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Abstract 
A simple and general design uses message-based com- 
munication to provide software tolerance of single- 
point hardware failures. By delivering all interprocess 
messages to inactive backups for both the sender and 
the destination, both backups are kept in a state in 
which they can take over for their primaries. 

An implementation for the Auragen 4000 series of 
M68000-based systems is described. The operating sys- 
tem, Autos TM, is a distributed version of UNIX *. Major 
goals have been transparency of fault tolerance and ef- 
ficient execution in the absence of failure. 

1. I n ~ o d u c t i o n  
This paper describes the design and implementation of 
message-based interprocess communication to support 
fault tolerant computing in an on-line transaction pro- 
cessing environment. The system assures that all exe- 
cuting processes will survive any single hardware fail- 
ure. The scheme works efficiently and automatically; 
little processing overhead is incurred and no program- 
mer or user awareness is required for fault tolerant op- 
eration. A simple and general design is presented in the 
first half of the paper. After that, we describe the details 
of our implementation which is embedded in a distrib- 
uted version of UNIX running on the Auragen 4000 
computer. 

Section 2 reviews some existing methods for imple- 
menting fault tolerance. Section 3 describes the goals 
and scope of our work. In Sections 4, 5, and 6, we intro- 
duce the design and algorithms on which the Auragen 
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message system implementation is based. Section 7 de- 
scribes our implementation, first summarizing the 
hardware design and then detailing the software sup- 
porting fault tolerance. In Section 8, we review the im- 
plementation with an eye toward prediction of the effi- 
ciency of the system. 

2. Background 
Though all fault tolerant systems require the duplica- 
tion of hardware and software resources, they differ in 
the following areas: 

1. The kinds of faults which are tolerated; 
2. The manner in which duplicate resources are 

used to provide fault tolerance; 
3. The extent to which additional hardware can be 

used  to increase computing power in the absence 
of failures; 

4. The amount of programmer knowledge required 
to write and run fault tolerant programs. 

There is currently much interest in the analysis and 
detection of and recovery from software failure. How- 
ever, the complexity and cost of implementing availa- 
ble solutions has limited their practicality. We are con- 
cerned with systems which attempt to guarantee 
survival in the presence hardware failures and to limit 
the effects of software errors. 

Existing fault tolerant systems are similar in that all 
require that every p r imary  process (executing pro- 
gram) have one or more backup  processes [which may 
or may not be executing} capable of continuing execu- 
tion if the primary fails. 

In some systems, duplicate hardware is dedicated 
for backups. A process and its backups execute simulta- 
neously on tightly coupled processor's and are essen- 
tially indistinguishable. If one processor fails, the others 
continue without interruption. Though recovery in 
case of a crash is instantaneous, the duplicate hardware 
provides no increased computational capability. This 
scheme is very costly for applications which do not re- 
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quire real-time response in the face of failure (6}. 
A second approach involves keeping an inactive 

{xecuting) backup process which, upon failure of 
the primary's CPU, can be brought up on another CPU 
to take over for its lost primary. The state of the backup 
as represented by the universe of values in its data 
space must be identical to that of the primary, or be ca- 
pable of becoming identical. In the absence of failure, 
the duplicate hardware can be used to run additional 
primary processes. 

Designs using inactive backups differ in the way in 
which and efficiency with which backup processes are 
maintained. One strategy is to explicitly checkpoint, 
i.e., to copy the data space of the primary to that of the 
backup, whenever the former changes. (1) Though the 
backup is inactive so that the extra CPU can be used for 
other purposes, the frequent copying of the primary's 
data space slows down the primary process and uses up 
a large portion of the added comput~g power. In addi- 
tion, checkpointing is not an automatic action taken by 
the operating system, but must be called by a program, 
requiring either preprocessing or programmer knowl- 
edge of the requirements of fault tolerance. 

The design described below also uses inactive back- 
ups. However, explicit checkpointing is replaced with a 
message-based strategy which is both automatic and ef- 
ficient. 

3. Goals 
The goals of our research have been to design and im- 
plement an operating system mechanism which pro- 
vides efficient fault tolerant operation suitable for use 
in an on-line transaction processing environment. Ease 
of use is a high priority goal in our overall design. As a 
result, a primary concern is that fault tolerant operation 
be entirely transparent to users of the system. 

3.1 Fault  Tolerance 
We define a fault tolerant system as one which assures 
that all processes will survive a single hardware failure. 

