
Log-Based Directory Resolution in the Coda File System

Puneet Kumar and M. Satyanarayanan

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Without semantic knowledge all concurrent partitionedAbstract
updates to an object must be treated as conflicting, andOptimistic replication is an important technique for
merged manually by the user. Manual resolution isachieving high availability in distributed file systems. A
undesirable because it reduces the overall usability of thekey problem in optimistic replication is using semantic

knowledge of objects to resolve concurrent updates from system.
multiple partitions. In this paper, we describe how the
Coda File System resolves partitioned updates to An extremely important object, with known semantics, in
directories. The central result of our work is that logging of Unix file systems is a directory. We refer to the process of
updates is a simple yet efficient and powerful technique for

examining replicas of a directory, deducing the set ofdirectory resolution in Unix file systems. Measurements
partitioned updates and merging them using Unixfrom our implementation show that the time for resolution

is typically less than 10% of the time for performing the semantics as directory resolution. It has two important
original set of partitioned updates. Analysis based on file side-effects. First, benign updates are propagated to all
traces from our environment indicate that a log size of 2 replicas, thus making them identical. Second, directories
MB per hour of partition should be ample for typical with conflicting updates are marked unusable andservers.

preserved for future manual repair.

In this paper we describe how the Coda File
1. Introduction System [10, 11] exploits Unix directory semantics to
Optimistic replication is an effective technique for effectively support optimistic replication. The central
attaining high availability in distributed file systems [3]. result of our work is that logging of directory updates is a
The term "optimistic" refers to the fact that concurrent simple yet efficient and powerful technique for directory
updates are allowed in multiple network partitions. A resolution. An implementation of directory resolution is
pessimistic scheme, in contrast, allows updates in at most complete, and is used on a daily basis by a small user
one partition. An optimistic strategy provides higher data community. Measurements from our implementation show
availability but cannot guarantee data consistency across that the time for resolution is approximately 10% of the
partitions. Therefore optimistic replication is preferable time for performing the original set of partitioned updates.
when closely-spaced sequential write-sharing is rare, and Analysis based on file traces from our environment indicate
when coping with it is less onerous than being denied that a log size of 2 MB per hour of partition should be
update access during network failures. There is substantial ample for typical servers.
evidence to suggest that this combination of circumstances
is often present in distributed Unix file systems [7].

2. Coda File SystemA key problem in optimistic replication is detecting when
Coda is designed for a typical research and developmentan object has been updated concurrently in multiple
environment and is intended for applications like electronicpartitions, and determining whether those updates can be
mail, bulletin boards, document preparation and programtransparently merged without violating semantic
development. It is not intended to be used for applicationsconstraints. Concurrent updates that can be merged are
like databases that exhibit high degrees of fine-grain write-called benign. Other updates are called conflicting.
sharing. Coda consists of a large collection of untrusted
Unix clients and a much smaller number of trusted Unix

This work was sponsored by the Avionics Laboratory, Wright Research and file servers. Each client has a local disk and can
Development Center, Aeronautical Systems Division (AFSC), U.S. Air Force, communicate with the servers over a high bandwidthWright-Patterson AFB, Ohio 45433-6543 under Contract F33615-90-C-1465, ARPA
Order No. 7597, the National Science Foundation PYI Award No. CCR 8657907 and network. At certain times, a client may be temporarily
Grant No. ECD 8907068, an IBM Research Initiation Grant, a Digital Equipment unable to communicate with some or all of the servers due
External Research Project Grant, a Bellcore Information Networking Research Grant

to a server or network failure.and the General Electric Company. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the funding agencies.

Clients view Coda as a single, location-transparent shared changing directory entries as well as modifying individual
Unix file system. The Coda namespace is mapped to objects. Directory entries can be inserted via the creat,
individual file servers at the granularity of subtrees called link or mkdir system calls, removed via the unlink or
volumes. At each client, a cache manager (Venus) rmdir system calls, and changed via the rename system
dynamically obtains and caches volume mappings. call. Unlike Unix, Coda allows hard links only within a

directory. Consequently, the Coda naming hierarchy is
Coda uses two distinct, but complementary, mechanisms to constrained to be a strict tree rather than an acyclic graph.
achieve high availability. The first mechanism, server
replication, allows volumes to have read-write replicas at Directory updates are independent of one another as long
more than one server. This reduces the probability of an as they do not reference the same object. A set of
object becoming unavailable due to failures. The second independent updates can be executed in any order resulting
mechanism, disconnected operation, takes effect when no in the same final system state. For example, operations
server is accessible. While disconnected, Venus services "create foo" and "create bar" in different
file requests by relying solely on the contents of its cache. directories are independent. By definition, independent
When disconnection ends, Venus propagates modifications directory updates are benign since we are only interested in
and reverts to server replication. write-write conflicts.

Directory updates that are not independent are also benign
unless they correspond to one of the following situations:2.1. Replica Control Algorithm

• Name/Name conflicts: Two different objectsThe set of replication sites for a volume is its volume
with the same name are inserted in a directorystorage group (VSG). The subset of a VSG that is currently
in different partitions.accessible is a client’s accessible VSG (AVSG). File

system requests are serviced by Venus from its cache. If • Remove/Update conflicts: An entry is
the cache does not contain the latest copy of an object removed from a directory in one partition but
Venus contacts the AVSG. The protocol for accessing the corresponding object or its descendants are
objects from the servers is read-status-all-data-one / updated in another partition.
write-all. Since this protocol has been described in detail

• Update/Update conflicts: A directory’s metaearlier [10], we only present a summary here
data, such as its access list, is updated in two
or more partitions.Read accesses return the latest accessible copy of an object.

