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The Information Technology Center (ZTCJ, a collaborative effort between 
IBM and Carnegie-Mellon University, is in the process of creating Andrew, 
a prototlype computing and communication system for universities. This 
article traces the origins of Andrew, discusses its goals atid strategies, and 
gives an overview of the current status of its implementation and usage. 
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In October 1982, Carnegie-Mellon University (C-MU) 
and IBM agreed to create the Information Technology 
Center (ITC), an organization consisting of about 39 
people, with the task of designing and developing com- 
puting technology to support C-MU’s needs by the fall 
of 1986. Ten members of the organization would be 
IBM employees on assignment, and the system-named 
Andrew, after two benefactors of C-MU, Andrew Carne- 
gie and Andrew Mellon-would be based partly on IBM 
hardware. 

Several other organizations were assigned formidable 
and complementary activities: The Computation Center 
would deploy and maintain the system, the Center for 
Development of Educational Computing would facili- 
tate the production of course-related software, and 
IBM’s Academic Information Systems independent 
business unit would develop and market related and 
derived IBM products. 

The project will affect university education in four 
main areas: 

l Computer-aided instruction. For many years, some 
pioneering institutions have used computers to de- 
liver instruction. Perhaps the largest effort is the 
Plato Project [26] at the University of Illinois where 
over 10,000 hours of course material have been de- 
veloped. We expect the presence of ubiquitous and 
powerful graphics workstations to greatly stimulate 
efforts to develop computer-aided instruction-pro- 
ducing computer-animated demonstrations is a new 
art, and the universi.ty is well poised to develop it. 

l Creation and use of new tools. A research university 
like C-MU is just as devoted to improving the meth- 
ods of professional work as to teaching them. A pro- 
fessor’s research on a new tool can often be aided by 
teaching it, while students form a good set of users 
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and sometimes assist in the creation of new software. 
Virtually every department at C-MU is pursuing the 
development of computer tools. Beyond the expected 
activity in engineering and science, there are also 
developments in writing, historical research, social 
science, music, painting, psychology, and many other 
fields as well. 

l Communication. With every member of a university 
community plugged into a smoothly operating com- 
munication system, one can expect far-reaching ef- 
fects [lo, 27, 311. Class discussions held on a com- 
puter bulletin board will last longer, involve more 
participants, and allow time for more reflection and 
analysis. The use of graphics, formula manipulation, 
and automatic typesetting can improve the form and, 
indirectly, the content of much of our communica- 
tion. We do not expect computer-mediated communi- 
cation to supplant the more traditional methods, but 
it will broaden and deepen the community’s ability to 
communicate. 

l Information access. A mark of tomorrow’s profes- 
sional will be the ability to navigate in large informa- 
tion repositories. A university’s primary database is 
its library of books and journals, and our communica- 
tion system will provide better access to it. In addi- 
tion, it will provide access to the growing number of 
worldwide databases. Finally, we expect universities 
to develop extensive new databases devoted to partic- 
ular courses and areas of specialization. 

(See a recent paper from M.I.T.‘s Project Athena [3] for 
a more extensive catalog of possibilities.) 

THE TECHNICAL FORERUNNERS OF ANDREW 
The Xerox Alto System [ll] has been a powerful inspi- 
ration for our system, which is based on four key com- 
ponents: personal computers, raster graphics, high band- 
width networks, and time-sharing file systems. 
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Personal Computing 
The era of personal computing was ushered in by the 
introduction of stand-alone microprocessor-based com- 
puters by companies such as Apple and IBM. The iden- 
tifying characteristic of this class of machines was their 
cost-they had to be affordable to small businesses and 
individuals. This constraint and the available technol- 
ogy dictated the architecture, hardware implementa- 
tion, and software aspects of these machines; and thus 
floppy disks, 8-bit data paths, character displays, and 
Basic were the order of the day. From a user’s point of 
view, the major real difference between using such a 
machine and using a time-sharing system was the fact 
that the performance of the former was constant and 
predictable, unaffected by the activities of other users. 

Raster Graphics 
The designers of the Alto [33] realized that, once a 
terminal was replaced with a powerful computer, 
higher bandwidth between the computer and its user 
could be exploited to present information in a signifi- 
cantly more appealing way. Integral to the design was a 
pixel-addressable display mapped into main memory, 
and a pointing device (a mouse). The software for this 
machine treated the screen as a two-dimensional col- 
lage of text and graphical images rather than a one- 
dimensional string of text. Small graphical icons were 
used to symbolize actions or states, and mouse move- 
ments and button clicks rather than key strokes were 
used to communicate with the machine. The model of 
human-machine communication first demonstrated in 
this project has now come to be accepted as highly 
desirable, particularly for novices. 

High Bandwidth Communications 
In moving away from time-sharing to personal comput- 
ing, it would indeed be unfortunate if users lost the 
ability to communicate among themselves. Normal 
asynchronous communication at kilobit rates has been 
a bottleneck when transferring files or doing anything 
besides interacting with a time-sharing system. Local- 
area networks (LANs) provide megabit rate communi- 
cation. Originating with the Ethernet [14] in the Alto 
project, the linking of workstations by a LAN has be- 
come standard practice in laboratory environments. 
LANs make possible the shared use of relatively expen- 
sive peripherals such as large disks, laser printers, and 
tape drives, and small files can be transferred between 
machines with hardly noticeable delays. 

Time-Sharing File Systems 
An unexpected benefit of time-sharing was the use of 
computers as a vehicle for communication among 
users. Sharing of information via a common file system 
is now taken for granted. In fact, there are many users 
for whom the communication and information-sharing 
aspects of a computer are far more important than its 
computational capability. 

In a time-sharing environment, cooperation between 
users is particularly simple because of the existence of 
common logical name spaces. For example, two users 
who are sharing a file refer to it using the same name; 

the physical locations at which they are logged in are 
immaterial. As another example, mail from one user to 
another need only specify the recipient’s name; no in- 
formation need be given about the terminal at which 
the latter will log in to read mail. 

Although a networked personal computing environ- 
ment provides connectivity, it does not automatically 
imply the same ease of sharing. Each workstation in 
such an environment has a unique network address 
that has to be specified when accessing files. In addi- 
tion, explicit user actions are usually required to 
achieve sharing: Before using a file, a user must run a 
program to transfer it to the network node where he or 
she is currently located; changes made by that user are 
not visible to other workstations until the modified file 
has been transferred to them or to a central repository. 
User mobility is also limited-one cannot create a file 
at one workstation, walk to another workstation, and 
access the file with the effortlessness that is possible 
when using geographically separated terminals of a 
time-sharing system. 

BASIC DECISIONS 
The computing paradigm envisioned in Andrew is a 
marriage between personal computing and time- 
sharing. It incorporates the flexibility and visually rich 
user-machine interface made possible by the former, 
with the ease of communication and information- 
sharing characteristic of the latter. This model is de- 
picted in Figure 1 (p. 186). 

The VICE-VIRTUE interface has two distinctive 
characteristics: 

1. If is a relafively sfafic programming inferface. En- 
hancements to this interface will typically be made 
in an upwardly compatible manner. This allows ad- 
vances in technology to be taken advantage of, 
without systemwide trauma. A new type of work- 
station will require some software development to 
integrate it with VICE. However, existing worksta- 
tions will not be affected in any way. In the long 
run, therefore, one can expect a situation where 
nonhomogeneous workstations are attached to 
VICE, but will share its resources in a uniform 
manner. 

2. If is the boundary of trustworthiness. All computing 
and communication elements within VICE may be 
assumed to be secure. This guarantee is achieved 
through physical and administrative control of 
VICE computers. No user programs are executed in 
VICE, and it is therefore an internally secure envi- 
ronment. Workstations, however, are owned by in- 
dividuals who are free to modify their hardware 
and software in any way they wish. Encryption- 
based authentication and transmission will be 
used to ensure the security of VICE-VIRTUE 
communication. 

