top of a low-level datagram abstraction and
subsumes the demultiplexing, retransmission, and low-
level failure detection functions that were provided by
TCP in VICE-I. There is an RPC connection per client,
but there is no a priori binding of lightweight processes
to these connections. Instead, a pool of lightweight
processes service client requests on all connections.

The use of a single server process makes it possible
for us to maintain virtual-memory caches of many data
structures that were kept in the file system in VICE-I.
This improves performance and avoids the resource
limitation problems, excessive paging, and context
switching we encountered in VICE-I. The RPC package
places no practical bounds on the number of clients
who can be simultaneously connected to a server; each
connection uses a small amount of virtual memory for
state information, but no other resource.

In VICE-II, we use the UNIX file system on servers
only to provide access to disk blocks, to manage storage
allocation for files, and to maintain in-memory buffers
of recently used disk blocks. The VICE directory struc-
ture is built on top of this low-level interface and does
not appear as a UNIX directory structure on the server.
We believe this will provide us with much greater effi-
ciency in accessing files.

We have introduced the notion of a volume as the

basic abstraction for administrative and operational
purposes. A volume is a collection of VICE files com-
prising a partial subtree of the file system hierarchy
and is typically quite small; each user in our system
currently has a volume allocated to him or her. Tape
backup and restoration, application of disk space quo-
tas, and read-only replication are all done on individual
volumes. The root of a volume may be arbitrarily relo-
cated in the VICE file hierarchy, and in this respect,
volumes resemble mountable disk packs in a conven-
tional file system. Volumes are visible only at the
VICE-Venus interface and are transparent to users and
application programs. File location information is now
obtained from a volume location database, replicated at
all servers. When a Venus needs to locate a volume, it
queries any server and caches the reply. The cached
information is only treated as a hint, since volumes can
be moved between servers.

The VICE-Venus interface in VICE-II uses unique file
identifiers (fids) rather than full path names. A fid con-
tains a volume number, a key into the volume index,
and an additional field to ensure uniqueness within the
volume. Fids remain invariant across renames and are
therefore the key to making the renaming of directories
possible. The translation of full path names into fids is
done by Venus, which caches each directory encoun-
tered during translation. For robustness, modifications
to directories can only be done by servers. Symbolic
links are also interpreted by Venus.

Cache management is an area where VICE-II differs
conceptually from VICE-I. In VICE-II, Venus may re-
quest a server to maintain a callback when it fetches a
file or directory. If the file or directory is ever modified
by anyone else, the server will inform each Venus with
a callback on it that its cache entry has been invali-
dated. Venus can use cache entries with callbacks on
them without any further validation, thereby cutting
down significantly on client-server traffic. Servers are
free to break callbacks at any time, even if the corre-
sponding files are unchanged. This may happen, for
instance, if a server discovers that it is expending too
much memory or computational resources in maintain-
ing callback state. Clients will revalidate cache entries
as in VICE-I. Caches are still write through in VICE-II,
but the cache replacement algorithm is based on the
total space used by cached files.

VICE-II Status. VICE-II has been in use by the ITC for
about five months and is still in the process of being
debugged. Some of the functions, such as authentica-
tion, are still being integrated into the system. Never-
theless, even our limited experience with this system
confirms its superiority to VICE-I. The ability to have
symbolic links in VICE and to rename directories has
enhanced the usability of the system. The callback
mechanism and the use of a single UNIX process per
server have resulted in marked performance improve-
ment. We have not encountered any UNIX resource
limitation problems with VICE-II, even though we have
about 45 workstations connected to each of two cluster

March 1986 Volume 29 Number 3 Communications of the ACM 193

Articles

servers. The internal structure of the server, RPC, and
Venus, however, is considerably more complex than in
VICE-I and has-made debugging more difficult. A server
process crash is now no longer a matter of a single user
being inconvenienced.

Although much tuning, development, and refinement
need to be done to VICE-II, we are confident that it
represents a sound basis for the evolution of the An-
drew file system.

THE USER INTERFACE
The goal of the ITC in worksta.tion software was to
design and develop tools that allow application devel-
opers to easily exploit the graphics capabilities of work-
stations. A secondary goal was to encourage the
implementation of consistent application-specific
user interfaces. This is particularly important for nov-
ices, who are often overwhelmed by the diversity of
application-specific knowledge they need to effectively
use the system. It was also our goal to explore a variety

of interface paradigms and develop skills in implement-
ing them.