To service a cache miss, Venus nominates one server from • Rename/Rename conflicts: An object is
moved into different directories in twothe object’s AVSG as the preferred server and obtains both
partitions.data and status information from it. In parallel it obtains

status information from other AVSG members. The system
The first three cases were first identified by Guy in thecall that caused the cache miss returns successfully only if
context of the Locus file system [5]. The fourth categorythe version information from all AVSG sites is identical.
does not exist in Guy’s classification because his modelOtherwise the object needs resolution. Validity of the
does not restrict the naming hierarchy to be a tree.cached objects is maintained by callbacks.

The update protocol, which is executed when a directory is
3. Overview of Directory Resolutionmodified or a file is closed after being written, propagates
Partitioned updates on an object are detected the first timechanges in parallel to all accessible replicas. It consists of
it is accessed after two or more partitions reconnect. Iftwo phases, COP1 and COP2, where COP stands for Coda
Venus detects a version mismatch amongst the replicasoptimistic protocol. In COP1, each AVSG member executes
while servicing a cache miss, it alerts the preferred serverthe operation and stamps its replica with a client-generated
to perform resolution and pauses. If resolution istag called a storeid. COP2 distributes a data structure called
successful, Venus retries servicing the cache miss. In thisthe update set, which summarizes the client’s knowledge of
case, resolution is completely transparent to applicationswho performed the COP1 operation successfully. The
and users. The only noticeable effect is a slight delay inupdate set, along with the storeid, is used to maintain the
the servicing of the system call. If resolution isversion information used during resolution.
unsuccessful, Venus returns an error as the result of the
system call that generated the cache miss.

2.2. Directory Updates
Directory resolution is performed entirely on servers, withCoda directories consist of a series of name-identifier pairs
clients being responsible only for its activation. Thisthat map names to specific objects in the system. Coda
dichotomy is crucial to meeting Coda’s goal of scalabilitysupports the Unix interface for creating, removing and

without compromising security. Relying on clients to 4.1. Log Storage
detect partitioned updates eliminates the need for elaborate Resolution requires log modifications to be made in a fault-
machinery on servers to keep track of the state of tolerant manner. Each modification should be permanent
connectivity of other servers. Such machinery has to be as well as atomic with respect to the directory update it
present on clients anyway to guarantee coherence. This is reflects. We achieve this by placing both the resolution log
consistent with our strategy of enhancing scalability by and directory contents in recoverable virtual memory and
using client resources rather than server resources wherever modifying them within the same transaction. This is
possible [12]. implemented using a lightweight transactional package

called RVM [8].
A logical extension of this strategy would make clients
rather than servers perform resolution. Unfortunately, this RVM supports local, non-nested transactions on data
would compromise security because the process of structures mapped into a process’ virtual memory. It
resolution may require examination and modification of provides the basic transactional properties of atomicity and
regions of the file system for which the user at the client permanence by using a NO-UNDO/REDO write-ahead value
performing the resolution has no access privileges. Our log that records committed updates to recoverable virtual
assumption that a client is only as trustworthy as its user memory. Periodically, the modifications represented by
requires us to perform such operations on servers. the log records are applied to the committed image of

virtual memory on disk to reclaim space used by those
Coda performs resolution lazily: although there may be records. By placing the resolution log in RVM, we combine
many partitioned updates in a volume, the system only the well-known strengths of operation logging and value
resolves those objects needed to satisfy the triggering logging.
system call. An aggressive approach to resolution would,
in contrast, strive to eliminate all unresolved partitioned Our decision to associate resolution logs with volumes was
updates as soon as partitions reconnect. Our strategy motivated by a number of considerations. First, a per-
minimizes the latency of systems calls that trigger volume log achieves a reasonable balance between
resolution. It also reduces the peak demands made on resource usage and efficiency. A single log per server
servers immediately after recovery from a crash or network would have achieved better utilization of RVM, but would
partition. Its main drawback is that unresolved partitioned have given us no control over the usage of RVM by
updates may persist until a further crash or partition, thus individual users. At the other extreme, a per-directory log
increasing the chances of stale data being used or a would have been more efficient since irrelevant entries
conflicting update being made. A compromise would be to would not have to be examined during resolution. But that
perform resolution lazily when triggered by a client, but to approach would have resulted in much greater internal
conduct aggressive resolution in the background during fragmentation of RVM. A second consideration is that a
periods of low server load. Our usage experience so far per-volume log is consistent with Coda’s policy of
with Coda has not indicated the need for such a hybrid associating disk quotas with volumes. A final
policy. consideration is that the operands of system calls in Coda

may span directories but not a volume boundary.
The resolution subsystem is responsible for classifying Consequently, a volume is the smallest encapsulating unit
partitioned updates, propagating benign updates, and whose log is guaranteed to contain all the information
preserving evidence from conflicting updates. To perform needed to resolve an update.
this function, the subsystem maintains data structures at
each server and executes a resolution protocol involving
the AVSG of the object being resolved. We describe the
design of the data structures, their use during resolution
and the resolution protocol in the following sections.

4. The Resolution Log
Every replica of a volume in Coda is associated with a data
structure known as its resolution log. Conceptually, a
resolution log contains the entire list of mutating directory
operations on a replica since its creation. In practice, of
course, logs are of finite length and only the tail is
preserved. The size of the log is specified when creating a
volume, but can be later adjusted by a system
administrator.

typedef struct struct create_log
{ {
unsigned serverid; common_log cl; /* prefix*/
ViceStoreId storeid; /* of this update */ char *name; /* of new child */
unsigned opcode; /* of this mutation */ VnodeId cvnode; /* fid of new child */
VnodeId dvnode; /* fid of this directory */ };
long nextindex; /* directory log link */ (b) Entry for File Creationlong previndex; /* directory log link */
}common_log;