Workstation Hardware 
The model we chose for our personal computer was 
much more powerful than any existing one. The C-MU 
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The amoebalike structure in the middle, called VICE, is a 
collection of communication and computational resources 
serving as the backbone of a user community. Individual 
workstations, called VIRTUES, are attached to VICE and pro- 
vide users with the computational cycles needed for actual 
work as well as a sophisticated user-machine interface. 
(VICE stands for “Vast, Integrated Communications Environ- 
ment”; VIRTUE, for “Virtue is reached through UNIX@ and 
EMACS.“) 

FIGURE 1. VICE and VIRTUE 

Computer Science Department had created a carefully 
thought-out machine specification for its Spice Project 
[4] that included such advanced requirements as a 
million-instruction-per-second processor, a bit-map dis- 
play with a million pixels, virtual memory, a megabyte 
of real memory, and a LAN connection. They predicted, 
accurately, that such machines could be had for 
$10,000 in the mid eighties; so it seemed that subse- 
quent price reductions would make it an affordable ma- 
chine for students a few years later. 

Although we agreed on the ki.nd of workstation that 
was needed, IBM had no such product. Laboratory pro- 
totypes existed, but were not ready to be used at C-MU. 
We chose the SUN workstation as our development ma- 
chine since it had most of the characteristics of a Spice 
machine. At the time (April 1983) SUNS had barely 
started production, so we suffered through some of 
their growing pains, but have been generally happy 
with the decision. 

A decision we have yet to make relates to the use of 
disk storage. There are many reasons to dislike work- 
stations with hard disks: They are expensive, power 
consuming, noisy, and subject to failure. A floppy disk- 
based system was obviously unable to support virtual 
UNIX is a trademark of AT&T Bell Laboratories. 

In choosing such a powerful workstation and a 
virtual-memory, multiprocessing operating system, we 
distanced ourselves from the mainstream personal com- 
puting world-IBM PCs and Apple Macintoshes. Given 
IBM’s sponsorship of the project, it might seem obvious 
that we should have based our system on IBM PCs. 
Why didn’t we? First, the PC does not have very good 
support for raster graphics, one of our key criteria. Sec- 
ond, while the commercial world of PCs is character- 
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memory, but the SUN system and others had proved 
that it was feasible to use a LAN to deliver pages to a 
workstation from a dedicated, shared disk server. Nev- 
ertheless, we have not committed to diskless worksta- 
tions as a basic strategy because of several considera- 
tions: 

l It would have led to a fundamentally less-robust sys- 
tem design; if the network were down or overloaded, 
the workstations would be unusable. Diskless ma- 
chines greatly increase traffic on’the network, a cen- 
tral resource that might be hard to augment. 

l When the cost of a disk server was amortized over 
the machines it c:ould support well-about 10 for 
SUNS-the costs were about the same as providing 
each workstation with its own disk. 

l It seemed unrealistic for an individual to purchase a 
machine that would only work when it was on the 
C-MU campus. Some of the C-MU community works 
off campus, out of reach of high bandwidth commu- 
nications; and students who live on campus are ac- 
tually in residence for barely half the year. 

l Paging over an open network theoretically precludes 
most schemes for guaranteeing privacy. 

l The ITC runs a mixture of workstations, some with 
disks and some without. Workstations with disks are 
much preferred because the performance is perceived 
as better and less variable. 

Operating System 
We chose the Berkeley UNIX operating system [ZO] for 
several reasons: It was a well-defined standard, had 
several advanced features, and was well liked by many 
developers in the university environment. One of the 
most important features was that it was portable: This 
made it possible to develop Andrew on one machine 
and move it to others. C-MU’s Accent operating system 
[18] had some superior technical features, but was not 
fully developed and not demonstrably portable. The 
MS-DOS environment, which was to become the de 
facto standard for commercial personal computing, did 
not offer a programmers’ environment that was as good; 
it lacked multiprocessing features and virtual memory, 
and was portable only among PC clones. In retrospect, 
this decision was a good one in that it has allowed 
rapid development and gives our system access to a 
variety of workstations. Nevertheless, it has made the 
system rather large and expensive relative to the goal of 
providing it on inexpensive student workstations. Our 
hope is that the rising tide of hardware technology will 
solve this problem if we can avoid raising our ambi- 
tions along with it. 
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ized by a small number of vendors producing software 
for a huge, nonprogramming consumer base, we expect 
a high percentage of C-MU’s population to engage in 
software development at some level. Therefore, pro- 
grammer comforts such as virtual memory and a good 
programming environment are important. Many of the 
faculty at C-MU use powerful workstations in their 
research; it seems more likely that good educational 
software and tools will result if the students use a simi- 
lar machine. Finally, it seems that the personal com- 
puting industry will move to computers and operating 
systems with just the technical characteristics we have 
chosen. We expect to see a convergence of the personal 
computer and the engineering workstation in the next 
few years. When this happens, we expect all the com- 
mercially available software to be available to our sys- 
tem as well. 

components: network communication, the shared file 
system, and the user interface on an individual work- 
station. The next three sections of this article examine 
each of these topics. 

NETWORK COMMUNICATION 
The design strategy that has been chosen exploits local- 
ity of reference to reduce network and server utiliza- 
tion. Viewed at a finer granularity than Figure 1, VICE 
is composed of a collection of semiautonomous clus- 
ters connected together by a backbone LAN. Figure 3 
(p. 188) illustrates such an interconnection scheme. 

The wiring of the campus with the IBM cabling sys- 
tem is expected to be completed by the end of 1986. 
The plans call for the use of a token ring network de- 
veloped at IBM [28] and conforming to the IEEE Stan- 
dard 802 [30]. 

Communications Paradigm 
The ITC aspires to interconnect over 5000 workstations. 
An academic environment requires a large amount of 
information sharing: a high degree of user mobility be- 
tween dormitories, faculty offices, libraries, and labora- 
tories is essential. It was therefore important to choose 
the central communications model carefully. 

The Current Reality 

We chose to emulate a time-sharing file system in 
which each workstation would appear to be sharing a 
single large file system. This model was easy to grasp 
and had clear advantages over the ambitious ones pre- 
sented by the telephone system and electronic mail sys- 
tems. We considered technically more ambitious para- 
digms such as a distributed database system, but re- 
jected them since the pace and content of communica- 
tion at a university do not require the interconnected 
structure of most database systems. Most of the infor- 
mation used by a university is in the form of papers, 
memos, and computer programs. Thus, it seemed ac- 
ceptable to make the unit of shareable information a 
file and to record changes centrally every few seconds. 

C-MU already had a large number of Ethernets and a 
few ProNets installed by 1983. As it became apparent 
that the plan outlined above was going to take consid- 
erable time to implement, we decided to build our sys- 
tem on top of these existing networks, interconnecting 
them and buttressing them where needed. Aside from 
reducing the apparent effort, it would give an Andrew 
workstation access to many other machines on the 
campus immediately without having to construct gate- 
ways. 

The facility for interconnecting networks was already 
at hand in the form of router machines [2]-PDP/lls 
programmed by the computer science department- 
that allowed physical interconnection of different net- 
work technologies and supported a simple broadcast 

VICE provides a common name space for files. Users 
may thus access files in a uniform manner regardless of 
the specific workstations at which they are logged in, or 
where the files were created originally. Most other 
shared facilities, such as mail, bulletin boards, and 
printing, can be built on top of VICE, obviating the 
need for machine or location-specific information. One 
requests a service by leaving a request file in a desig- 
nated directory. Software in each VIRTUE workstation 
makes these facilities of VICE appear as a transparent 
extension of that workstation’s operating system. 

VIRTUE 
applications 

support 

I VICE file 
system 

communication 

C-MU’s relatively small campus and localized stu- 
dent residences allowed us to choose high-bandwidth 
communications (4 to 10 Mbits per second) as the nor- 
mal mode of operation. Nevertheless, we find it neces- 
sary to support slower communications as a secondary 
goal since faculty and graduate students often work off 
campus. 

System Components 

fie system structure of Andrew was chosen to allow multi- 
ple options to be tried for each component, either simultane- 
ously or through time. Any workstation that can support 
Berkeley UNIX can be used to run VIRTUE. There are no 
hard dependencies between the file system and the user 
interface; each has been used without the other. Multiple 
network implementations are possible. 