Our efforts have been directed toward three areas:

a window manager that allows multiple processes to
share a bit-mapped display,
packages for manipulation of text and graphics, and
applications using the window manager and the
packages.

Window Manager
The building block for all applications is the window
manager [8]. It virtualizes the display screen, dividing it
into a number of rectangular areas whose size and
shape are under the control of the user. Each window
is attached to a process that can be oblivious to the
presence of other windows and their processes, but
that must be prepared to repaint its own window upon
request.

A basic problem for a window manager is how to

63 Person Years

/‘-i----L

486K Lines of Code

The screen contains five windows. The top of each window Typescript windows have been shrunk to only their title bars.
is a title bar naming the application, its parameter, and the The console window displays various status items. A text
name of the workstation it is running on. The Help and editor and drawing editor consume most of the space.

FIGURE 7. A Screen with Several Windows

194 Communications of the ,4CM March 1986 Volume 29 Number 3

Articles

Deleted Mail

A set of pop-up menus appears in the mail-reading applica-
tion. The various application-specific commands are grouped
into five overlaid cards; sliding the mouse onto a portion of a

card brings it to the top. The fourth card is currently on top,
and the command for retrieving new mail has been selected.

FIGURE 8. Popped-Up Menus in a Mail-Reading Program

mediate between the user and the programs on how
much of the screen is devoted to each program. Most
window managers, for example, the Macintosh, follow
the overlapping window approach in which the win-
dows look like pieces of paper laid on top of each other,
and the user selects the placement and size of each
window. We chose a different approach, based partly
on the Xerox Star [25] and Cedar [32] systems where
the display screen is tiled with nonoverlapping win-
dows. The user can adjust the boundary between win-
dows, and windows can be completely hidden or
quickly shrunk to only a title bar in order to free up
space. Figure 7 shows a screen with several windows,
some of which are only title bars. This scheme has two
advantages: It is easy to program and requires the user
to make fewer detailed decisions about arranging the
screen.

The window manager multiplexes keyboard and
mouse input for the various processes. Keystrokes are
directed to the process whose window holds the mouse
cursor; as feedback, that window always has a black

title bar. The user can communicate with the process
using pop-up menus; depressing a mouse button causes
a set of process-specific commands to be displayed on
small overlaid rectangles. After a command is selected,
the menu disappears as it is,executed. Figure 8 shows a
screen with a set of menus popped up for the mail-
reading program.

The window manager has been in use for two years,
and its user interface has evolved considerably. The
initial window layout policy completely filled the
screen, and windows resized whenever the layout
changed. A new window split the largest existing win-
dow; shrinking or hiding a window caused others to
grow. This was both slow and confusing. We subse-
quently changed things to emulate the Cedar scheme:
The screen is still tiled, but the primary division is a
vertical boundary between two columns of windows,
and gray space appears at the bottom of each column
signifying unused space. Creating, destroying, or alter-
ing a window usually has no affect on other windows,
only on the amount of gray space. The initial menu

March 1986 Volume 29 Number 3 Communications of the ACM 195

Articles

system used hierarchical menus, like Interleaf’s, in
which selecting certain entries revealed submenus.
This became unusable at depths greater than three.
Now menus look like overlaid cards that the user can
riffle through with a mouse movement. Shrinking and
expanding windovvs were initially done through
menus, but now a single click in the headline bar suf-
fices. These changes are the result of extensive experi-
ence with alternative implementations. The trend has
been to provide simpler and more predictable behavior
along with tuning for common operations.

Although we have had doubts about the user inter-
face presented by the window manager and will con-
tinue to improve it, we have been very satisfied with its
basic architecture as seen by the programmer. Figure 9
shows the typical process structure on a workstation,
with a number of client processes communicating with
the window manager. When a window needs to be re-
drawn, the appropriate client process is informed via a
software interrupt. It is the responsibility of that client
process to query the window manager for the new win-
dow coordinates and size, and to make the necessary
low-level calls to the window manager to accomplish
the redrawing of the window. The client process
chooses whether to scale, clip, or recompute the display
in some other way.