In our model, hardware consists of two or more 
processing units.  A processing unit is a traditional 
computer, consisting of processor(s), memory, and op- 
tional peripheral devices. Processing units communi- 
cate via message over some communication medium 
(e.g., bus or network I. 

Each processing unit is assumed to run its own inde- 
pendent copy of the operating system kernel in order to 
support the execution of processes. A process is an exe- 
cution of a program whose scheduling and access to lo- 
cal resources is controlled by the operating system ker- 
nel. Processes execute kernel code only via a limited 
number of system calls. 

The operating system kernel is presumed to be free 

of errors. Our design does not attempt to provide com- 
plete software fault tolerance, but provide software 
which will tolerate, i.e., quickly and automatically re- 
cover from, hardware failures. 

A fai lure is an algorithmic or mechanical hardware 
malfunction which makes impossible the continued ex- 
ecution of a process (e.g., failure in an isolatable portion 
of memory} or all processes [e.g., failure of the proces- 
sor itself I in one processing unit. Multiple hardware 
failures which cause more than on processing unit to 
become inoperable are not handled. 

3.2 Efficiency 
Our design presumes an on-line transaction processing 
environment, rather than real time process control. In 
addition, we assume that failures are infrequent. There- 
fore, we are concerned with efficiency during normal 
execution, but are willing to tolerate some inefficiency 
during recovery from a failure. The system should be 
efficient in the sense that it maximizes the productive 
use of hardware during normal execution, i.e., in the 
absence of failure. A solution which requires the dedi- 
cation of substantial system resources solely for the 
support of fault tolerance is therefore unacceptable. 

3.3 Trunsparency 
We require that fault tolerance be transparent to both 
the programmer and the user. That is, no special pro- 
gramming should be required for a program to run fault 
tolerantly. Failure detection and recovery must be auto- 
matic. User programs should be completely unaware of 
the failure and a user at ~i terminal should notice at most 
a short delay during recovery. 

4. The Auragen Approach 
We distinguish two types of processes. User processes 
communicate {perform all input and output I via mes- 
sage and have no direct access to peripherals. Actual 
device IO is performed as the result of requests sent to 
peripheral server processes. Peripheral servers are 
associated with specific devices which they access via 
special system calls not available to user processes. 
They execute only in processing units with peripherals 
and handle all user requests for real IO. 

This section and the next describe the algorithms 
and mechanisms used to provide fault tolerance for 
user processes. Peripheral server processes require a 
slightly different treatment which is discussed in sec- 
tion Z9. 

Our approach is based upon the following require- 
ment of determinism in user processes: If two proc- 
esses start out in the identical state, and receive identi- 
cal input, they will perform identically and thus 
produce identical output. 
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Each primary process has an inactive backup resi- 
dent in a processing unit other than that of the primary. 
A backup process is kept nearly up-to-date and is pro- 
vided with all information necessary to bring itself up 
to the state of the primary, and continue execution as 
the new primary, should there be a failure. 

Thus, if a primary and its backup are initially identi- 
cal, and, if all input (messages} to the primary process is 
also made available to the backup, then on failure of the 
primary, the backup can catch up by recomputing 
based on the same messages which were used by the 
primary. 

In order to avoid complete recomputation by the 
backup upon failure, a primary process and its backup 
can be periodically synchronized. In the intervening 
periods, when the backup is not identical to the pri- 
mary, all messages to the primary are kept available for 
the backup. Upon synchronization, all messages previ- 
ously read by the primary may be discarded. If the pri- 
mary fails, the backup executes {rolls forward} from the 
point of last synchronization using the saved input. 

5. The Message System 
A message system embedded in the operating system 
kernel is used to support the above algorithms. It pro- 
rides and controls interprocess communication includ- 
ing the transfer and routing of messages. It initiates the 
creation and deletion of backup processes and controls 
the periodic synchronization of primary and backup. It 
assures that the backup has the necessary information 
to take over in case of failure, and that it will interact 
correctly with the rest of the system. 

The message system must assure that: 
1. During normal execution, all messages sent to the 

primary which were unread or arrived since the 
point of last synchronization, are available to the 
backup. 

2. The priraary's state as of last synchronization is 
accessible to the kernel controlling the backup's 
processing unit. 

3. The backup process, during recovery, reads the 
available messages in exactly the same order as 
did the primary. 

4. Also during recovery, the backup will not resend 
any messages already sent by the primary. 

The following sections describe how this is accom- 
plished. 