Figure 2 shows the major components of Andrew. The 
1TC development effort has focused on three of these FIGURE 2. The Components of Andrew 
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Each cluster consists of a collection of workstations and a 
representative of VICE called a cluster server. The bridges 
that connect individual clusters to the backbone serve both 
as routers and as traffic filters. The routing capability of 
these elements provides a uniform network address space 
for all nodes, obviating the need for any end-to-and routing 
by servers and workstations. 

FIGURE 3. VICE Fine Structure 

protocol to allow one machine to rendezvous with any 
other. 

The Computation Center had already managed the 
installation of fiber-optic cables connecting all the aca- 
demic buildings. Using various products from DEC, 
Ungermann-Bass, and American Photonics, we ex- 
tended several of the Ethernets over the fiber so that 
they could have a representative router machine in a 
common building, the University Computation Center. 
By connecting those routers to a common Ethernet, we 
quickly created an internetwork containing over 600 
machines. Figure 4 s:hows the current campus internet. 

Remarkably, this network came about through the 
voluntary cooperation of several different departments 
and centers of the university. In a world where it is not 
unheard of for single academic departments to disagree 
about a basic network, C-MU has been particularly for- 
tunate in being able to manage this. Further informa- 
tion about the network may be found in [12] and [13]. 

This ad hoc networking tactic has allowed us to get 
started quickly; Andrew workstations can communi- 
cate with many other computers at C-MU today. Never- 
theless, it will not suffice for the long term. Network 
reliability is often perceived to be a problem, and 
troubleshooting is complicated because many different 
organizations own pieces of the net and routing ma- 
chines. The simple broadcast method of machine ren- 
dezvous will need refinement lest it exhaust some re- 
source. Even a single Ethernet can present mysteries if 
it has not been laid out with a plan for maintenance. 

On the brighter side: This tactic exposed us to the 
maintenance implications of a campuswide network 
early in the project. 

Network Protocols 
Experience with networking over the last decade has 
shown the importance of using standardized communi- 
cation protocols for intermachine communication. Pre- 
cisely what protocols are used is far less important than 
the fact that all interconnected machines use the same 
protocol. 

Prior to the inception of Andrew, many of the depart- 
mental mainframes at C-MU used the DARPA Internet 
Standard protocols [7] for communication. Owing to its 
sponsorship by the U.S. Department of Defense, this 
protocol family has become the lingua franca of the 
Arpanet user community, of which C-MU is an active 
member. Further, the Berkeley UNIX operating system 
already has implementations of these protocols built 
into it. Consequently, we adopted the TCP/IP protocol 
family as our standard. 

High-level communication between VICE and 
VIRTUE is based on a client-server model using remote 
procedure calls (RPCs) for transfer of data and control 
[15]. An RPC subroutine package has been imple- 
mented on top of the Internet protocols [ZZ]. The dis- 
tinctive features of this package are the following: 

The transfer of bulk data objects, such as files, as 
side effects of RPCs. This capability is used exten- 
sively in the file system for caching of files at work- 
stations. 
Built-in authentication facilities that allow two mu- 
tually suspicious parties to exchange credentials via 
a three-phase encrypted handshake. This mecha- 
nism will be used by servers in VICE to authenti- 
cate users. 
Optional use of encryption for secure communica- 
tion, using session keys generated during the au- 
thentication handshake. 

In order to communicate with various future IBM 
systems, we implemented SNA (in particular, Logical 
Unit Type 6.2 [9]) under UNIX. We currently use this 
package to communicate with IBM 3820 laser printers. 

THE SHARED FILE SYSTEM 
Network file systems have been the subject of investi- 
gation in a number of projects over the last few years 
[l, 17, 291. These designs have typically been intended 
for networks with at most a few hundred nodes. With 
our ambition to span an order of magnitude more 
nodes, we felt it essential to approach the design from 
first principles. We had little confidence that an adapta- 
tion of an existing design would prove adequate to the 
task. 

The description of the Andrew file system is in two 
parts. Pages 189-191 describe the basic architecture, 
whose rationale has been discussed elsewhere [23]. 
Pages 191-194 then provide details of the implementa- 
tion and usage experience with this system. More de- 
tails on this aspect of Andrew may be found in [34]. 
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Naming 
From the point of view of application programs on 
workstations, the space of file names is partitioned into 
two subspaces: local and shared. Figure 5 (p. 190) illus- 
trates this partitioning. In practice, almost all files ac- 
cessed by users are in the shared name space. Conse- 
quently, users can move at will from one workstation 
to another and continue to see a consistent image of 
their files. Both the local and shared name spaces are 
hierarchically structured and are similar to a time- 
sharing UNIX file system. In UNIX terminology, the 
local name @ace is the root file system of a workstation, 
and the shared name space is mounted on the node 
“/emu” during workstation initialization. Figure 6 

(p. 190) depicts this situation, 
UNIX expects to find system files in its local name 

space. Through the use of symbolic links, however, we 

have been able to place the vast majority of system files 
in the shared name space. For example, on a SUN 
workstation, the local directory /usr/local/bin is a sym- 
bolic link to the remote directory /cmu/unix/sun/usr/ 
local/bin; on a VAX, /usr/localjbin is a symbolic link to 
/cmu/unix/tiax/usr/local/bin. In this way, accesses to 
most common system files are automaticaIly translated 
to remote accesses. This greatly reduces the amount of 
disk space required locally and simplifies the distribu- 
tion of new releases of system software. As indicated in 
the example, symbolic links are also of value to us in 
supporting diversity in workstation hardware. 

Intercept and Caching 
Entire files are cached on demand at workstations. 
When an application program makes a system call to 
open a file, the request is first examined by the work- 

/ / -_-- 

L&end 

03 Router machine - - - - ProNet 
- Ethernet @ Number of 
& Fiber-optic link Andrew workstations 

The current campus internet contains 17 Ethernets and 2 
ProNet rings linked by interbuifding fiber-optic cables and 
routing computers. Over 600 computers can communicate 
on this internet using DARPA protocols, afthough only 120 
are VfRTUE workstations. The backbone is the net marked 

UCC. iwd duster servers on the net. marked IfC serve 
about 60 madhines attached to that net. Four cluster servers 
on the backbone support another 60 workstations scattered 
over all the other nets. 

FIGURE 4. The Current C-MU Internet 
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FIGURE 5. Shared and Local Name Spaces 

station operating system to determine whether the file 
is local or shared. In the former case, the open request 
is satisfied exactly as in a stand-alone system. For a 
shared file, the request is relayed to a local process, 
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FIGURE 6. A Workstation’s View of the File System 

Venus, running on behalf of the file system. Venus man- 
ages the local cache and the communication with the 
remote file server. For an open of a shared file, Venus 
checks the cache for the presence of a valid copy. If 
such a copy exists, the open request is treated as an 
open request to the cached copy. If the file is not pres- 
ent in the cache, or if the copy is not current, a fresh 
copy is fetched from the appropriate file server. All 
these actions are transparent to application programs: 
They merely perform a normal file open. 

After a file is opened, individual read and write oper- 
ations on a shared file are directed to the cached copy: 
No network traffic is generated on account of such re- 
quests. On a close request, the cached copy is first 
closed as a local file; if it has been modified, the up- 
dated copy is then transmitted to the appropriate file 
server. The cache thus behaves as a write-through 
cache on closes. 

The caching mechanism allows complete mobility of 
users with minimum performance penalty. If users 
place all their files in the shared name space (the de- 
fault), their workstations become “personal” 041~ in the 
sense that they are owned by them. Users can move to 
any other workstation attached to VICE and use it ex- 
actly as they would use their own workstation. The 
only observable difference would be an init.ial perfor- 
mance degradation as the cache on the new worksta- 
tion is filled with the users’ working sets of files. 