This approach was prompted by two circumstances:
The workstations that Andrew would run upon were
an ill-defined set, and our access to kernel sources for
SUNS and other machines was difficult. The outcome is
that the window manager can be run on any Berkeley
UNIX system and is easy to adapt for particular display

=I% . From mouse

To display

.
&d+, From keyboard

Clients Window manager

The window manager controls the screen, keyboard, and
mouse. It is a user process requiring no operajiqg system
privileges and has b~?en carefully written to isolate display
dependencies. Each application is also a process and talks
to the window manager over a socket, a feature of the Berke-
ley UNIX 4.2 release that allows processes to communicate
with streams of bytes.

FIGURE 9. The Window Manager Process Structure

hardware-it has been demonstrated on three different
machines and seven different displays, including color.
People have been able to port it to a new machine with
virtually no communication with the original authors.
Furthermore, the use of sockets for communication
makes it very simple to run applications on multiple
machines while keeping their windows on one. Al-
though this scheme prevents the application programs
from getting at the full power of some displays, the
performance of most interactive programs is surpris-
ingly good. It can paint multifont text on a SUN 120 at
over 4000 characters per second. This is due to three
factors:

l We chose a set of primitives that keeps the most in-
tensive operations such as font management and
pixel-level character placement inside the window
manager.

l We chose pure output operations that need no re-
sponse from the window manager and are batched
before being transmitted via the socket.

l The programmers of the window manager and cer-
tain applications worked very intensely.

The programmers’ interface is simple to understand
and has about 70 different procedures to perform var-
ious functions:

Window control operations create and delete windows,
change the contents of header lines, and request the
current size of a window.
Drawing primitives draw straight and curved lines and
create filled regions. Rasterops on selected rectangles
of the screen can be performed. Pixel coordinates are
used to specify position. The set of graphics primi-
tives is not quite as rich as that found on the Macin-
tosh or in Postscript. We have implemented support
for color, but have not used it extensively.
Text primitives allow the display of a string at any
pixel position in any font. The client names the font,
and the window manager attempts to match it on a
best-efforts basis. A good font representation has been
designed to support performance.
Input operations enable and disable keyboard input,
mouse events in which the process is interested, and
the shape of the cursor. Characters can also be output
to a screen cut buffer or input from it.
Menu operations allow the client to dynamically de-
fine the contents of menus-the contents of the
menus and the actions taken on their selection are
client specific. The client process specifies the items
that are to be in the menu and the character se-
quence that is to be sent to it if that menu item is
selected by the user.
Multiple windows are supported by a set of operations
to select input from and direct output to a particular
window.

The window manager’s procedures can be invoked
from four different programming languages: C, Pascal,
Fortran, and Lisp. Many applications and packages
have been written on top of the window manager in-
cluding a GKS (Graphical Kernel System) package.

196 Communications of the ACM March 1986 Volume 29 Number 3

Packages
Built on top of the window manager is a collection of
data types called the base editor tool kit. In addition to a
programming interface, each data type also possesses a
well-defined user interface: a set of operations that a
user can perform using mouse or keyboard input.

Application programs that use the tool kit exclusively
for their interactions with users are benefited in a num-
ber of ways:

The tool-kit interface is a higher level interface than
the window manager and relieves the application de-
veloper from the many details associated with the
display of justified, multifont text.
The user interfaces of programs that use the tool kit
are more likely to be mutually consistent than those
of programs with independently developed user
interfaces.
It is easier to exploit graphics hardware and to obtain
good performance by carefully tuning the implemen-
tations of a small number of data types than by refin-
ing a larger number of individual application pro-
grams.

The most basic data type in the tool kit is a view,
which corresponds to a rectangular screen region
within which an instantiation of another data type may
be displayed. The latter may be a primitive data type or
a composition of data types. A document is a data type
that may be used whenever text manipulation of any
kind is involved. Documents may range in size from a
short label to an entire file. A view of a document is
essentially a focus of interest on that document. Re-
gions of text within a document may be demarcated
with markers whose specific semantics depend on the
application program. A scroll bar is a data type used in
conjunction with a view of a document and is used to
make different parts of the document visible on the
screen. The tool kit includes a family of data types
referred to as buttons. These are labeled, rectangular
screen objects, each of which is associated with a set of
procedures to be called when a specific event, such as a
mouse click, occurs. Individual members of this family
are used to represent scalar data types such as Bool-
eans, finite sets, and strings.

The tool kit incorporates a layout mechanism, which
deals with the physical placement of instantiations of
data types within a window. Using high-level hints and
placement constraints supplied by the application pro-
gram, this mechanism uses heuristics to determine the
actual sizes and locations of individual items within a
window. When a window is moved or reshaped by the
user, the layout mechanism is responsible for appropri-
ately reconfiguring and redrawing that window.