(a) Prefix of Every Entry

Figure 1: A Simple Log Entry

struct rmdir_log struct rename_log
{ {
common_log cl; /* prefix */ common_log cl; /* prefix */
char *name; /* of deleted child */ unsigned srctgt; /* was I source or target’s parent?*/
VnodeId cvnode; /* fid of deleted child */ struct
int head; /* pointer to deleted child’s log */ {/* info about source */
int count; /* length of deleted child’s log*/ char *oldname;
ViceStoreId csid; /* storeid of deleted child */ VnodeId cvnode;
}; } rename_src;

VnodeId OtherDirV; /* fid of other parent */(a) Entry for Directory Deletion struct
{/* info about target */
char *newname;
int tgtexisted; /* was an old target deleted? */
VnodeId TgtVnode; /* fid of old target */
union
{/* info about old deleted target */
ViceVersVec TgtGhostVV; /* if it was a file */
struct
{/* if it was a directory */
int head;
int count;
} TgtGhostLog;

} TgtGhost;
} rename_tgt;

};

(b) Entry for Rename

Figure 2: More Complex Log Entries

unique identifiers (called fids) of all Coda objects created,4.2. Log Format
deleted or modified by the call. In addition each entryThe organization of the resolution log meets three
contains the storeid of the corresponding update in Coda.requirements. First, it makes efficient use of log storage.
Figure 1 shows the log entry for a simple directorySecond, it supports efficient recording of updates during
operation in Coda such as file creation.normal operation, as well as efficient traversal of log

entries during resolution. Third, it contains all the
Log entries for deletions are more complex. They containinformation needed to perform resolution.
the state of the object when deleted to unambiguously
detect remove/update conflicts during resolution. For aThe first two requirements are met by organizing the log
deleted file, the final state is encoded in its Coda versionphysically on a per-volume basis, but logically on a per-
vector [10]. For a deleted directory, this informationdirectory basis. The log for a directory is realized as a
consists of a pointer to its resolution log, as shown indoubly-linked chain of log entries embedded in the volume
Figure 2a.log. Recording a directory update consists of finding a free

entry in the volume log, linking it to the end of the
The most complex log entry, shown in Figure 2b,directory’s log, and filling in the fields of the entry. During
corresponds to the rename operation. Such an entry isresolution, it is usually sufficient to examine the log entries
created in each of the logs of the two directories affectedof the directory being resolved. Only on rare occasions is it
by the operation. Since a rename may delete an existingnecessary to examine the logs of other directories.
target, the log entry contains sufficient information to also
detect any ensuing remove/update conflicts.To meet the third requirement, each log entry has to

contain the opcode of the corresponding system call, names
of new Coda objects created by the call, and the low-level

LCE

Site1 Site 2 Site 3

LCE

(Remote) (Local) (Remote)

(a) Step 1: Compute LCE

 Remove
duplicates

 and
local entries

(b) Step 2: Discard useless entries and merge logs (c) Step 3: Perform operations - Final log state

This figure shows the steps of the compensation algorithm. The algorithm is being executed at site 2 and the directory is replicated at
three servers site 1, site 2 and site 3. The shading is different for updates in different partitions. The figures shows (a) the logs made
available to site 2, (b) how the compensating operations are calculated and (c) the log at site 2 just after it executes the compensating
operations.

Figure 3: The Compensation Algorithm at Site 2

invariant follows from two observations. First, if entries5. The Resolution Algorithm
with the same storeid are found in the logs of a set ofResolution uses the log from each replica to deduce and
replicas, it implies that these replicas successfullypropagate the set of partitioned updates to all replicas. For
participated in the same update. Second, the Coda updatethis purpose, each replica’s log is made available to every
protocol guarantees that updates succeed only at replicasmember of the AVSG. In Section 5.1, we focus on the
that are already identical. Entries prior to the LCE are notactions at a single server. Next, in Section 5.2, we describe
used and can be discarded for the subsequent steps of thishow resolution is coordinated among multiple servers.
algorithm.Finally, in Section 5.3, we identify a number of

complications that can arise in resolution and show how
In the second step, the set of updates missed by the localthey can be handled.
server are deduced from the set of all partitioned updates.
The partitioned updates from each replica’s log are merged
and the duplicate entries removed. Then the log entries5.1. Compensation at One Site
corresponding to partitioned updates already performed atThe compensation algorithm is executed at each AVSG
the local server are removed. Due to dependenciesmember after that server has received the log of every other
between log entries from one server, the merge mustmember of the AVSG. For the purpose of this discussion,
maintain their order. For example, the entry for rmdirthe server at which the algorithm is executing is called the
foo must follow the entry for mkdir foo because theselocal server; all other AVSG members are called remote
operations do not commute. But log entries from differentservers. The goal of the compensation algorithm is to use
servers can be merged in any order.the logs of all replicas to compute the set of partitioned

updates missed by the local server and to apply a sequence
In the third step the updates missed by the local server are

of updates to compensate for the missed updates.
executed. These updates modify permanent data structures

Detection of conflicts, if any, is a side effect of the
in RVM and are all performed within a single transaction. If

algorithm. The algorithm proceeds in three steps as shown
a serious failure such as running out of disk space occurs

in Figure 3.
during the transaction, the entire step is aborted and the
algorithm fails. Updates that invert each others’ effects areIn the first step, the set of all partitioned updates is
not executed at all. Before executing each update, thededuced. This is done by scanning each log backwards
server ensures that the resulting state will not violate anystarting from the last entry and finding the most recent
semantic invariant. If this is not the case, it marks theentry that exists in all logs. This is called the latest
object that was to be modified in conflict. As each updatecommon entry (LCE), and represents the most recent point
is performed, a log record reflecting this mutation iswhen all the replicas were identical. Resolution relies on
spooled to the resolution log. Once the entire list ofthe invariant that entries in each log after the LCE
updates has been applied, the encapsulating transactioncorrespond to exactly the set of partitioned updates. This
commits and the compensation algorithm at this site is
complete.