The caching of entire files, rather than portions of a 
file, also has a beneficial effect on performance. Net- 
work overheads are minimized because servers are 
contacted only on file opens and closes, and not on 
individual reads and writes. Cache management on 
workstatiohs is also simplified, since there are far fewer 
files than pages of files. To be successful, whole-file 
transfer requires that each workstation possess ade- 
quate secondary storage to cache a typical user’s work- 
ing set of files. Whether this is provided by a disk phys- 
ically associated with the workstation or is provided by 
a disk server is an issue that is orthogonal to the design 
presented here. For reasons mentioned earlier, we pre- 
fer to use workstations with local disks. 

Inevitably, there are some files that are far too large 
to fit in workstation caches. These are typically data- 
bases, such as the on-line card catalog of the university 
library. The current design does not address this class 
of files; separate mechanisms for accessing such data- 
bases have to be developed. Except in such cases, ac- 
tual usage experience has shown that the need to cache 
entire files is not a problem. We have been able to 
accommodate files up to a few megabytes in size with- 
out any serious difficulties. Studies of file usage pat- 
terns in real systems have, in fact, shown that most 
files tend to be small [16, 211. 

Data Location and Replication 
Each cluster server in VICE runs a file server process 
that supports operations such as storing and retrieving 
files in response to requests from Venii on worksta- 
tions. The hierarchical file name space is partitioned 
into disjoint subtrees, and each such subtree is served 
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by a single server, called its custodian. Storage for a file, 
as well as servicing requests for it, is the responsibility 
of the corresponding custodian. Changing the custodian 
of a subtree is a relatively heavyweight operation: The 
design is predicated on the tissumption that such 
changes do not occur on a minute-to-minute basis. 

Certain subtiees that contain frequently read, but 
rarely modified, files may have read-only replicas at 
other cluster servers. Such read-only copies are created 
by a process called cloning, initiated by system adminis- 
trators. Read-only copies are typically created for sys- 
tem files, in order to enhance availability and to evenly 
distribute server load. 

Each server contains a copy of a fully replicated loca- 
tion database that may be queried by Venii to ascertain 
the custodian of any file. The size of this replicated 
database is relatively small because custodianship is on 
a subtree basis: If all files in a sdbtree have the same 
custodian, there need only be an entry foi the root. The 
location database changes relatively slowly for two rea- 
sons. First, most file creation and deletion activity oc- 
curs at depths of the naming iree far below that at 
which the assignment of custodians is done. Second. 
reassignment of custodians is infrequent and is initiated 
via administrative procedures. Consequently, a special- 
ized propagation mechanism that slowly updates custo- 
dianship information at all servers is feasible. 

For performance reasons, the assignment of custodi- 
ans to files is done in a way that maximizes the proba- 
bility that a user’s workstation and custodian cluster 
server are on the same cluster. Faculty members, for 
instance, would be assigned a custodian on the same 
cluster server as the workstation iri their offices. This 
assignment does not affect their mobility, since work- 
station caching would allow them to transparently ac- 
cess their files from any other cluster. 

Security 
Security is a matter of serious concern to tis since indi- 
viduals may tamper with the hardware and software on 
workstations they own, and since it is not feasible to 
guarantee the integrity of an interconnecting network 
that spans the entire campus. Consequently, our design 
is not predicated on the trustworthiness of either the 
woikstations or the network. In this respect, Andrew is 
fundamentally different from other distributed file sys- 
tems reported in the literature. 

We attempt only to safeguard against the unautho- 
rized release or modification of information and do not 
attempt to prevent instances where legitimate users are 
denied resources. The latter situation can arise, how- 
ever, when malicious users modify their workstation to 
flood the network with packets. We believe that peer 
pressure and social mores are the only effective deter- 
rents in such situations. 

When a user initiates activity at a workstation, 
VIRTUE authenticates itself td VICE on behalf of that 
user. After authentication, all future communication on 
behalf of that user is encrypted with a key generated 
at the beginning of each session. Authentication and 
secure transmission are supported by the underlying 

RPC package. At the present time, these functions are 
operational, but await integration. We are also awaiting 
the installation of hardware encryption devices on the 
workstations. Encryption, which we believe to be an 
indispensable building block for secure distributed 
computing, has been made relatively inexpensive by 
VLSI technology. 

VICE uses access lists to protect data stored in it. 
Entries on an access list are from a protection domain 
consisting of users and groups. which are collectiorts of 
hsers and other groups. Information about users and 
groups is stored in a protection database that is repli- 
cated at each cluster server. The users rights on a pro- 
tected object are the union of the rights specified for all 
the groups they belong to. either directly or indirectly. 
Access lists are associated only with directories. Files 
within a directory may be individually protected 
against access or modification. but it is not possible to 
specify selective access to different individuals. 

Mail, Printing, and External Communication 
The basic architecture of the file system has simplified 
support for services such as mail and printing. There is 
no need for special servers to sbool anything as long as 
the sender and receiver of information are both clients 
of VICE. The mail-transport mechanism is trivial. Each 
user has a subdirectory called “mailbox” of his or her 
home directory. Sending the user mail simply consists 
of storing a file in the mailbox. Although it is clear that 
one can build an excellent mail system without basing 
it on a file system [5. 61, we feel that interleaving its 
functions with a file system will make it more useful. 
Similarly, spooling a file for printing oh a particulai’ 
printer consists of putting a directive in a subdirectory 
it owns, and pointing to a file iri one’s own directory. 
The flexible, access-list-based protection system makes 
these operations possible. For example, one’s mailbox 
allows anyone to insert files, but allows only the owner 
to read files. Official bulletin boards can be achieved by 
allowing anyone read access, but only officials are al- 
lowed write access, to a particular subdirectory. 

This simple structure is of no help. however, when 
one wants to communicate with non-Andrew users at 
C-MU or elsewhere; we use standard file transfer pro- 
grams (FTP) and mail gateways to cope. For example. to 
stoi-e a file in VICE from any machine on campus one 
cari perform an FTP to any Andrew workstation, as- 
suming one has a valid password. 

Implementation and Experience 
The Andrew file system has gone through the normal 
developmental stages of architecture, prototype, experi- 
ence, and refinement. In this section, we describe the 
evolution of the Andrew file system, paying particular 
attention to our experiences with it, and the lessons we 
have learned from its design and implementation. 

The high-level architecture and key design decisions 
such as caching and whole-file transfer that were pre- 
sented earlier were determined quite early in the de- 
sign. We built a prototype, VICE-I, to deiermine the 
viability of this architecture. This system was deployed 
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to a user communit,y of about 400 users with access to 
about 100 workstations. Based on our experience with 
VICE-I, we refined the basic architecture and produced 
a completely new implementation called VICE-II. Both 
VICE-I and VICE-II were built Ion top of the UNIX oper- 
ating system; but, because users cannot log in to file 
servers directly, we retain the option to reimplement it 
in any environment we like. We have used SUNS and 
VAXes as file servers, each with two or three LOO- 
Mbyte disks. 

The following section describes the implementation 
of VICE-I, while the section following that discusses 
what we learned from it. The succeeding sections will 
then describe the implementation and status of VICE-II. 

VICE-I Implementation. In VICE-I, a client would ren- 
dezvous with a server process listening at a well-known 
network address on a cluster server. This process then 
forked a dedicated process to d’eal with all future re- 
quests from the client. The dedicated process vanished 
when its client terminated the connection to it. In 
steady state, therefore, a VICE-I cluster server operated 
with at least as many server processes as there were 
active clients. Since UNIX does not allow sharing of 
address spaces between processes, locking was imple- 
mented by a dedicated lock server process that serial- 
ized requests from the dedicated server processes and 
maintained a lock table in its address space. All other 
sharing between the latter processes took place via files 
in the underlying file system. 

Data and VICE status information were both stored in 
files. Each server contained a UNIX directory hierarchy 
exactly mirroring the structure of the VICE files stored 
on it. VICE file status information, such as access lists, 
was stored in shallow directories called aimin directo- 
ries. The directory h.ierarchy contained stub directories 
to represent portions of the VICE name space that were 
located on other servers. The location database that 
maps files to custodians was thus embedded in the file 
tree in VICE-I. If a file were not on a server, the search 
for its name would end in a stub directory that identi- 
fied the custodian for the file. Below the top levels of 
the VICE naming tree, files in the same subtree are 
likely to be located on the satne custodian. Hence 
clients cached path-name prefix idformation and used 
this as the basis of a heuristic to direct file requests to 
appropriate servers. 