A second large package, called Grits, supplies per-
sonal database services. A database consists of an arbi-
trary number of records, each of which can contain an
arbitrary set of fields of any size. This flexibility makes
Grits ideal for dealing with relatively unstructured in-
formation. Given the basic corpus of data, one can con-
struct ordered indexes into it. There is a simple query
language available in both library and interactive

March 1986 Volume 29 Number 3

Articles

forms. The program library supports a set of layouts
especially tailored to display individual records and in-
dexes. Grits does not address the problems of locking
records in VICE; related files must be locked in order to
perform updates.

Applications
Many applications that use the capabilities of a bit-
mapped display have been developed using the window
manager and various packages. Many of the early ver-
sions were developed by the ITC, but recently, other
groups at C-MU have assumed a major role in applica-
tion development.

A text editor with dynamic formatting capability is
the most popular application in general use. This editor
is superficially similar to a “what-you-see-is-what-you-
get” (WYSIWYG) editor, but differs from the latter in
that it makes no attempt to produce a replica of a
printed page. Rather, it attempts to format the text as
best it can for the screen-reshaping an editor window
automatically reformats the text to fit the new window.
The appearance of the text is controlled by style direc-
tives in the document representation. Normally, these
directives are invisible, except for their effect-for ex-
ample, making some text bold-but the editor can be
put into a mode that makes all styles explicit in a
Scribe-like notation [19]. The styles in a document can
be generic-a typical style might be “Major Heading.”
The actual appearance of styles can be controlled
through a style editor that allows the user to specify,
for example, that a major heading is centered, six
points larger than its surrounding context, and bold.
Figure 10 (p. 198) shows a document under the control
of a style editor. The document compilers Scribe and
Tex are also available on Andrew workstations. So far,
we have used four different printers to print documents
created on the system.

The standard Teletype driver was replaced by a
typescript application supported by the base editor.
This allows the user access to all normal text editing
operations such as scrolling, cutting, and pasting when
giving commands to the UNIX shell.

Several drawing editors that allow figures and draw-
ings to be created interactively have been written or
imported. They incorporate different paradigms and
such features as constraint solving, automatic scaling,
and animation. Some directory management applica-
tions have also been implemented illustrating several
approaches: iconic symbols for files, directories as text
files, and explicit pictures of trees. None has yet be-
come comprehensive enough to replace the basic UNIX
shell as the tool of choice.

Mail and bulletin-board browsing programs have
been implemented using the base editor tool kit and the
Grits database facilities. They allow the separation of
mail into classes, scanning for particular subjects, etc.

An implementation of the Tutor programming lan-
guage [24] has been nearly completed. Various versions
of Tutor have been used at the University of Illinois
and elsewhere to produce many hours of instructional
material. This latest version, called C-MU Tutor, ex-

Communications of the ACM 197

Articles

cheswic

Cartiegie-.h;leIlon’s Activities

We have focused our wotkxarion efforts almost exclusively on the
creation of general tools for esploiiing a bit-map display and
“lot1se. The building block for all ?qplicarlnns is th? window
manager. It virroalizes the display screen, dividing ir. into a
number of rcrtangular areas whose size and :hnpc is under control
of the user sitting in front of the screen An extensive
fubrout~ne lihary provides the means to structure multi-fonr,

I . 1) --

I__ ,,“. _. _-_

The EditText window QhoWs an editable document, kc,- Styles tool. 0; the right, a Preview window shows the s&-n& ,
6dec.d. whose generic styles are Specified using the Edit- document as it will appear when printed.

FIGURE 10. The Text Editor, Style Editor, and Preview

plaits the facilities of Andrew to create an interactive
graphics-oriented programming environment. Figure 11
shows a Tutor program and the picture it has created.
C-MU Tutor supports a rudimentary form of program-
ming by example: The user can alter the picture in
certain ways and have the program adjusted to produce
the new picture.

EXPERIENCE AND PLANS
Although Andrew was (and is) far from completion, we
deployed it to a small group at C-MU starting in De-
cember 1984. Over 50 SUN .workstations were made
available to people who had an interest in producing
educational software. The workstations are spread
rather uniformly over the campus, appearing in all six
colleges and virtually every academic building. Cur-
rently there are over 500 registered users.