S1

S1

S2

S3

S1

S1

S2

S3

S1

S1

S2

S3

S1

S1

S2

S3

V S1 V

 Invoke
Resolution Lock

Collect
 &
 Merge

 Distr. Log
 &
Compensate

Unlock
 Return
 From
Resolution

Phase 1 Phase 2 Phase 3 Phase 4

This figure shows the sequence of RPCs during resolution. The client V invokes resolution by nominating server S1 as coordinator. The
four phases of the protocol are executed at three subordinate servers S1, S2 and S3. The node labeled S1 is shaded when the server is
acting as coordinator and unshaded when it is acting as subordinate. If a conflict is detected in phase 3, it is distributed via an extra RPC
before phase 4.

Figure 4: Phases of the Resolution Protocol

5.2.1. Phase 1: Locking5.2. The Resolution Protocol
Resolution begins with the coordinator requesting each VSGIn this section we describe how resolution is coordinated
site to lock its replica of the volume containing thebetween multiple servers. The resolution protocol is
directory being resolved. The sites that respond to thiscoordinator-driven, with one AVSG site acting as
request become the subordinates of the resolution protocol;coordinator and the others acting as subordinates. The
other sites are ignored in the rest of the protocol. Allresolution protocol proceeds in four phases, as shown in
responding sites must indicate successful lock acquisition;Figure 4. To improve performance, the coordinator uses a
otherwise the protocol is aborted and an error code returnedparallel RPC mechanism [9] to communicate with
to the triggering client. The client retries the call after asubordinates.
few seconds. If the error persists after ten retries, it is

The protocol serves two purposes. First, it distributes passed on to the application trying to access the object.
resolution logs to all AVSG sites so that each can execute

A resolution lock excludes all other mutations on a replica,the compensation algorithm described earlier. Second, it
including those from normal updates, manual repairs or anydistributes the final result of resolution to all AVSG sites.
other instances of directory resolution in that volume. ButPrior to the execution of the protocol, some of the
non-mutating operations such as reading a file or listing aparticipating replicas may differ from others. At the end of
directory in the volume are permitted. Although locking atthe protocol, either all these replicas are identical and ready
finer granularity would improve concurrency, it would befor immediate use, or have been marked in conflict and are
more complex to implement. Our experience so farunavailable until manually repaired.
suggests that this complexity is not warranted.

Our description below describes the events in the absence
The resolution lock is held for the entire duration of theof failures. However, the protocol is designed to be
protocol, and times out in the event of a coordinator crashresilient to subordinate, coordinator or network failures. If
or network failure. The value of this timeout has to bea subordinate fails, the coordinator times out and excludes
greater than the longest expected resolution time, and is setit from subsequent phases of the protocol. If the
conservatively to 10 minutes in our implementation.coordinator fails, the client times out and restarts the

protocol, nominating another coordinator. Network
failures appear as a remote site crash to each host at either 5.2.2. Phase 2: Log Collection and Merging
end of the link. In all cases, local atomicity of actions is In this phase, the log entries needed for resolution are
guaranteed by RVM at each site. collected by the coordinator. Each subordinate first

extracts the log of the directory being resolved from its
volume log. It then scans the extracted log, composes a list
of other objects whose logs might also be needed, and
extracts those logs recursively. For example, if a subtree is

deleted during a partition, the logs of all the directories in 5.3. Complications
the subtree are needed to resolve its parent. Therefore,
each subordinate’s log is of different size. The coordinator 5.3.1. Coping with Finite Logs
merges the logs received from all the subordinates into a Our discussion so far has ignored the fact that log space is
linear data structure that preserves the identification of each finite. Coda keeps log lengths to a minimum by
log. discarding, at the earliest opportunity, portions of logs that

will never be needed in future resolutions. Once an updateThe need for a separate phase just to collect logs is specific
has been reflected at all replicas, its log entry will becometo our implementation. It requires the coordinator to
the LCE for any future resolutions. Hence older entries canallocate buffers before receiving the logs. Since each
be discarded, resulting in a log with just a single entry.subordinate’s log can be of different length, the maximum
Confirmation that an update has been propagated to allsize of each log is calculated during phase 1, and the log
replicas is available from two sources. In normaltransferred only in the second phase.
operation, the COP2 phase of the update protocol distributes
this information. During resolution, the coordinator

5.2.3. Phase 3: Log Distribution and Compensation distributes this information in Phase 4. Logs grow only
This phase begins with the coordinator sending the merged when some replicas are inaccessible, as reported by either
logs to subordinates. At this point, each subordinate has of these sources.
logs from every accessible replica, and can perform the
compensation algorithm described in Section 5.1. Each What does a server do when a log becomes full? One
subordinate returns a list of conflicts, if any, that arose approach would be to disallow updates to that volume until
during this phase. resolution is done. The other approach, used in Coda, is to

allow updates to continue by overwriting entries at the head
Although resolution may be successful at a subordinate, the of the log. This causes the LCE to be lost, a condition that
fate of resolution at other sites is still unknown. As a will be reported as a conflict by the compensation
precaution against premature termination of the protocol algorithm of any future resolution. The Coda strategy
due to coordinator failure, each subordinate marks its enhances update availability and provides an easily-
replica with a unique storeid. This ensures that any future understood tradeoff between resource usage and usability:
comparison involving the replica in its current state will the larger a log, the lower the likelihood of having to resort
trigger resolution again. to manual repair. However, it would be a simple matter to

make the choice between disallowing updates and
Having each subordinate compute its own compensating overwriting log entries a volume-specific parameter.
operations exploits the parallelism inherent in this task.
This opportunity would have been lost, had we chosen the

5.3.2. Resolving with Partial VSGalternative strategy of having the coordinator compute the
When resolution proceeds without all VSG members,compensating operations for each subordinate. But the
partitioned updates must be repropagated when otherlatter approach would have involved less data transfer,
members become accessible. To prevent a site fromsince the coordinator would have shipped compensation
performing the same operation twice, Coda logs updateslists rather than the larger merged logs.
during resolution with the storeid of the original update.
The log entry contains the same information as the original