In VICE-I, the VICE-Venus interface named files by 
their full path name. There was no notion of a low- 
level name, such as the lnode in UNIX. A rudimen- 
tary form of read-only replication, restricted to the top- 
most levels of the VICE name tree, was present. Each 
replicated directory had a single server site to which 
all updates were directed. An asynchronous slow- 
propagation mechanism reflected changes made at 
this site to the read-only replicas at all other sites. 

All cache entries were considered suspect in VICE-I. 
Before using the cached copy of a file, Venus would 
verify that its time stamp matched that of the copy on 
the custodian. Rach file open thus resulted in at least 

one interaction with a server, even if the file were 
already in the cache. 

Experience with VICE-I. VICE-I was used for nearly a 
year, eventually expanding to encompass six servers 
and about 100 workstations. The goals of location trans- 
parency and user mobility were met unequivocally and 
have proved to be addictive. We would now find it 
difficult to put up with an environment where individ- 
uals were tied to specific workstations, or where we 
had to remember which machine a particular file re- 
sided on. Our initial apprehensions about relying solely 
on caching and whole-file transfer proved to be bise- 
less. Application code compatibility was also met to a 
very high degree, and almost every UNIX application 
program was able to use VICE files without recompila- 
tion or relinking. 

Although our experience with VICE-I was mostly 
positive, we ran into some problems that we had not 
anticipated. Probably the single biggest surprise was the 
frequency of stat system calls made by applications. On 
a standard file system, this is a relatively cheap call. 
Repeated stats of the same file usually involve no disk 
activity, since UNIX caches recently read disk blocks in 
memory. In VICE-I, however, every stat involved an 
RPC to a server to validate the appropriate cache entry 
or to fetch it. Under conditions of heavy load, this 
caused rather annoying performance degradation. 

Another annoyance was the inability to rename di- 
rectories in VICE. This turned out to be a consequence 
of our using path names in the VICE-Venus interface. 
The absence of a low-level identifier that was visible to 
Venus and that remained invariant across a directory 
rename meant that it would not always be possible to 
unambiguously answer cache validation requests on 
certain files after the rename. Another heavily used 
UNIX feature missing from VICE-I was the ability to 
use symbolic links. This was a subtle consequence of 
our decision to resolve path names in VICE rather than 
Venus. 

Measurements indicated that an average cache hit 
ratio of over 80 percent was attained during normal 
use. Server CPU utilization tended to be quite high, 
averaging nearly 40 percent over an 8-hour working 
day on the most heavily loaded servers. Disk utilization 
tended to be lower, averaging about 14 percent. Short- 
term averages were, of course, much higher. A histo- 
gram of calls received by servers in actual use showed 
that cache validation calls accounted for over 65 per- 
cent of the total. Calls to fetch file status information 
contributed about 27 percent, while calls to fetch and 
store files accounted for 4 percent and 2 percent, re- 
spectively. These four calls thus encompassed more 
than 98 percent of the calls handled by servers. 

VICE-I turned out to be a rather difficult system to 
operate and maintain. Our decision to use a dedicated 
process per client on each cluster server caused various 
resource limits to be exceeded on a number of occa- 
sions, effectively crashing the cluster server. It also re- 
sulted in excessive context switching overhead and in 
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high virtual-memory paging demands. It did, however, 
have the virtue of simplicity and resulted in a rela- 
tively robust system because the failure of an individ- 
ual server process affected only one client. The RPC 
package was built on top of the reliable byte-stream 
abstraction provided by TCP. Although this yielded a 
simple implementation, it caused TCP-related resources 
to be exceeded on occasion, thereby denying service to 
new clients. Our decision to embed the file location 
database in stub directories in the VICE naming tree 
made it difficult to move users’ directories between 
servers. Finally, Venus based its cache replacement al- 
gorithm on the total number of files in the cache rather 
than on the total size of these files. This was done 
primarily for ease of implementation and worked well 
most of the time. Sometimes, however, a user’s cache 
would fill his or her local disk to capacity, resulting in 
a failure mode that nonexpert users found particularly 
disconcerting. The effects of this problem were particu- 
larly severe when it involved an unattended worksta- 
tion such as a print or mail spooler. 

Based on our experience with VICE-I, we set out to 
design and build a more efficient and easily operable 
implementation of our basic architecture. The result of 
this effort was VICE-II, our current file system. 

VICE-II. In VICE-II, a single process on each cluster 
server services all file server requests from clients to 
that cluster server. This process uses a lightweight pro- 
cess package (LWP) with nonpreemptible scheduling to 
concurrently service many client requests. The RPC 
package is integrated with the LWP, thereby allowing 
the file server to be concurrently making or servicing 
one RPC per lightweight process. The RPC package is 
built on top of a low-level datagram abstraction and 
subsumes the demultiplexing, retransmission, and low- 
level failure detection functions that were provided by 
TCP in VICE-I. There is an RPC connection per client, 
but there is no a priori binding of lightweight processes 
to these connections. Instead, a pool of lightweight 
processes service client requests on all connections. 

The use of a single server process makes it possible 
for us to maintain virtual-memory caches of many data 
structures that were kept in the file system in VICE-I. 
This improves performance and avoids the resource 
limitation problems, excessive paging, and context 
switching we encountered in VICE-I. The RPC package 
places no practical bounds on the number of clients 
who can be simultaneously connected to a server; each 
connection uses a small amount of virtual memory for 
state information, but no other resource. 

In VICE-II, we use the UNIX file system on servers 
only to provide access to disk blocks, to manage storage 
allocation for files, and to maintain in-memory buffers 
of recently used disk blocks. The VICE directory struc- 
ture is built on top of this low-level interface and does 
not appear as a UNIX directory structure on the server. 
We believe this will provide us with much greater effi- 
ciency in accessing files. 

We have introduced the notion of a volume as the 

basic abstraction for administrative and operational 
purposes. A volume is a collection of VICE files com- 
prising a partial subtree of the file system hierarchy 
and is typically quite small; each user in our system 
currently has a volume allocated to him or her. Tape 
backup and restoration, application of disk space quo- 
tas, and read-only replication are all done on individual 
volumes. The root of a volume may be arbitrarily relo- 
cated in the VICE file hierarchy, and in this respect, 
volumes resemble mountable disk packs in a conven- 
tional file system. Volumes are visible only at the 
VICE-Venus interface and are transparent to users and 
application programs. File location information is now 
obtained from a volume location database, replicated at 
all servers. When a Venus needs to locate a volume, it 
queries any server and caches the reply. The cached 
information is only treated as a hint, since volumes can 
be moved between servers. 

The VICE-Venus interface in VICE-II uses unique file 
identifiers (fids) rather than full path names. A fid con- 
tains a volume number, a key into the volume index, 
and an additional field to ensure uniqueness within the 
volume. Fids remain invariant across renames and are 
therefore the key to making the renaming of directories 
possible. The translation of full path names into fids is 
done by Venus, which caches each directory encoun- 
tered during translation. For robustness, modifications 
to directories can only be done by servers. Symbolic 
links are also interpreted by Venus. 

Cache management is an area where VICE-II differs 
conceptually from VICE-I. In VICE-II, Venus may re- 
quest a server to maintain a callback when it fetches a 
file or directory. If the file or directory is ever modified 
by anyone else, the server will inform each Venus with 
a callback on it that its cache entry has been invali- 
dated. Venus can use cache entries with callbacks on 
them without any further validation, thereby cutting 
down significantly on client-server traffic. Servers are 
free to break callbacks at any time, even if the corre- 
sponding files are unchanged. This may happen, for 
instance, if a server discovers that it is expending too 
much memory or computational resources in maintain- 
ing callback state. Clients will revalidate cache entries 
as in VICE-I. Caches are still write through in VICE-II, 
but the cache replacement algorithm is based on the 
total space used by cached files. 