A survey of the user community in the summer of
1985 revealed that users liked the system, and for

many, simply having a personal workstation running a
full UNIX system is the most important thing. The
piece of software most appreciated is the text editor.
The most frequent complaints are that the system is
unreliable and runs too slowly. The former is primarily
due to disk-related hardware failures and resource ex-
haustion that neither the software nor the human sup-
port staff is yet equipped to deal with.

The performance problems are the sort to be ex-
pected of a new system: All the parts still are a little too
slow, and people overuse them in a general spirit of
exploration. For example, relatively mundane utility
programs that probably should be simple shell com-
mands appear as elaborate control panels using several
fonts. The trivial act of resizing the window containing
such a control pane1 can sometimes bring the system to
its knees: The base editor library recomputes the layout
for the window, changing the actual sizes of several
fonts; then the window manager must fetch the fonts

198 Communicatims of the ACM March 1986 Volume 29 Number 3

Articles

from VICE in order to repaint the window. Although
the implementors might enjoy witnessing all this activ-
ity-and are amazed that it works at all-most users
simply get impatient.

Aside from learning hundreds of ways in which An-
drew needed improvement, we also learned that main-
taining a distributed computing system is a formidable
task. Even though our user population is small, it is
widely distributed. Tools for troubleshooting are badly
needed, and a sizable staff is required.

Despite the preliminary nature of the system, many
faculty members have created very interesting applica-
tions in several areas: nonlinear differential equations,
building design, chemical equilibrium analysis, Ameri-
can history, circuit design, scholarly writing, circuit
analysis, and music synthesis. In addition, in February
1984, we began to distribute VIRTUE to other institu-
tions. Over 40 sites have received the source code, un-
der license for experimental use and assessment of its
facilities.

Andrew is currently at the midpoint of its expected

development period. The major past and desired mile-
stones are summarized in Table I (p. ZOO). There are
many other components of Andrew we have begun to
work on or are contemplating:

l It is being ported to other workstations.
l The mail and bulletin-board systems are being over-

hauled and extended.
l Access to VICE over slow communication media is

needed to support remote use.
l Supporting non-VIRTUE workstations, especially IBM

PCs and Apple Macintoshes, is planned.
l A new version of the editor to support text, graphics,

tables, and equations is under way.

l The VICE file system must have an archival subsys-
tem.

l Support for more printers is needed.
l We shall import some key commercial applications

including a spread sheet and a database package.
l We shall move most workstations to the IBM token

ring.

circle 50
draw 70.11”; 200.503 200.170: 70.110
at 70,110
circle zqrr(130+2+ GOr2). angle : = arcran(-60.130)deg. -angle
at 138,106

-Bn~le
250-.5c: ‘loo,170; 4
325.110
m:llu~ = (170.SO)/2
radius-1
angle := 0, 360, 10 $2 from 0 to 360 by IO’s
drxv 359.77.r8dius’cus(angle/deg)+ 325,Indiils’sin(angle/dcg)

The Tutor program in the top of the window has drawn the mouse on some point in the picture, the coordinates of that
picture in the lower part of the window. The typefaces in the point will repl,ace the selected numbers in the program (147,
picture are controlled simply by attaching styles to the corre- 46) and thereby move the lower right corner of the box
spending characters in the program. If the user clicfcs the surrounding the text.

., I

FIGURE 11. Tutor Figure

March 1986 Volume 29 Number 3 Communications of the ACM 199

Articles

CONCLUSION
As mentioned at the beginning of this article, the ITC
was created to design and implement a computing envi-
ronment to serve as a unifying presence in the educa-
tional, administrative, and social life of C-MU. To meet
this challenge, a system representing a synthesis of per-
sonal computing and time-sharing has been designed.
The nature of the problem has necessitated the use of
state-of-the-art techniques in LAN technology, distrib-
uted file system design, and user interface design. Us-
ing existing hardware, a prot.otype has been imple-
mented with a view toward testing our ideas. The ex-
perience to date indicates that the design is fundamen-
tally sound, though refinements are necessary in a
number of areas. As Andrew grows, there will inevita-
bly be many iterations over t.he design and implemen-
tation of various parts of the system.