5.2.4. Phase 4: Unlocking update’s entry to ensure correctness of future resolutions
In the normal case, phase 3 succeeds at all subordinates. even if the site where the original update was performed
The coordinator sends out a new storeid in phase 4, thus becomes inaccessible.
marking all the replicas as equal. The subordinates release
their resolution locks, and the coordinator returns to the Log entries spooled during resolution do not provide the
client. same guarantee as that provided by entries for client-

initiated updates: if two replicas’ logs have the same log
If the return code to phase 3 from any subordinate indicates entry, the replicas need not have been identical at that
conflict, the coordinator executes an additional step in the point. So step 1 of the compensation algorithm that
protocol to distribute conflict information to all computes the LCE must ignore log records spooled during
subordinates. Phase 4 then merely consists of releasing resolution. This is achieved by using different families of
resolution locks, and returning control to the client with an opcodes for log entries of client-initiated updates and
error indicating a conflict. resolution updates.

5.3.3. Manual Repairs and Resolution return of control to the client after successful resolution.
Manual repairs allow the user to perform arbitrary Work time is the sum of the elapsed times for performing
operations at each replica. Once a replica is repaired, its the original set of partitioned updates.
log is truncated and a log entry reflecting the repair is

Resolution time is perceptible to the first user to access aspooled. The storeid for this entry will be the LCE in
directory after the end of a network failure that resulted infuture resolutions. If a repair is performed when some VSG
resolvable partitioned updates. The elapsed time for failedmembers are missing, future resolutions triggered by the
resolution is less important, since it is swamped by the timerecovery of missing VSG members will fail because no LCE
for manual resolution.will be found. Hence the user will have to manually repair

the object again. Only a repair performed when all VSG
An increase in partitioned activity lengthens phases 2 and 3members are up will restore the ability to perform
of the resolution protocol. Phase 2 takes longer becausetransparent resolution.
larger logs are shipped to the coordinator. Phase 3 takes
longer because of an increase in the transmission time to

5.3.4. Cross-Directory Renames ship a larger merged log to the subordinates, and because
A rename operation may involve directories far apart in the of an increase in the times at the subordinates for
naming hierarchy. It is necessary to resolve both the computing and applying compensating operations. An
source and target parents simultaneously because each may increase in the number of replicas also increases resolution
be dependent on other partitioned renames. To correctly time because communication overheads are higher, and the
handle these cascaded dependencies, the transitive closure computing of compensating operations by subordinates
of all directories affected by a sequence of renames must be takes longer.
resolved together.

6.1.2. Experiment DesignAnalysis of file system traces from our environment shows
To quantify the above effects, we conducted a series ofthat less than 3% of all directory updates are cross-
carefully controlled experiments using a syntheticdirectory renames. In the light of their relatively rare
benchmark. One instance of the benchmark, referred to asoccurrence, we have chosen not to address transparent
a work unit, consists of 104 directory updates. Theresolution of cross-directory renames in our current
execution of a work unit proceeds in three steps:implementation. But we do guarantee detection of such

renames, and mark both parents in conflict. The next • creation of 20 new objects, consisting of 14
files, 4 subdirectories, 1 link and 1 symbolicversion of our system will support this missing
link. These numbers approximate thefunctionality.
observed composition of typical user
directories in our environment.

6. Evaluation • simulation of editor activity on the newly-
A log-based approach to directory resolution incurs time created files. This is done by creating, then

removing, a checkpoint file for each.and space overheads. The time overhead occurs mainly
during resolution, with logging being an almost negligible • simulation of C++ compiler activity on the
contributor in our implementation. The space overhead newly-created files. For each such file, foo.c, a
arises from the need to maintain logs at servers. The rest of file foo..c is created; next, a file foo..o is
this section answers the two obvious questions that follow created, then renamed to foo.o; finally foo..c is
from these observations: removed.

• How well does resolution perform?
An experiment consists of first measuring the work time

• How fast does the log grow during partition? for performing a variable number of work units on each of
n partitioned replicas of a directory. Then the partitions
between the replicas are healed, resolution is triggered, and

6.1. Performance of Resolution the resolution time is measured.

We performed two sets of experiments, one involving6.1.1. Metric
partitioned work only at one replica, and the otherA fair estimate of the overhead due to resolution must
involving partitioned work at all replicas. In each set, weaccount for the fact that resolution will take longer when
examined configurations involving 2, 3 and 4 replicas. Forthere are more partitioned updates to resolve. Hence the
each configuration, we varied the load from 1 to 10 workmetric we use in our evaluation is the ratio of two times:
units.resolution time and work time. Resolution time is the

elapsed time between detection of a partitioned update and

Rep Load Work Time Resolution Time (seconds) Res Time
Factor (seconds) Total Phase 1+4 Phase 2 Phase 3 Work Time

2 1 27.9 (0.4) 1.5 (0.0) 0.1 (0.0) 0.1 (0.0) 1.3 (0.0) 5.4%
2 69.7 (6.3) 2.9 (0.1) 0.2 (0.0) 0.1 (0.0) 2.7 (0.1) 4.2%
3 111.6 (6.9) 4.5 (0.0) 0.2 (0.0) 0.1 (0.0) 4.2 (0.0) 4.0%
5 188.0 (1.0) 7.8 (0.1) 0.2 (0.0) 0.2 (0.0) 7.4 (0.1) 4.1%
7 352.1 (7.5) 12.0 (0.1) 0.2 (0.0) 0.2 (0.0) 11.6 (0.1) 3.4%