5.1 Mult i -way Message Transmiss ion  
Every message which is sent from one primary process 
to another is actually sent to three destinations: 

1. The requested primary destination process; 
2. The backup of the primary destination process; 
3. The backup of the sending process. 

In 
level 
it,/. 

The underlying hardware or software must guaran- 
tee the atomicity of the multiple delivery of a message 
destined for more than one location. 

That is: 
1. Either all three destinations receive the message, 

or none receive it. 
2. The arrival of the message to its three destinations 

is never interleaved with that of any other mes- 
sage, assuring that a primary and its backup al- 
ways receive messages in the same order. In 
other words, if two messages are sent, one will 
reach all of its destinations before the other ar- 
rives at any of its destinations. 
our implementation, the bus hardware and low 
software driver protocols guarantee such atomic- 

The message is used in a different way at each of the 
three destinations: 

1. At the primary destination, the message is 
queued up for reading by the primary destination 
process; 

2. At the backup destination, it is queued up and 
saved for the backup of the destination process, to 
be read only upon rollforward after a failure; 

3. And, at the sender's backup, a count of messages' 
sent since synchronization is incremented and 
the message is discarded. 

Thus, every backup process has a queue of messages 
which have been sent to its primary, and a count of all 
messages which have been sent by its primary. In addi- 
tion, the primary keeps a count of the number of mes- 
sages it has read since the last synchronization. 

5.2 State Saving Dur ing  Synchronizat ion  
During normal operation a primary and its backup are 
automatically synchronized whenever the primary has 
read more than a system-defined number of messages 
(allowing that many of the backup's messages to be dis- 
carded), or, if it has executed for more than a system- 
defined amount of time since last synchronization. 

Any changes in the address space of the primary 
since last synchronization are stored so they are availa- 
ble for the backup in case of failure. This is accom- 
plished by cooperation between the message system 
and the system's paging mechanism, which is 'detailed 
in Section 7.6. 

Next, a sync message containing a small amount of 
state information is sent directly to the kernel in the 
backup's processing unit. This includes the count of the 
number of reads done by the primary since the last syn- 
chronization. The availability of this count allows any 
messages saved for the backup, but already read by the 
primary, to be discarded. After synchronization the 
backup will have the correct set of messages available. 
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The arrival of a sync message also causes the backup's 
count of messages sent since sync by the primary to be 
zeroed. 

5.3 Message Ordering 
It has been assumed that all messages arrive at the pri- 
mary's and backup's processing units in the same or- 
der, and are queued up in FIFO order. It is not neces- 
sary that processes read their messages in FIFO order 
as long as the mechanism used to decide the ordering is 
deterministic. Auragen's implementation, which in- 
volves multiple input queues, each of which is accessed 
in FIFO order, is described in Section 7.4. 

5 . 4  Avoiding Redundant Messages 
One remaining concern is that the backup not resend 
any messages which were generated by the primary be- 
tween the last synchronization and failure. Recall that 
the third message destination is the sender's backup, 
where the message is counted and discarded. Every 
time the backup, which has become the new primary, 
begins to execute code to send a message it checks the 
value of the count. If the count is positive {this message 
was already sent by the primary I, it is decremented and 
the message is not sent; if the count is zero the message 
is sent. 

6. Handling a Failure 
When a failure affecting an individual process occurs, 
the kernel in the processing unit containing the pro- 
cess's backup is notified and makes the backup runna- 
ble. This includes notification of all of the process's cor- 
respondents. If an entire processing unit crashes, every 

other unit is notified. Each kernel then makes active all 
backups whose  primaries were  executing in the 
crashed unit. 

Each backup {after optionally creating a new backup 
process) begins executing in the state that the failed pri- 
mary had achieved at the time of last synchronization. 
It has exactly the right messages available, is assured of 
reading them in the correct order, and has available the 
address space of the primary at the time of last synchro- 
nization via its page account. 

7. Implementation 
This section describes an implementation of the mes- 
sage system on the Auragen 4000 series of computers. 
The implementation project is ongoing. 

7.1 Hardware 
Auragen's basic processing unit is called a dus te r .  The 
Auragen 4000 consists of 2 to 32 clusters connected by a 
dual high-speed intercluster bus. Each cluster contains 
3 to 7 Motorola M68000s and a large shared memory. 
Two of the processors in each cluster run user and sys- 
tem server processes. These are referred to as work  
processors. They execute either memory-mapped in 
user mode {with demand paging I or unmapped in ker- 
nel mode. A third processor, known as the executive 
processor, is connected to the cluster's memory and to 
the intercluster bus. It controls all intercluster message 
traffic. The remaining processors control peripherals 
and communication ports. All peripherals are dual- 
ported and connected to two clusters. In addition, disks 
are connected in pairs to facilitate mirrored files. It is 
possible for a cluster to have no peripherals. 