It is appropriate to ask what is unique and notewor-
thy about the project. The most fascinating aspect is its
scale and diversity of applica.tion. Never before has
there been an attempt to support so many autonomous
computers, each under the control of an unconstrained,
untrained individual. Reliability, performance, and usa-
bility requirements conspire to make the design of such
a system an intellectual challenge of the first magni-
tude. There are several specific areas where we feel we
are advancing the state of the art:

l Machine-independent raster graphics. The design of
the window manager has allowed us to run the work-
station software on three different machine architec-
tures and several different displays. Porting the sys-
tem to a new display can often be done in less than a
day.

TABLE I. Major Milestones in the ITC Project

Oct. 1982

Jan. 1983
July 1983

Aug. 1983
Nov. 1983
Jan. 1984
Mar. 1984

July 1984
Nov. 1984
Dec. 1984

Feb. 1985

Mar. 1985
July 1985
Sept. 1985
Oct. 1985
Dec. 1985

Sept. 1986

Dec. 1986

IBM-C-MU contract signed, establishing
the ITC.

Project starts.
Most hiring, specific goal definitions, and

overall architecture complete.
Development system obtained.
First release of window manager in use.
First release of base editor tool kit available.
First application program using base editor

tool kit available.
File system prototype available for use.
File system redesign begins.
Prototype deployment on the C-MU campus

begins.
Andrew distribution to other campuses

begins.
100 workstations in use.
400 registered users.
Demonstration of faculty-created applications.
Redesigned file system in use by ITC.
Deployment of improved Andrew; 200

workstations in use.
Significant student access; 400 workstations

in use.
Campus recabling complete; token ring in

use.

200 Communications of the ACM March 1986 Volume 29 Number 3

l Large, secure, distributed file systems. As we have dis-
cussed, the VICE file system provides a file service
whose size-functionality product will exceed any
other we know of. The size coupled with the security
constraints has, however, imposed many new prob-
lems.

l Ubiquitous, high-performance text editing. Our multi-
font interactive text editor compares favorably with
the best commercially available ones. It does every-
thing a WYSIWYG editor can be expected to, and
very quickly. Its unique attribute, however, is that it
is available as a library and permits vjrtually all text
handling in the system to use all its features. Mail
systems, interactive programming languages, and
many education applications have used it.

l Mail and bulletin-board systems. Because we see to-
day’s electronic mail and bulletin boards as the fore-
runners of a very comprehensive campus communi-
cation system, we have begun to implement them in
a very general way. At the same time, we must cope
with the bewildering diversity of electronic commu-
nication in the larger world.

In retrospect, it is obvious that a project of this scope
cannot be completed in the nominal 150 person-years
planned for it. Nevertheless, we have not narrowed the
scope, in the belief that an exciting and promising pro-
totype, however flawed, will somehow capture the sup-
port needed to bring it to maturity.

Credits and Acknowledgments. The work described in
this article represents the creative efforts of the entire
staff of the ITC over the past three years. This article
was written by James Morris and Mahadev Satyanaray-
anan with help from James Peterson; the other coau-
thors played significant technical management roles.
Here is a functional summary of contributions to the
system:

l UNIX system support: Robert Cosgrove, David
Rosenthal, Mike Kazar, Carolyn Councill, and Bob
Sidebotham;

l Release management and tools: James Peterson;
l Deployment support: Barry Silverman, Lynn Brown,

and Chris Thyberg;
l Window manager: James Gosling, Bruce Lucas, and

David Rosenthal;
l Text editor and tool kit: James Gosling, Fred Hansen,

and Andrew Palay;
l Graphic design: Dan Boyarski;
l User interface testing: Chris Haas and Sandra Bond:
l Ethernet internetwork: John Leong;
l Token ring development: Don Smith and Bryan

Striemer;
l SNA development: Jon Rosenberg and John Drake;
l Grits database: Tom Peters;
l Mail and bulletin boards: Tom Peters, Bob Cosgrove,

Jon Rosenberg, Nathaniel Borenstein, and Craig
Everhart;

l Printing: Andrew Palay, Mike Conner, and James
Peterson;

Articles

l Graphical editors: Marc Donner, Bruce Lucas, Tom
Peters, and Andrew Appel;

l Directory managers: Fred Hansen, David Nichols,
David Rosenthal, and Tom Peters;

l Distributed file system design: John Howard, Mike
West, Mahadev Satyanarayanan, David Nichols, Bob
Sidebotham, Mike Kazar, and Al Spector;

l File server implementation: Mike West;
l Workstation file manager: Dave Nichols and Mike

Kazar;
l RPC: Mahadev Satyanarayanan and Jon Rosenberg;
l Volume structure: Bob Sidebotham;
l Hardware support: Bryan Striemer, Paul Crumley,

Mark Lorence, Jack Hutchings, and Kris Hutchings;
l IBM PC development: Larry Raper;
l Documentation: Sandra Bond, Carol Janik, Chris

Neuwirth, Diane Langston, and Margot Critchfield;
l General administration: Barry Silverman, Nancy

Rosenthal, Susan Straub, Bob Staab, Michael LoBue,
Susan Parker, and Michelle Langhorne.