10 563.4 (3.9) 18.2 (0.4) 0.3 (0.0) 0.3 (0.0) 17.6 (0.4) 3.2%

3 1 28.5 (2.1) 1.9 (0.0) 0.2 (0.0) 0.1 (0.0) 1.7 (0.0) 6.7%
2 79.5 (2.5) 3.7 (0.1) 0.2 (0.1) 0.1 (0.0) 3.4 (0.1) 4.7%
3 118.1 (10.7) 5.8 (0.3) 0.2 (0.1) 0.1 (0.0) 5.4 (0.2) 4.6%
5 224.8 (10.2) 9.0 (0.3) 0.3 (0.1) 0.2 (0.0) 8.6 (0.3) 4.0%
7 337.1 (9.8) 12.7 (0.3) 0.2 (0.1) 0.2 (0.0) 12.2 (0.2) 3.8%

10 475.2 (7.2) 19.7 (0.3) 0.4 (0.2) 0.3 (0.0) 19.0 (0.3) 4.1%

4 1 27.9 (0.2) 2.0 (0.4) 0.2 (0.0) 0.2 (0.2) 1.7 (0.1) 7.2%
2 78.6 (7.0) 3.7 (0.0) 0.2 (0.0) 0.1 (0.0) 3.4 (0.0) 4.7%
3 109.5 (3.2) 5.6 (0.4) 0.3 (0.2) 0.1 (0.0) 5.2 (0.1) 5.1%
5 278.8 (2.9) 9.7 (0.1) 0.3 (0.1) 0.2 (0.0) 9.3 (0.2) 3.5%
7 341.7 (9.0) 14.5 (0.6) 0.3 (0.0) 0.2 (0.0) 14.0 (0.6) 4.2%

10 525.2 (5.7) 25.0 (4.5) 3.7 (4.1) 0.3 (0.0) 21.1 (0.8) 4.8%

This data was obtained using a Decstation 3100 with 16MB of memory as client, and Decstation 5000/200s with 32MB of memory as
servers communicating over an Ethernet. The numbers presented here are mean values from three trials of each experiment. Figures in
parentheses are standard deviations.

Table 1: Resolution Time After Work at One Replica

6.1.3. Results significantly higher than in Table 1. This is a consequence
Tables 1 and 2 present the means and standard deviations of our parallel RPC implementation. A large log fetch
of work and resolution times observed in three trials of from one site and zero-length log fetches from the others is
each experiment. They also indicate the contributions of much more efficient than a number of smaller, equal-sized
individual phases to total resolution time. The tables log fetches from each site.
indicate that resolution time increases primarily with load,

Phase 3 is typically the dominant contributor to the totaland secondarily with the replication factor.
time for resolution. This is not surprising, since the bulk of

The primary conclusion to be drawn from this data is that a work for resolution occurs here. This includes the shipping
log-based strategy for directory resolution is quite efficient, of merged logs, computation of compensating operations,
taking no more than 10% of the work time in all our and application of these operations.
experiments. This holds even up to a load of 10 at a

Table 1 also shows that resolution time grows linearly withreplication factor of 4, corresponding to over 1000 updates
workload unlike work time which grows supra-linearly.being performed on each of 4 replicas of a directory.
This is because of interactions with the RVM package. At

The tables show that phases 1 and 4 contribute very little to higher loads, the time for truncating the RVM log gets
the overall resolution time. Since these phases merely do included in the worktime but not in the resolution time
locking and unlocking, the time for them should be because the client’s RVM log is much smaller than the
independent of load. But, as a sanity check in our current servers’ RVM log.
implementation, the coordinator collects the replicas to
verify equality before unlocking in Phase 4. This accounts
for the dependence of this phase on load and replication 6.2. Size of Log
factor in our experiments. Since a log grows linearly with work done during partition,

any realistic estimate of log size has to be derived from
Phase 2 consists of extraction and shipping of logs by empirical data. Our analysis is based on about 4GB of file
subordinates. The time for this is dependent on the total reference traces to AFS and Coda obtained over a period of
lengths of the logs, which is only related to the total 10 weeks from 20 Coda workstations. The usage profile
amount of work. This is apparent in Table 1 where the captured in these traces is typical of research and
time for phase 2 increases with load but is invariant with educational environments. These traces were used as input
degree of replication. The times for Phase 2 in Table 2 are to a simulation of the logging component of the resolution

subsystem.

Rep Load Work Time Resolution Time (seconds) Res Time
Factor (seconds) Total Phase 1+4 Phase 2 Phase 3 Work Time

2 1 72.1 (16.6) 1.7 (0.1) 0.2 (0.0) 0.1 (0.0) 1.4 (0.1) 2.4%
2 187.1 (10.5) 12.7 (1.5) 0.2 (0.0) 8.8 (1.2) 3.8 (1.5) 6.8%
3 198.8 (3.9) 12.0 (1.0) 0.2 (0.1) 8.8 (1.2) 2.9 (0.1) 6.0%
5 517.4 (38.6) 20.5 (2.1) 0.7 (0.5) 12.2 (2.0) 7.6 (0.6) 4.0%
7 578.9 (38.1) 26.5 (1.7) 0.3 (0.1) 13.6 (1.2) 12.5 (2.9) 4.6%

10 927.9 (16.8) 39.5 (2.5) 11.0 (0.0) 11.7 (2.4) 16.9 (0.2) 4.3%

3 1 100.5 (12.0) 2.8 (0.3) 0.2 (0.0) 0.1 (0.0) 2.5 (0.3) 2.8%
2 194.0 (4.5) 10.6 (2.2) 0.2 (0.0) 4.2 (3.5) 6.2 (1.3) 5.5%
3 329.9 (10.5) 16.3 (3.1) 0.6 (0.6) 8.2 (3.5) 7.6 (0.2) 4.9%
5 569.1 (16.8) 30.9 (6.1) 5.7 (4.5) 12.2 (2.0) 13.1 (0.3) 5.4%
7 847.0 (75.2) 45.4 (8.6) 7.2 (1.4) 12.9 (4.2) 25.2 (5.8) 5.3%