Processor Clusler 

o . . . . . . . .  "ooq  
Processor(s) Memory Processorl s} 

Processor Cluster 

Executive W o r ~  
Processor Processor 

Cluster Bus 

Ptocessor~s~ Processor(el 

Inlerface MoClule( s Inlerface Module(s] 
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7.2 The Operating System Kernel 
The Auragen operating system, Auros TM, is derived 
from and is compatible with Bell UNIX* System HI. A 
copy of the Auros TM kernel resides in each cluster. The 
function of the Auros TM kemel is different from that of 
the standard UNIX kernel. It is limited in that it per- 
forms only cluster local operating system functions 
such as scheduling runnable processes, memory man- 
agement, control of local peripherals, and message han- 
dling. It does not handle global resource control. Some 
portions of the kernel, in particular, those responsible 
for message transmission and delivery, execute only on 
the executive processor; others are executed directly by 
user processes on the work processors as the result of 
system calls. 

The kernel is backed up only in the sense that an in- 
dependent copy, capable of running processes, exists in 
each cluster. The kernels are not synchronized. This 
means that the identical kernel state will not be availa- 
ble to a backup process and thus must not be required. 
As a result, user processes synchronize to an identical 
state in user mode, never in kernel mode. 

Operating system functions which must be globally 
available and consistent have been removed from the 
kernel to server processes. For example, file system 
control is the duty of file server processes, while page 
management is handled by one or more global page 
server processes, 

7.3 Backup Modes 
The kernel allows processes to be backed up in three 
ways depending on when and whether a new backup 
process is created after a crash occurs. 

1. Qua r t e r backs  run backed up until a crash oc- 
curs, but no new backup is created for them after 
a crash. Most relatively short-lived user programs 
will run in this mode. 

2. H a l f b a c k s  have new backups created only 
when the cluster in which the original primary 
ran is returned to service. Peripheral servers are 
backed up in this way because their primary and 
backup must be located in the two clusters con- 
nected to the device they control. 

3. Ful lbacks  have new backups created before the 
new primary begins executing. A system must 
consist of at least three clusters for fullbacks exist. 

The backup mode can be specified by the user. T h e  
default mode, at least for the first implementation, will 
be quarterback. 

7.4 Message System 
and Interprocess Commnnlcatlon 
In Auros TM the message system is contained in and f ~ y  
integrated with the kernel. It is the basis for process 

fault tolerance and controls all interprocess communi- 
cation. 

7.4.1 C h a n n e l s  
Processes send and receive messages via channels. An 
entry in a cluster-local table, the rou t ing  table,  defines 
one end of a channel. A cluster's routing table resides in 
kernel space in main memory and is maintained by 
message system code executing either in the work or 
executive processors. A routing table entry contains: 

1. All information necessary to route a message to 
the primary destination and to the backups of 
both the destination and the sender. 

2. A queue for holding incoming messages. 
3. Status information including the way in which 

the communicating processes are backed up and 
the type of process at the other end {system server 

• or another user I. 
A channel between two backed up processes con- 

sists of four routing table entries, one for each primary 
and one for each backup. 

A channel is opened and routing table entries are 
made as the result of UNIX o p e n  system calls executed 
by two processes wishing to communicate. Each o p e n  
returns an integer file descriptor used to reference the 
channel in subsequent r e ad  and wr i t e  system calls. 
We retain the the term 'file descriptor' and its abbrevia- 
tion, fd, from UNIX, though channels do not necessar- 
ily represent files. 

An o p e n  causes an open request message to be 
sent on a preexisting channel to a file server. If the 
name to be opened represents a file, the file is opened 
and an o p e n  rep ly  is sent to the opener and its backup. 
If the name is a channel name, the file server pairs up 
openers to the same name and sends open replies back 
to the openers and to their backups. The arrival of an 
open reply at a backup cluster causes the creation of the 
backup routing table entry. 

7.4.2 Message Sending and Delivery 
The following operations occur when  a message is writ- 
ten on an open channel: 

1. The user process, in kernel mode, constructs a 
message containing routing information from the 
local routing table channel entry together with 
the message contents provided by the user pro- 
gram. The message is placed on the cluster's out- 
going queue. The user process then waits if an an- 
swer is required {e.g., if the message was a file 
server request) or returns from the system call. 