Both C-MU and IBM deserve credit for their willing-
ness to chart a course into unknown waters, and for
providing an excellent working environment for the
ITC. In particular, Douglas Van Houweling of C-MU
and Keith Slack of IBM were immediately responsible
for the creation of the ITC, and the setting of its initial
directions. There are few universities that would com-
mit their computing future to such an innovative sys-
tem, and there is probably no other computer company
that would provide so much support without an initial
guarantee of payoff.

REFERENCES
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.
12.

13.

14.

Accetta, M., Robertson, G., Satyanarayanan, M., and Thompson, M.
The design of a network-based central file system. Tech. Rep. CMU-
CS-80-134. Dept. of Computer Science, Carnegie-Mellon Univ., Pitts-
burgh, Pa., Aug. 1980.
Accetta, M. A network router. Dept. of Computer Science, Carnegie-
Mellon Univ., Pittsburgh, Pa., Sept. 1983.
Balkovich, E.. Lerman, S., and Parmelee. R.P. Computering in higher
education: The Athena experience. Commun. ACM 28.11 (Nov.
1985)7214-1224.
Ball, J.E., Barbacci, M.R., Fahlman, S.E., Harbison, S.P., Hibbard,
PG., Rashid, R.F., Robertson, G.G., and Steele, G.L. The Spice Proj-
ect. Computer Science Research Review, Carnegie-Mellon Univ.,
Pittsburgh, Pa., 1981.
Birrell, A.D., Levin, R., Needham, R.M., and Schroeder, M.D. Grape-
vine: An exercise in distributed computing. In Proceedings of the 8th
Symposium on Operafing Systems Principles (Asilomar, Calif., Dec.).
1981.
Brotz, D., and Levin, R. Laurel. In Alto User’s Handbook, B. Lampson
and E. Taft, Eds. Xerox Palo Alto Research Center, Calif., Sept. 1979.
Defense Advanced Research Projects Agency, Information Process-
ing Techniques Office. RFC 791: DARPA Internet Program Protocol
Specification. DARPA, Sept. 1981.
Gosling, J.A., and Rosenthal, D.S.H. A network window manager. In
Proceedings of the 1984 Uniforum Conference (Washington, D.C., Jan,).

J.P., et al. Advanced program-to-program communications in
IBM Syst. [. 22, 4 (Dec. 1983).
J., Starr, R., and Turrof, M. The Network Nation. Addison-

1984.
Gray,
SNA.
Hiltz,
Wesley, Reading, Mass., 1979.
Lampson, B., and Taft, E., Eds. Alto User’s Handbook. Sept. 1979.
Leong, J. Data communication at CMU. Tech. Rep. CMU-ITC-85-043,
Information Technology Center and Computer Center, Carnegie-
Mellon Univ., Pittsburgh, Pa., July 1985.
Leong, J. Nuts-and-bolts guide to Ethernet installation and intercon-
nection. Data Commun. 14, 10 (Sept. 1985).
Metcalfe, R.M., and Boggs, D.R. Ethernet: Distributed packet switch-
ing for local computer networks. Tech. Rep. CSL-75-7, Xerox Palo
Alto Research Center, Calif., May 1975. (Reprinted Feb. 1980.)

15. Nelson, B.J. Remote procedure call. Ph.D. thesis, Dept. of Computer
Science, Carnegie-Mellon Univ., Pittsburgh, Pa., May 1981.

16. Ousterhout, J.K., Da Costa, H., Harrison, D., Kunze, J.A., Kupfer, M.,
and Thompson, J.G. A trace-driven analysis of the UNIX 4.2BSD file
system. In Proceedings of the 10th ACM Symposium on Operating Sys-
tem Principles. 1985.