10 1296.8 (9.9) 133.3 (13.9) 17.1 (1.2) 18.5 (1.7) 97.7 (13.2) 10.3%

4 1 129.2 (15.9) 7.6 (0.3) 0.7 (0.7) 1.5 (2.2) 5.4 (1.7) 5.9%
2 307.1 (32.3) 26.1 (6.8) 1.3 (1.0) 7.6 (6.3) 17.2 (7.5) 8.5%
3 463.7 (37.5) 38.8 (17.7) 2.8 (2.8) 15.7 (2.5) 20.3 (12.5) 8.4%
5 779.6 (67.7) 43.6 (9.9) 7.2 (8.3) 12.2 (2.0) 24.2 (1.3) 5.6%
7 1019.4 (14.8) 78.4 (29.6) 17.1 (8.3) 11.1 (4.2) 50.2 (21.2) 7.7%

10 1837.5 (13.3) 114.0 (16.7) 17.6 (18.1) 18.2(10.0) 78.3 (12.8) 6.2%

This data was obtained from experiments using the same hardware configuration as for Table 1. The numbers presented here are the
mean values from three trials of each experiment. Figures in parentheses are standard deviations.

Table 2: Resolution Time After Work at All Replicas

The simulator assumes that all activity in a trace occurs Bytes per Hour Percentage of Volumes
while partitioned, and maintains a history of log growth at

0 to 100 65.91%15-minute intervals for each volume in the system. For
each directory update in the trace, the simulator increments 100 to 200 20.45%
the corresponding volume’s log length by the size of the

200 to 300 4.55%
log record that would have been generated by a Coda

300 to 400 6.82%server. At the end of simulation, the average and peak log
growth rates for each volume can be obtained from its 400 to 500 2.27%
history.

> 500 0.00%

Table 3 shows the distribution of long-term average rate of
This data was obtained by trace-based simulation andlog growth over all the volumes encountered in our traces. shows the distribution of long-term average growth rates

This average is computed by dividing the final log size for for 44 AFS and Coda volumes over a period of 10 weeks
from 20 workstations.a volume by the time between the first and last updates on

it. It is clear from Table 3 that long-term log growth is Table 3: Long-Term Average Log Growth Rates
relatively low, averaging about 94 bytes per hour.

anticipated scenarios. Since hourly growth is less than
Focusing only on long-term average log growth rate can be 10KB in 99.5% of our data points, and since an hour-long
misleading, since user activity is often bursty. A few hours partition could have straddled two consecutive hours of
of intense activity during a partition can generate much peak activity, we infer that a 20KB log will be adequate for
longer logs than that predicted by Table 3. To estimate the most hour-long partitions in our environment. More
log length induced by peak activity, we examined the generally, a partition of N hours could have straddled N+1
statistical distribution of hourly log growth rates for all consecutive hours of peak activity. Hence a log of 10(N+1)
volumes in our simulation. Figure 5 shows this KB would be necessary. If a Coda server were to hold 100
distribution. Over 94% of all data points are less than volumes (a typical number at AFS installations), the total
1KB, and over 99.5% are less than 10KB. The highest log space needed on the server would be (N+1) MB.
value observed was 141KB, but this occurred only once.

A worst-case design would have to cope with the highest
growth rate during the longest partition. A more realistic
design would use a log adequate for a large fraction of the

0 20000 40000 60000 80000 100000 120000 140000 160000

0.01%

0.1%

1.0%

10.0%

100.0%

0.001%

Bytes per Hour

F
re

q
u

en
cy

This histogram shows the distribution of log growth rates for each hour for each volume. Since 44 AFS and Coda volumes were traced
over a 10 week period from 20 workstations, there are nearly 74,000 data points in this histogram. The width of each histogram bar is
1KB. Note that the scale on the vertical axis is logarithmic.

Figure 5: Observed Distribution of Hourly Log Growth

optimistic replication and to recognize that Unix semantics7. Status and Future Work
could be used for directory resolution. But the proposedToday, Coda runs on IBM RTs, Decstation 3100s and
ideas were not successfully implemented in the original5000s, and 386-based laptops such as the Toshiba 5200 and
system. More recently, Guy [6] has developed anIBM PS/2-LX40. A small user community has been using
implementation of directory resolution in the context ofCoda on a daily basis as its primary data repository since
Ficus, a descendant of Locus.April 1990. All development work on Coda is done in

Coda itself. As of June 1992 there was nearly 1GB of
The Coda approach of logging directory updates istriply-replicated data in Coda. A prototype of the
conceptually simpler than the Ficus approach of inferringresolution subsystem described in this paper has been
these updates from the final states of replicas. The twooperational since May 1991.
approaches also differ in their implications for resolution
performance. In Coda, performance depends only on theOur immediate plans are to provide support for transparent
amount of partitioned activity. In Ficus, both directory sizeresolution of cross-directory renames, as discussed in
and degree of replication are dominant factors in theSection 5.3.4. In the longer term, we plan to explore the
performance of resolution.use of rule-based heuristics for directory resolution. Such

heuristics can be exploited by sophisticated applications
Like Coda, Ficus preserves information about deletedand end users to customize the resolution of conflicting
objects in order to detect remove/update conflicts. But thepartitioned directory updates.
systems differ markedly in their approach to reclaiming
space pertaining to these objects. Ficus uses a complex
distributed garbage collection algorithm whose scalability8. Related Work
is open to question. Coda, in contrast, uses the muchThe use of optimistic replication for high availability was
simpler strategy of allowing each site to unilaterallyexplored by a number of researchers in the early 1980s,
reclaim resources via log wrap-around. This provides aincluding Garcia-Molina [4], Blaustein [1], and
clearly-defined trade-off between usability and resourceDavidson [2]. Their work is summarized in the excellent
usage, one we believe is essential in any practical system.survey by Davidson et al [3]. Most of this work was done
Finally, we believe that the presence of an explicit log willin the context of a distributed transactional model, and does
make it easier to separate policy and mechanism innot directly apply to Unix file systems.
resolution, thereby simplifying the implementation of
heuristic-based resolution.Locus [13] was the first distributed file system to use