2. The executive processor, finding a message on the 
outgoing queue, transmits the message only once 
over the intercluster bus. 

3. The transmission is picked up by all clusters 
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whose address appears in the message's routing 
information. The hardware guarantees that either 
all or none of the target clusters receive the mes- 
sage. Since a cluster may transmit or receive only 
one message at a time, messages are never inter- 
leaved. 

4. Upon successful transmission to other clusters, 
the message is delivered to any local destination 
(there can be at most one) or is discarded. 

Message dehvery at the receiving end is also handled 
by the executive processor. Message protocol allows 
the processor to determine whether the message is for 
the primary destination, its backup, or the sender's 
backup. 

1. If it is for the primary destination, the message is 
enqueued on the channel's routing table entry, 
and, any process awaiting a message on the chan- 
nel awakened. 

2. If it is for the destination's backup, the message is 
enqueued but no process is awakened. 

3. If it is for the sender's backup, a count of 'writes 
since synchronization' is incremented in the rout- 
ing table e n t ~  and the message is discarded. 

7.5 D e t e r m i n i s m  of  User  Processes  
User processes are required to be deterministic. After a 
crash, the backup must roll forward, recomputing 
based on the same input provided to the primary which 
failed. However, the kernels in various clusters are not 
synchronized. Local information, such as cluster's local 
time, a process's priority at a particular point in its exe- 
cution, or the number of pages it has in memory, may 
differ depending on the cluster in which it executes. A 
user process and its backup must be insulated from 
such differences. Regardless of differences between 
clusters, every interaction between the kernel and a 
backup after crash must must appear to the backup the 
same as it did to the primary. 

We must consider the two ways in which user proc- 
esses interact with the kernel: Synchronously via sys- 
tem call, and asynchronously as the result of a system 
call or signal. 

7.5.1 S y n c h r o n o u s  Sys tem Cal l s  
Synchronous system calls fall into two categories. Some 
calls request local information concerning a process's 
state or identity, e.g., getuid, getpid. The user id ge- 
tu id  is cluster.independent. However, the process id in 
standard UNIX* is an index into a local process table 
and is environmental. We have made the process id 
into a globally unique identifier which is sent to the par- 
ent's backup on fork, and to the backup itself on first 
sync. 

Other synchronous system calls get information via 

message. Since the same messages are available to the 
backup, they are assured to return the same answer. 
Our system currently constrains all r eads  to be syn- 
chronous. If a message is not available when a r ead  is 
executed the process must await a message. It cannot 
return with 'no message found', because the backup on 
roUforward may not find its message queue in the same 
state. This does not preclude a server from aborting a 
read on its device, as long as an error response is be sent 
to both the primary reader and its backup. 

Two new system calls allow a process to group chan- 
nels together [bunch} and then to await arrival of the 
fast message on any channel in the group {whichl. 
Messages are given sequence numbers on arrival at a 
cluster so that the behavior of w h i c h  can be replicated 
by the backup. 

The wr i te  system call on a user-to-user channel can 
return as soon as the message has been placed on the 
cluster's outgoing queue. But, wr i tes  which require an 
answer from a server {e.g., a write to a file which may 
fail) cannot return until that answer arrives. 

The t im e  system call would return environmental 
information if handled as in standard UNIX. We have 
made that call the responsibility of the proce~ server 
{see below) rather than the local kernel. T im e  sends a 
request via message, and receives its answer via mes- 
sage. The backup will have the same response availa- 
ble. 

7.5 .2  A s y n c h r o n o u s  Interac l ton  
The only truly asynchronous system call is a l a rm,  
which requests that an alarm signal be generated after a 
particular amount of real time. This is handled in the 
same way as other asynchronous signals such as those 
resulting from typing a control C at a terminal. 

All asynchronous signals are sent via message and 
are queued up on a process's signal channel .  This 
does not include synchronous signals such as those gen- 
erated by a zero divide because they are sure to occur 
identically for the backup. Any signal which is ignored 
is removed from the queue and is counted as a 'read 
since sync: Any asynchronous signal which is not ig- 
nored causes the process to sync just prior to handling 
the signal. If a crash occurs, the backup will find the sig- 
nal and handle it immediately, at the same place as did 
the primary. 