17. Popek, G., Walker, B., Chow, J., Edwards, D., Kline, C., Rudisin, G..
and Thiel, G. LOCUS: A network transparent, high reliability dis-
tributed system. In Proceedings of the 8th Symposium on Operating
Systems Principles (Asilomar, Calif., Dec.). 1981.

18. Rashid, R.F., and Robertson, G.G. Accent: A communication ori-
ented network operating system kernel. In Proceedings of the 8th
Symposium on Operating Systems Principles (Asilomar. Calif., Dec.).
1981.

19. Reid, B.K., and Walker, J.H. Scribe introductory user’s manual. Dept.
of Computer Science, Carnegie-Mellon Univ., Pittsburgh, Pa., May
1980. -

20. Ritchie, D.M., and Thompson, K. The UNIX time-sharing system.
Bell Sysf. Tech. J. 57, 6 (July-Aug. 1978).

21. Satyanarayanan. M. A study of file sizes and functional lifetimes. In
Proceedings of the 8th Symposium on Operating Systems Principles (Asi-
lomar, Calif., Dec.). 1981.

22. Satyanarayanan, M. RPC user manual outline. Tech. Rep. CMU-ITC-
84-011, Information Technology Center, Carnegie-Mellon Univ.,
Pittsburgh, Pa., 1984.

23. Satvanaravanan, M., Howard, J.H., Nichols, D.N., Sidebotham. R.N.,
Spector. A.Z., and West, M.J. The ITC distributed file system: Princi-
ples and design. In Proceedings of the 10th ACM Symposium on Operaf-
ing System Principles (Dec.). 1985.

24. Sherwood, B.A., and Sherwood, J.N. The MicroTutor Language. Stipes,
Champaign, Ill., 1985.

25. Smith, D.C., Irby, C.. Kimball, R., and Harslem. E. The Star user
interface: An overview. In Proceedings of the National Computer Con-
ference. 1982.

26. Smith, S., and Sherwood, B.A. Educational uses of the PLATO com-
puter system. Science 192 (1976).

27. Sproull, L., and Kiesler, S. Reducing social context information: The
effects of electronic mail on organizational communication. Dept. of
Social Science, Carnegie-Mellon Univ.. Pittsburgh. Pa., Oct. 1985.

28. Strole, N. A local communications network based on interconnected
token-access rings: A tutorial. IBM 1. Res. Den 27, 5 (Sept. 1983).

29. Svohodova, L. File servers for network-based distributed systems.
Compuf. Sum 16,4 (Dec. 19841, 353-398.

30. Technical Committee Computer Communications of the IEEE Com-
puter Society. IEEE Standards for Local Area Networks: Token Ring
Access Method and Physical Layer Specifications (ANSI/IEEE Sfd 802.5-
1985). The Institute of Electrical and Electrical Engineers, 1985.

31. The Task Force for the Future of Computing, A. Newell, Chairman.
The future of computing at Carnegie-Mellon University. Available
from authors.

32. Teitelman, W. A tour through Cedar. IEEE Softw. I, 4 (Apr. 1984).
33. Thacker, C.P., McCreight, E.M., Lampson, B.W., Sproull, R.F., and

Boggs. D.R. Alto: A personal computer. In Computer Sfrucfures: Prin-
ciples and Examples, D.P. Siewiorek, C.G. Bell, and A.N. Newell, Eds.
McGraw-Hill, New York, 1982.

34. West, M.J., Nichols, D., Howard, J.H., Satyanarayanan, M., and Side-
botham, R.N. The ITC distributed file system: Prototype and experi-
ence. Tech. Rep. CMU-ITC-040. Information Technology Center,
Carnegie-Mellon Univ., Pittsburgh, Pa., 1985.

CR Categories and Subject Descriptors: C.0 [General]: systems archi-
fecfure; C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design: C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems: C.2.5 [Computer-Communication Networks]: Local
Networks: H.1.2 [Models and Principles]: User/Machine Systems: H.2.4
[Database Management]: Systems

General Terms: Design
Additional Key Words and Phrases: Andrew, Information Technol-

ogy Center

Authors’ Present Address: James H. Morris, Mahadev Satyanarayanan,
Michael H. Conner, John H. Howard, David S.H. Rosenthal, and F.
Donelson Smith, Information Technology Center, Carnegie-Mellon Uni-
versity, Schenley Park, Pittsburgh, PA 15213.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

March 1986 Volume 29 Number 3 Communications of the ACM 201