VICE-II Status. VICE-II has been in use by the ITC for 
about five months and is still in the process of being 
debugged. Some of the functions, such as authentica- 
tion, are still being integrated into the system. Never- 
theless, even our limited experience with this system 
confirms its superiority to VICE-I. The ability to have 
symbolic links in VICE and to rename directories has 
enhanced the usability of the system. The callback 
mechanism and the use of a single UNIX process per 
server have resulted in marked performance improve- 
ment. We have not encountered any UNIX resource 
limitation problems with VICE-II, even though we have 
about 45 workstations connected to each of two cluster 
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servers. The internal structure of the server, RPC, and 
Venus, however, is considerably more complex than in 
VICE-I and has-made debugging more difficult. A server 
process crash is now no longer a matter of a single user 
being inconvenienced. 

Although much tuning, development, and refinement 
need to be done to VICE-II, we are confident that it 
represents a sound basis for the evolution of the An- 
drew file system. 

THE USER INTERFACE 
The goal of the ITC in worksta.tion software was to 
design and develop tools that allow application devel- 
opers to easily exploit the graphics capabilities of work- 
stations. A secondary goal was to encourage the 
implementation of consistent application-specific 
user interfaces. This is particularly important for nov- 
ices, who are often overwhelmed by the diversity of 
application-specific knowledge they need to effectively 
use the system. It was also our goal to explore a variety 

of interface paradigms and develop skills in implement- 
ing them. 

Our efforts have been directed toward three areas: 

a window manager that allows multiple processes to 
share a bit-mapped display, 
packages for manipulation of text and graphics, and 
applications using the window manager and the 
packages. 

Window Manager 
The building block for all applications is the window 
manager [8]. It virtualizes the display screen, dividing it 
into a number of rectangular areas whose size and 
shape are under the control of the user. Each window 
is attached to a process that can be oblivious to the 
presence of other windows and their processes, but 
that must be prepared to repaint its own window upon 
request. 

A basic problem for a window manager is how to 

63 Person Years 

/‘-i----L 

486K Lines of Code 

The screen contains five windows. The top of each window Typescript windows have been shrunk to only their title bars. 
is a title bar naming the application, its parameter, and the The console window displays various status items. A text 
name of the workstation it is running on. The Help and editor and drawing editor consume most of the space. 

FIGURE 7. A Screen with Several Windows 
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Deleted Mail 

A set of pop-up menus appears in the mail-reading applica- 
tion. The various application-specific commands are grouped 
into five overlaid cards; sliding the mouse onto a portion of a 

card brings it to the top. The fourth card is currently on top, 
and the command for retrieving new mail has been selected. 

FIGURE 8. Popped-Up Menus in a Mail-Reading Program 

mediate between the user and the programs on how 
much of the screen is devoted to each program. Most 
window managers, for example, the Macintosh, follow 
the overlapping window approach in which the win- 
dows look like pieces of paper laid on top of each other, 
and the user selects the placement and size of each 
window. We chose a different approach, based partly 
on the Xerox Star [25] and Cedar [32] systems where 
the display screen is tiled with nonoverlapping win- 
dows. The user can adjust the boundary between win- 
dows, and windows can be completely hidden or 
quickly shrunk to only a title bar in order to free up 
space. Figure 7 shows a screen with several windows, 
some of which are only title bars. This scheme has two 
advantages: It is easy to program and requires the user 
to make fewer detailed decisions about arranging the 
screen. 

The window manager multiplexes keyboard and 
mouse input for the various processes. Keystrokes are 
directed to the process whose window holds the mouse 
cursor; as feedback, that window always has a black 

title bar. The user can communicate with the process 
using pop-up menus; depressing a mouse button causes 
a set of process-specific commands to be displayed on 
small overlaid rectangles. After a command is selected, 
the menu disappears as it is,executed. Figure 8 shows a 
screen with a set of menus popped up for the mail- 
reading program. 

The window manager has been in use for two years, 
and its user interface has evolved considerably. The 
initial window layout policy completely filled the 
screen, and windows resized whenever the layout 
changed. A new window split the largest existing win- 
dow; shrinking or hiding a window caused others to 
grow. This was both slow and confusing. We subse- 
quently changed things to emulate the Cedar scheme: 
The screen is still tiled, but the primary division is a 
vertical boundary between two columns of windows, 
and gray space appears at the bottom of each column 
signifying unused space. Creating, destroying, or alter- 
ing a window usually has no affect on other windows, 
only on the amount of gray space. The initial menu 
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system used hierarchical menus, like Interleaf’s, in 
which selecting certain entries revealed submenus. 
This became unusable at depths greater than three. 
Now menus look like overlaid cards that the user can 
riffle through with a mouse movement. Shrinking and 
expanding windovvs were initially done through 
menus, but now a single click in the headline bar suf- 
fices. These changes are the result of extensive experi- 
ence with alternative implementations. The trend has 
been to provide simpler and more predictable behavior 
along with tuning for common operations. 

Although we have had doubts about the user inter- 
face presented by the window manager and will con- 
tinue to improve it, we have been very satisfied with its 
basic architecture as seen by the programmer. Figure 9 
shows the typical process structure on a workstation, 
with a number of client processes communicating with 
the window manager. When a window needs to be re- 
drawn, the appropriate client process is informed via a 
software interrupt. It is the responsibility of that client 
process to query the window manager for the new win- 
dow coordinates and size, and to make the necessary 
low-level calls to the window manager to accomplish 
the redrawing of the window. The client process 
chooses whether to scale, clip, or recompute the display 
in some other way. 

This approach was prompted by two circumstances: 
The workstations that Andrew would run upon were 
an ill-defined set, and our access to kernel sources for 
SUNS and other machines was difficult. The outcome is 
that the window manager can be run on any Berkeley 
UNIX system and is easy to adapt for particular display 

=I% . From mouse 

To display 

. 
&d+, From keyboard 

Clients Window manager 

The window manager controls the screen, keyboard, and 
mouse. It is a user process requiring no operajiqg system 
privileges and has b~?en carefully written to isolate display 
dependencies. Each application is also a process and talks 
to the window manager over a socket, a feature of the Berke- 
ley UNIX 4.2 release that allows processes to communicate 
with streams of bytes. 

FIGURE 9. The Window Manager Process Structure 

hardware-it has been demonstrated on three different 
machines and seven different displays, including color. 
People have been able to port it to a new machine with 
virtually no communication with the original authors. 
Furthermore, the use of sockets for communication 
makes it very simple to run applications on multiple 
machines while keeping their windows on one. Al- 
though this scheme prevents the application programs 
from getting at the full power of some displays, the 
performance of most interactive programs is surpris- 
ingly good. It can paint multifont text on a SUN 120 at 
over 4000 characters per second. This is due to three 
factors: 

l We chose a set of primitives that keeps the most in- 
tensive operations such as font management and 
pixel-level character placement inside the window 
manager. 

l We chose pure output operations that need no re- 
sponse from the window manager and are batched 
before being transmitted via the socket. 

l The programmers of the window manager and cer- 
tain applications worked very intensely. 

The programmers’ interface is simple to understand 
and has about 70 different procedures to perform var- 
ious functions: 

Window control operations create and delete windows, 
change the contents of header lines, and request the 
current size of a window. 
Drawing primitives draw straight and curved lines and 
create filled regions. Rasterops on selected rectangles 
of the screen can be performed. Pixel coordinates are 
used to specify position. The set of graphics primi- 
tives is not quite as rich as that found on the Macin- 
tosh or in Postscript. We have implemented support 
for color, but have not used it extensively. 
Text primitives allow the display of a string at any 
pixel position in any font. The client names the font, 
and the window manager attempts to match it on a 
best-efforts basis. A good font representation has been 
designed to support performance. 
Input operations enable and disable keyboard input, 
mouse events in which the process is interested, and 
the shape of the cursor. Characters can also be output 
to a screen cut buffer or input from it. 
Menu operations allow the client to dynamically de- 
fine the contents of menus-the contents of the 
menus and the actions taken on their selection are 
client specific. The client process specifies the items 
that are to be in the menu and the character se- 
quence that is to be sent to it if that menu item is 
selected by the user. 
Multiple windows are supported by a set of operations 
to select input from and direct output to a particular 
window. 