7 . 6 0 p e r a l i n g  S y s t e m  Server Processes  
Recall that operating system services which must be 
both globally available and backed up cannot be pro- 
vided by the unsynchronized and independent Auros TM 

kernels. Such services are provided by server processes 
which come in two varieties, system servers and pe- 
ripheral servers. 
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System servers  are processes which keep track of 
global system resources via tables in their address 
space. They are backed up, communicate via message, 
and execute in the same way as ordinary user proc- 
esses. System servers are special in that they are started 
only by the operating system. When efficiency is essen- 
tial, a server's address space is locked into memory to 
avoid page fault delays. One such server, the process 
server, keeps track of the location of all processes in 
the system. It periodically receives reports from each 
kernel and services requests for system status informa- 

' tion. 
, Pe r iphe ra l  servers  are associated with logical or 

physical devices. They receive messages via normal 
backed up channels requesting them to perform opera- 
tions on the device. However, they are able to execute 
special system calls which control the associated de- 
vice. The server rhust be in one of the clusters con- 
nected to the device, and its backup must be in the 
other. A peripheral server's address space usually re- 
sides permanently in memory, though only in those 
clusters having the corresponding peripheral. This does 
not greatly increase the amount of space taken up by 
the system; in UNIX* all such functions, as part of the 
kernel, reside in main memory. 

There is a t ty  se rver  in each cluster having termi- 
nals. 

Three types of peripheral servers are associated with 
disks. 

A file server  is associated with each file system. 
Auros TM filesystems are logically the same as UNIX file 
systems, i.e., they are created and accessed via the 
same system calls, but are internally structured differ- 
ently to allow the file server to sync correctly. When a 
user process opens a file, it gets a channel to the appro- 
priate file server, which at the server's end is associated 
with the file. Processes always have at least three chan- 
nels to file servers: One for the text file currently being 
executed, and one each for the process's root and cur- 
rent directories. 

A raw server is associated with each disk to handle 
requests for direct access rather than via a file system. 

A page server  is associated with disk space used to 
hold the modified pages of a user's address space which 
have been paged out. A page fault causes a message re- 
questing the page to be sent to the page server if it was 
previously paged out, or to a file server if the page is a 
read only text page. When a modified page must be 
swapped out it is sent to the page server. The page 
server keeps one account for a primary process, and an- 
other for its backup. The backup's account contains all 
modified pages in their state as of last synchronization. 
The page server itself must permanently reside in 
memory. 

7.7 Creat ion  o f  B a c k u p  Processes  
A backup process consists of a process control block 
{PCB) corresponding to the combined UNIX user and 
process structures, less the kernel stack, and a backup 
page account kept by the page server. Backups for most 
system servers and peripheral servers are created when 
the primary comes into existence. This is not true for all 
user processes. Their backups are created only when 
absolutely necessary to assure fault tolerant operation. 

The processes in a cluster can be divided into fami- 
lies. All members of a family have a common ancestor 
process, the h e a d  of  fami ly .  There is no single ances- 
tor process for the entire cluster. All members of a fam- 
ily must have their backups in a single cluster. Backups 
for heads of families are created when the primary is 
created. However, a backup is not automatically cre- 
ated when a new child process is forked. 

Upon fork, a birth notice message is sent to the clus- 
ter of the forking process's backup. A birth notice 
causes routing table entries to be made for channels 
which are created on fork; they must be there to receive 
backup copies of messages sent to the primary. Chan- 
nels inherited from the parent process already have 
backup routing table entries. In case of crash, the birth 
notice is used during repetition of the fork to give the 
new child the same process id as its primary. 

The birth notice does not contain complete state in- 
formation and does not cause the creation of a backup 
process. Only the following events trigger the creation 
of backups for new processes. 

1. If a process has executed long enough for a sync 
to be required, the first sync {sent to the cluster of 
the parent's backup) causes the backup to be cre- 
ated. 

2. Whenever a process performs a sync, it must 
force any children which do not yet have backups 
to sync and create backups. This assures that 
their page accounts will be created correctly. 

In many cases, short lived processes will not have to 
have a backup process or a backup page account. 

7.8 S y n c h r o n i z a t i o n  o f  User  Processes  
Recall that the synchronization of a user process and its 
backup is automatically initiated by the kernel. When- 
ever a process's count of reads or execution time since 
last synchronization exceeds a preset amount, the proc- 
ess is forced to perform a sync  operation. It is possible 
to set the message count and execution time interval ~ 
which trigger sync for each process. 