[4] Garcia-Molina, H., Allen, T., Blaustein, B.,9. Conclusion
Chilenskas, R.M., Ries, D.R.Although conceptually simple, log-based directory
Data-Patch: Integrating Inconsistent Copies of aresolution has turned out to be more complex to implement

Database After a Partition.than we originally expected. One source of complexity is
In Proceedings of the 3rd IEEE Symposium onthe need to consider many pathological situations during

Reliability in Distributed Software and
the computing of compensating operations. Another Database Systems. October, 1983.
source is the need to ensure that all steps of the resolution

[5] Guy, R.G.protocol are robust in the face of failures. We have
A Replicated Filesystem Design for a Distributedachieved this by making the protocol idempotent. An

Unix System.alternative strategy would have been to use distributed
Master’s thesis, Department of Computer Science,transactions. However, that approach would have required

University of California, Los Angeles, 1987.us to run the risk of blocking in case of coordinator failure.
It would have also been counter to Coda’s general [6] Guy, R. G., Popek, G. J.
philosophy of using optimistic strategies whenever Reconciling partially replicated name spaces.

Technical Report CSD-900010, University ofpossible, to improve transparency from the user’s
California, Los Angeles, April, 1990.perspective.

[7] Kistler, J.J., Satyanarayanan, M.Our experience with log-based resolution has been highly
Disconnected Operation in the Coda File System.

positive. Our initial concerns about excessive space usage ACM Transactions on Computer Systems 10(1),
for logging have proved baseless. The speed of resolution February, 1992.
is excellent, and is rarely noticeable in normal operation.

[8] Mashburn, H., Satyanarayanan, M.Overall, we believe that a log-based strategy is indeed
RVM: Recoverable Virtual Memory User Manualappropriate for directory resolution in a distributed file
School of Computer Science, Carnegie Mellonsystem that supports optimistic replication.

University, 1991.

[9] Satyanarayanan, M., Siegel, E.H.
Parallel Communication in a Large DistributedAcknowledgements

Environment.The possibility of using logging for directory resolution
IEEE Transactions on Computers 39(3), March,was first suggested by James Kistler. We are indebted to

1990.Lily Mummert for the file reference traces used in Section
6.2, and to Maria Okasaki for the AFS file size statistics

[10] Satyanarayanan, M., Kistler, J.J., Kumar, P.,used in our directory resolution benchmark. We also wish
Okasaki, M.E., Siegel, E.H., Steere, D.C.to express our appreciation to the other members of the
Coda: A Highly Available File System for aCoda project: Hank Mashburn, Brian Noble, Gowthami

Distributed Workstation Environment.Rajendran, and David Steere.
IEEE Transactions on Computers 39(4), April,

1990.

[11] Satyanarayanan, M.References
Scalable, Secure, and Highly Available Distributed

[1] Blaustein, B., Garcia-Molina, H., Ries, D.R., File Access.
Chilenskas, R.M., Kaufman, C.W. IEEE Computer 23(5), May, 1990.
Maintaining Replicated Databases Even in the

[12] Satyanarayanan, M.Presence of Network Partitions.
The Influence of Scale on Distributed File SystemIn Proceedings of the IEEE 16th Electrical and

Design.Aerospace Systems Conference. September,
IEEE Transactions on Software Engineering 18(1),1983.

January, 1992.
[2] Davidson, S.B.

[13] Walker, B., Popek, G., English, R., Kline, C.,An Optimistic Protocol for Partitioned Distributed
Thiel, G..Database Systems.
The LOCUS Distributed Operating System.PhD thesis, Department of Electrical Engineering
In Proceedings of the 9th ACM Symposium onand Computer Science, Princeton University,

Operating System Principles. October, 1983.1982.

[3] Davidson, S.B., Garcia-Molina, H., Skeen, D.
Consistency in Partitioned Networks.
ACM Computing Surveys 17(3), September, 1985.

Table of Contents
1. Introduction 1
2. Coda File System 1

2.1. Replica Control Algorithm 2
2.2. Directory Updates 2

3. Overview of Directory Resolution 2
4. The Resolution Log 3

4.1. Log Storage 3
4.2. Log Format 4

5. The Resolution Algorithm 5
5.1. Compensation at One Site 5
5.2. The Resolution Protocol 6

5.2.1. Phase 1: Locking 6
5.2.2. Phase 2: Log Collection and Merging 6
5.2.3. Phase 3: Log Distribution and Compensation 7
5.2.4. Phase 4: Unlocking 7

5.3. Complications 7
5.3.1. Coping with Finite Logs 7
5.3.2. Resolving with Partial VSG 7
5.3.3. Manual Repairs and Resolution 8
5.3.4. Cross-Directory Renames 8

6. Evaluation 8
6.1. Performance of Resolution 8

6.1.1. Metric 8
6.1.2. Experiment Design 8
6.1.3. Results 9

6.2. Size of Log 9
7. Status and Future Work 11
8. Related Work 11
9. Conclusion 12
Acknowledgements 12
References 12

List of Figures
Figure 1: A Simple Log Entry 4
Figure 2: More Complex Log Entries 4
Figure 3: The Compensation Algorithm at Site 2 5
Figure 4: Phases of the Resolution Protocol 6
Figure 5: Observed Distribution of Hourly Log Growth 11

List of Tables
Table 1: Resolution Time After Work at One Replica 9
Table 2: Resolution Time After Work at All Replicas 10
Table 3: Long-Term Average Log Growth Rates 10