The window manager’s procedures can be invoked 
from four different programming languages: C, Pascal, 
Fortran, and Lisp. Many applications and packages 
have been written on top of the window manager in- 
cluding a GKS (Graphical Kernel System) package. 
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Built on top of the window manager is a collection of 
data types called the base editor tool kit. In addition to a 
programming interface, each data type also possesses a 
well-defined user interface: a set of operations that a 
user can perform using mouse or keyboard input. 

Application programs that use the tool kit exclusively 
for their interactions with users are benefited in a num- 
ber of ways: 

The tool-kit interface is a higher level interface than 
the window manager and relieves the application de- 
veloper from the many details associated with the 
display of justified, multifont text. 
The user interfaces of programs that use the tool kit 
are more likely to be mutually consistent than those 
of programs with independently developed user 
interfaces. 
It is easier to exploit graphics hardware and to obtain 
good performance by carefully tuning the implemen- 
tations of a small number of data types than by refin- 
ing a larger number of individual application pro- 
grams. 

The most basic data type in the tool kit is a view, 
which corresponds to a rectangular screen region 
within which an instantiation of another data type may 
be displayed. The latter may be a primitive data type or 
a composition of data types. A document is a data type 
that may be used whenever text manipulation of any 
kind is involved. Documents may range in size from a 
short label to an entire file. A view of a document is 
essentially a focus of interest on that document. Re- 
gions of text within a document may be demarcated 
with markers whose specific semantics depend on the 
application program. A scroll bar is a data type used in 
conjunction with a view of a document and is used to 
make different parts of the document visible on the 
screen. The tool kit includes a family of data types 
referred to as buttons. These are labeled, rectangular 
screen objects, each of which is associated with a set of 
procedures to be called when a specific event, such as a 
mouse click, occurs. Individual members of this family 
are used to represent scalar data types such as Bool- 
eans, finite sets, and strings. 

The tool kit incorporates a layout mechanism, which 
deals with the physical placement of instantiations of 
data types within a window. Using high-level hints and 
placement constraints supplied by the application pro- 
gram, this mechanism uses heuristics to determine the 
actual sizes and locations of individual items within a 
window. When a window is moved or reshaped by the 
user, the layout mechanism is responsible for appropri- 
ately reconfiguring and redrawing that window. 

A second large package, called Grits, supplies per- 
sonal database services. A database consists of an arbi- 
trary number of records, each of which can contain an 
arbitrary set of fields of any size. This flexibility makes 
Grits ideal for dealing with relatively unstructured in- 
formation. Given the basic corpus of data, one can con- 
struct ordered indexes into it. There is a simple query 
language available in both library and interactive 
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forms. The program library supports a set of layouts 
especially tailored to display individual records and in- 
dexes. Grits does not address the problems of locking 
records in VICE; related files must be locked in order to 
perform updates. 

Applications 
Many applications that use the capabilities of a bit- 
mapped display have been developed using the window 
manager and various packages. Many of the early ver- 
sions were developed by the ITC, but recently, other 
groups at C-MU have assumed a major role in applica- 
tion development. 

A text editor with dynamic formatting capability is 
the most popular application in general use. This editor 
is superficially similar to a “what-you-see-is-what-you- 
get” (WYSIWYG) editor, but differs from the latter in 
that it makes no attempt to produce a replica of a 
printed page. Rather, it attempts to format the text as 
best it can for the screen-reshaping an editor window 
automatically reformats the text to fit the new window. 
The appearance of the text is controlled by style direc- 
tives in the document representation. Normally, these 
directives are invisible, except for their effect-for ex- 
ample, making some text bold-but the editor can be 
put into a mode that makes all styles explicit in a 
Scribe-like notation [19]. The styles in a document can 
be generic-a typical style might be “Major Heading.” 
The actual appearance of styles can be controlled 
through a style editor that allows the user to specify, 
for example, that a major heading is centered, six 
points larger than its surrounding context, and bold. 
Figure 10 (p. 198) shows a document under the control 
of a style editor. The document compilers Scribe and 
Tex are also available on Andrew workstations. So far, 
we have used four different printers to print documents 
created on the system. 

The standard Teletype driver was replaced by a 
typescript application supported by the base editor. 
This allows the user access to all normal text editing 
operations such as scrolling, cutting, and pasting when 
giving commands to the UNIX shell. 

Several drawing editors that allow figures and draw- 
ings to be created interactively have been written or 
imported. They incorporate different paradigms and 
such features as constraint solving, automatic scaling, 
and animation. Some directory management applica- 
tions have also been implemented illustrating several 
approaches: iconic symbols for files, directories as text 
files, and explicit pictures of trees. None has yet be- 
come comprehensive enough to replace the basic UNIX 
shell as the tool of choice. 

Mail and bulletin-board browsing programs have 
been implemented using the base editor tool kit and the 
Grits database facilities. They allow the separation of 
mail into classes, scanning for particular subjects, etc. 

An implementation of the Tutor programming lan- 
guage [24] has been nearly completed. Various versions 
of Tutor have been used at the University of Illinois 
and elsewhere to produce many hours of instructional 
material. This latest version, called C-MU Tutor, ex- 

Communications of the ACM 197 



Articles 

cheswic 

Cartiegie-.h;leIlon’s Activities 

We have focused our wotkxarion efforts almost exclusively on the 
creation of general tools for esploiiing a bit-map display and 
“lot1se. The building block for all ?qplicarlnns is th? window 
manager. It virroalizes the display screen, dividing ir. into a 
number of rcrtangular areas whose size and :hnpc is under control 
of the user sitting in front of the screen An extensive 
fubrout~ne lihary provides the means to structure multi-fonr, 

I . 1) -- 
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The EditText window QhoWs an editable document, kc,- Styles tool. 0; the right, a Preview window shows the s&-n& , 
6dec.d. whose generic styles are Specified using the Edit- document as it will appear when printed. 

FIGURE 10. The Text Editor, Style Editor, and Preview 

plaits the facilities of Andrew to create an interactive 
graphics-oriented programming environment. Figure 11 
shows a Tutor program and the picture it has created. 
C-MU Tutor supports a rudimentary form of program- 
ming by example: The user can alter the picture in 
certain ways and have the program adjusted to produce 
the new picture. 

EXPERIENCE AND PLANS 
Although Andrew was (and is) far from completion, we 
deployed it to a small group at C-MU starting in De- 
cember 1984. Over 50 SUN .workstations were made 
available to people who had an interest in producing 
educational software. The workstations are spread 
rather uniformly over the campus, appearing in all six 
colleges and virtually every academic building. Cur- 
rently there are over 500 registered users. 

A survey of the user community in the summer of 
1985 revealed that users liked the system, and for 

many, simply having a personal workstation running a 
full UNIX system is the most important thing. The 
piece of software most appreciated is the text editor. 
The most frequent complaints are that the system is 
unreliable and runs too slowly. The former is primarily 
due to disk-related hardware failures and resource ex- 
haustion that neither the software nor the human sup- 
port staff is yet equipped to deal with. 

The performance problems are the sort to be ex- 
pected of a new system: All the parts still are a little too 
slow, and people overuse them in a general spirit of 
exploration. For example, relatively mundane utility 
programs that probably should be simple shell com- 
mands appear as elaborate control panels using several 
fonts. The trivial act of resizing the window containing 
such a control pane1 can sometimes bring the system to 
its knees: The base editor library recomputes the layout 
for the window, changing the actual sizes of several 
fonts; then the window manager must fetch the fonts 
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from VICE in order to repaint the window. Although 
the implementors might enjoy witnessing all this activ- 
ity-and are amazed that it works at all-most users 
simply get impatient. 

Aside from learning hundreds of ways in which An- 
drew needed improvement, we also learned that main- 
taining a distributed computing system is a formidable 
task. Even though our user population is small, it is 
widely distributed. Tools for troubleshooting are badly 
needed, and a sizable staff is required. 