The sync operation lat the primary's end} takes place 
in two parts. First, the normal paging mechanism is 
used to send all pages which have been modified since 
last sync to the page server. Since the user stack is kept 
in pages owned by the user, rather than in kernel space, 
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it will be sent to the page server if it has changed. The 
page server sees no difference between these pages and 
any other it receives. It simply adds them to the pri- 
mary's page account. 

The second part of the operation constructs a sync 
message. This message contains: 

1. All cluster-independent information kept about 
the process's state. For example, the virtual ad- 
dress of the next instruction to be executed, ac- 
counting information, current values in registers, 
etc. 

2. Channel information for any channel which has 
changed since last sync, i.e. opened, written to, 
read from. If the channel has been read from, the 
number of reads since sync is sent. 

The sync message is sent to the cluster of the pro- 
cess's backup and to the page server and its backup. 
Once the sync message has been placed on the outgoing 
queue by the primary, the process can continue normal 
execution. If it crashes before the message leaves the 
cluster, the backup will take over from an earlier point. 
And, because messages leave the cluster in the order in 
which they are placed on the outgoing queue, any sub- 
sequent message sent by the primary will not reach its 
backup and be counted until after the sync message has 
been processed. 

The page server's response to the sync message is to 
make the backup's account identical to that of the pri- 
mary. After a sync, only one copy of each page will ex- 
ist. The accounts will start to differ only when when 
new pages are received from the primary. Then, two 
copies will be kept only of those pages which have been 
modified since sync. 

When the sync message arrives at the backup clus- 
ter, the executive processor uses the contents of the 
message to update the backup's state and channel infor- 
marion. For each channel represented in the message: 

1. If the channel is new, the routing table entry [cre- 
ated as the result of an open reply message} is lo- 
cated and associated with the correct fd; 

2. If the channel has closed, its routing table entry is 
removed; 

3. If the count of reads since sync is positive, that 
many messages are removed from the associated 
message queue; 

4. The writes-since-sync count kept in the backup 
routing table entry is zeroed. 

Recall that either all or none of the destinations get 
the sync message. Therefore, the page account will not 
be updated unless the backup definitely is brought up 
to the state of the primary. 

At the completion of the above operations, the back- 
up's state is the same as that of the primary at the time it 
issued the sync Ithough the primary may have pro- 

gressed further by the time the backup is actually up- 
datedJ. The messages available to the backup are con- 
sistent with that state, as is the backup's page account. 

7.9 Synchronization of Peripheral Servers 
Synchronization of peripheral servers is different from 
that of other processes for a number  of reasons. 

First, peripheral servers must be core resident rather 
than paged. The page server cannot demand page its 
own tables and the file server cannot demand page its 
own text. The tty server cannot walt for a page before 
reading incoming characters. This means that a copy of 
the server's address space will not be available from the 
page server should the primary crash. 

Second, the peripheral servers communicate with 
devices directly rather than via message. As a result, 
the requests for action given to the driver, and the an- 
swers it produces, will not be available in the backup 
cluster. Only the original requests from user processes 
will find there way there. 

Our solution uses active backup processes with 
memory-resident address space for peripheral servers. 
The primary server repeatedly reads, services, and re- 
sponds to users' requests, and periodically sends a state 
information to its backup. The backup server awaits 
synchronization messages from its primary. On arrival 
of a message, the backup uses the information to up- 
date its internal state and to discard any messages re- 
questing services already rendered by the primary. 

Since the server processes are part of the operating 
system, and perform their syncs explicitly in user 
mode, each can be written to send only that informa- 
tion which is actually needed to update the internal ta- 
bles of the backup. 

File server syncs are a case in point. A file server's 
cache of disk buffers is kept in its address space. The 
cache must periodically be written out to disk. Once 
written out to a dual ported disk, a substantial portion 
of the server's address space is available to its backup. If 
a sync is done at the same time, we avoid sending a 
large amount of information to the backup via the mes- 
sage system. The primary sends only information con- 
ceming the state of various pending requests and the 
numbers of requests it has handled since last sync al- 
lowing those to be removed from backup message 
queues. 

This method involves a reorganization of the file sys- 
tem on disk. An old copy, i.e., in the state as of last sync, 
cannot be destroyed until the sync is complete, in case a 
crash occurs during the operation. This involves the du- 
plication on disk of those blocks which have changed 
since last sync. An additional effect of such a reorgani- 
zation, is to make the file system considerably more ro- 
bust than is that in UNIX*. 

j ~ J  
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7.10 Crash Handl ing  and  Recovery 
Earlier, we noted that a hardware failure in a cluster 
could affect either the whole cluster or only some of the 
processes executing in the cluster. Our initial imple- 
mentation has dealt only with the former case. That is, 
if a failure makes it impossible to continue running 
some of the processes in a cluster, then the entire clus- 
ter is brought down. 