Despite the preliminary nature of the system, many 
faculty members have created very interesting applica- 
tions in several areas: nonlinear differential equations, 
building design, chemical equilibrium analysis, Ameri- 
can history, circuit design, scholarly writing, circuit 
analysis, and music synthesis. In addition, in February 
1984, we began to distribute VIRTUE to other institu- 
tions. Over 40 sites have received the source code, un- 
der license for experimental use and assessment of its 
facilities. 

Andrew is currently at the midpoint of its expected 

development period. The major past and desired mile- 
stones are summarized in Table I (p. ZOO). There are 
many other components of Andrew we have begun to 
work on or are contemplating: 

l It is being ported to other workstations. 
l The mail and bulletin-board systems are being over- 

hauled and extended. 
l Access to VICE over slow communication media is 

needed to support remote use. 
l Supporting non-VIRTUE workstations, especially IBM 

PCs and Apple Macintoshes, is planned. 
l A new version of the editor to support text, graphics, 

tables, and equations is under way. 

l The VICE file system must have an archival subsys- 
tem. 

l Support for more printers is needed. 
l We shall import some key commercial applications 

including a spread sheet and a database package. 
l We shall move most workstations to the IBM token 

ring. 
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spending characters in the program. If the user clicfcs the surrounding the text. 
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FIGURE 11. Tutor Figure 
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CONCLUSION 
As mentioned at the beginning of this article, the ITC 
was created to design and implement a computing envi- 
ronment to serve as a unifying presence in the educa- 
tional, administrative, and social life of C-MU. To meet 
this challenge, a system representing a synthesis of per- 
sonal computing and time-sharing has been designed. 
The nature of the problem has necessitated the use of 
state-of-the-art techniques in LAN technology, distrib- 
uted file system design, and user interface design. Us- 
ing existing hardware, a prot.otype has been imple- 
mented with a view toward testing our ideas. The ex- 
perience to date indicates that the design is fundamen- 
tally sound, though refinements are necessary in a 
number of areas. As Andrew grows, there will inevita- 
bly be many iterations over t.he design and implemen- 
tation of various parts of the system. 

It is appropriate to ask what is unique and notewor- 
thy about the project. The most fascinating aspect is its 
scale and diversity of applica.tion. Never before has 
there been an attempt to support so many autonomous 
computers, each under the control of an unconstrained, 
untrained individual. Reliability, performance, and usa- 
bility requirements conspire to make the design of such 
a system an intellectual challenge of the first magni- 
tude. There are several specific areas where we feel we 
are advancing the state of the art: 

l Machine-independent raster graphics. The design of 
the window manager has allowed us to run the work- 
station software on three different machine architec- 
tures and several different displays. Porting the sys- 
tem to a new display can often be done in less than a 
day. 

TABLE I. Major Milestones in the ITC Project 

Oct. 1982 

Jan. 1983 
July 1983 

Aug. 1983 
Nov. 1983 
Jan. 1984 
Mar. 1984 

July 1984 
Nov. 1984 
Dec. 1984 

Feb. 1985 

Mar. 1985 
July 1985 
Sept. 1985 
Oct. 1985 
Dec. 1985 

Sept. 1986 

Dec. 1986 

IBM-C-MU contract signed, establishing 
the ITC. 

Project starts. 
Most hiring, specific goal definitions, and 

overall architecture complete. 
Development system obtained. 
First release of window manager in use. 
First release of base editor tool kit available. 
First application program using base editor 

tool kit available. 
File system prototype available for use. 
File system redesign begins. 
Prototype deployment on the C-MU campus 

begins. 
Andrew distribution to other campuses 

begins. 
100 workstations in use. 
400 registered users. 
Demonstration of faculty-created applications. 
Redesigned file system in use by ITC. 
Deployment of improved Andrew; 200 

workstations in use. 
Significant student access; 400 workstations 

in use. 
Campus recabling complete; token ring in 

use. 
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l Large, secure, distributed file systems. As we have dis- 
cussed, the VICE file system provides a file service 
whose size-functionality product will exceed any 
other we know of. The size coupled with the security 
constraints has, however, imposed many new prob- 
lems. 

l Ubiquitous, high-performance text editing. Our multi- 
font interactive text editor compares favorably with 
the best commercially available ones. It does every- 
thing a WYSIWYG editor can be expected to, and 
very quickly. Its unique attribute, however, is that it 
is available as a library and permits vjrtually all text 
handling in the system to use all its features. Mail 
systems, interactive programming languages, and 
many education applications have used it. 

l Mail and bulletin-board systems. Because we see to- 
day’s electronic mail and bulletin boards as the fore- 
runners of a very comprehensive campus communi- 
cation system, we have begun to implement them in 
a very general way. At the same time, we must cope 
with the bewildering diversity of electronic commu- 
nication in the larger world. 

In retrospect, it is obvious that a project of this scope 
cannot be completed in the nominal 150 person-years 
planned for it. Nevertheless, we have not narrowed the 
scope, in the belief that an exciting and promising pro- 
totype, however flawed, will somehow capture the sup- 
port needed to bring it to maturity. 

Credits and Acknowledgments. The work described in 
this article represents the creative efforts of the entire 
staff of the ITC over the past three years. This article 
was written by James Morris and Mahadev Satyanaray- 
anan with help from James Peterson; the other coau- 
thors played significant technical management roles. 
Here is a functional summary of contributions to the 
system: 

l UNIX system support: Robert Cosgrove, David 
Rosenthal, Mike Kazar, Carolyn Councill, and Bob 
Sidebotham; 

l Release management and tools: James Peterson; 
l Deployment support: Barry Silverman, Lynn Brown, 

and Chris Thyberg; 
l Window manager: James Gosling, Bruce Lucas, and 

David Rosenthal; 
l Text editor and tool kit: James Gosling, Fred Hansen, 

and Andrew Palay; 
l Graphic design: Dan Boyarski; 
l User interface testing: Chris Haas and Sandra Bond: 
l Ethernet internetwork: John Leong; 
l Token ring development: Don Smith and Bryan 

Striemer; 
l SNA development: Jon Rosenberg and John Drake; 
l Grits database: Tom Peters; 
l Mail and bulletin boards: Tom Peters, Bob Cosgrove, 

Jon Rosenberg, Nathaniel Borenstein, and Craig 
Everhart; 

l Printing: Andrew Palay, Mike Conner, and James 
Peterson; 
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l Graphical editors: Marc Donner, Bruce Lucas, Tom 
Peters, and Andrew Appel; 

l Directory managers: Fred Hansen, David Nichols, 
David Rosenthal, and Tom Peters; 

l Distributed file system design: John Howard, Mike 
West, Mahadev Satyanarayanan, David Nichols, Bob 
Sidebotham, Mike Kazar, and Al Spector; 

l File server implementation: Mike West; 
l Workstation file manager: Dave Nichols and Mike 

Kazar; 
l RPC: Mahadev Satyanarayanan and Jon Rosenberg; 
l Volume structure: Bob Sidebotham; 
l Hardware support: Bryan Striemer, Paul Crumley, 

Mark Lorence, Jack Hutchings, and Kris Hutchings; 
l IBM PC development: Larry Raper; 
l Documentation: Sandra Bond, Carol Janik, Chris 

Neuwirth, Diane Langston, and Margot Critchfield; 
l General administration: Barry Silverman, Nancy 

Rosenthal, Susan Straub, Bob Staab, Michael LoBue, 
Susan Parker, and Michelle Langhorne. 

Both C-MU and IBM deserve credit for their willing- 
ness to chart a course into unknown waters, and for 
providing an excellent working environment for the 
ITC. In particular, Douglas Van Houweling of C-MU 
and Keith Slack of IBM were immediately responsible 
for the creation of the ITC, and the setting of its initial 
directions. There are few universities that would com- 
mit their computing future to such an innovative sys- 
tem, and there is probably no other computer company 
that would provide so much support without an initial 
guarantee of payoff. 
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