Local failure detection and diagnosis are done in 
each cluster. Its details are beyond the scope of this pa- 
per. Periodic polling of every cluster will discover the 
shutdown and notify the remaining clusters to begin 
crash handling. 

7.10.1 Crash H a n d l i n g  
As soon as a cluster finds out that there has been a Clus- 
ter crash in the system, the transmission of outgoing 
messages is disabled and two very high priority crash 
handling processes are scheduled. At most a few mes- 
sages will accumulate on the outgoing queue before 
these processes begin running, one per work proces- 
sors. These processes begin actual crash handling only 
after all messages have been distributed which arrived 
prior to notification of the crash. This assures that be- 
fore any backup is brought up, the latest sync message 
from its primary has been processed. 

The two synchronized crash processes perform the 
following operations: 

1. The routing table is searched for references to the 
crashed cluster. If the primary destination has 
crashed, it is replaced by the backup destination. 
If the destination process is a fullback, the chan- 
nel is marked unusable until notification arrives 
of the creation and location of the new backup. 

2. Backups for halfbacks and quarterbacks which 
crashed are made rurmable. 

3. Fullbacks which are no longer backed up are lo- 
cated and linked for backup creation. 

4. The outgoing queue is examined for destinations 
in the crashed cluster. They are adjusted like 
those in the routing table. Those whose destina- 
tion processes are fullbacks are held until the lo- 
cation of the destination's new backup is known. 

5. Backups of peripheral servers are signaled to be- 
gin recovery. 

7.10.2 Recovery 
System servers and peripheral servers must recover 
quickly: 

1. Processes with pending requests, which are not 
otherwise affected by the crash should not be in- 
ordinately delayed. 

2. Page servers and file servers must be available to 
supply pages demanded by user processes' back- 

ups. 
3. The process server must be available to deter- 

mine where new backups for fullbacks are to be 
located. 

A backup user process is prepared to run by supply- 
ing any local information needed in the PCB and then 
scheduling its execution. Since it has no pages resident 
in memory, it will immediately page fault and gradually 
bring its address space into memory. Once it begins to 
execute, tests which are part of the normally executed 
code assure that it interacts correctly with the rest of the 
system. Messages which were already sent by the pri- 
mary are not resent. On fork, the process checks 
whether it has any birth notices. If it does, it either 
avoids the fork altogether if the child process already 
exists, or uses information in the birth notice to fork a 
child with the same identity as its primary. 

8. Efficiency Considerat ions  
The Auragen 4000 project is an ongoing effort. A pre- 
liminary version of the operating system is now run- 
ning on prototype hardware. However, it is not com- 
plete and contains substantial amounts of debugging 
code so that realistic performance measurements are 
not available. 

However, we shall discuss the potential areas of effi- 
ciency and inefficiency by considering the overhead re- 
quired to support fault tolerance. 

8.1 Mult iple  Message H a n d l i n g  
Although most messages go to three destinations, they 
are transmitted just once across the intercluster bus. An 
efficient low level protocol assures that each target clus- 
ter is listening when the message is transmitted. It is 
true that at the receiving ends, three messages must be 
read into the cluster and distributed. However, mes- 
sage transmission, receipt, and distribution are all han- 
died. by the executive processor. Processes running on 
the work processors are not affected by the delivery of 
the two backup copies. 

8.2  Backup  Creation 
By deferring the creation of backup processes for as 
long as possible and by making it the responsibility of 
the executive processor, we assure that the overhead is 
limited. In fact, the executive is responsible for all 
maintenance of backup processes, leaving the work 
processors free to do normal work unrelated to the sup- 
port of fault tolerance. 

8.3 STnchroniz~tion of  Prlmaary a n d  Backup  
The synchronization of a primary process and its 
backup is a potentially costly operation. However, we 
have minimized the extent to which it delays the pri- 
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mary. The primary interrupts its normal execution for 
only as long as it takes to place its dirty pages and the 
sync message on the outgoing queue. The process need 
not await completion of the operation by either the 
page server or the backup processor. 

The interval between syncs is tunable with one ex- 
ception. The current implementation requires a pri- 
mary to s~mc prior to handling any asynchronous signal 

• which is not ignored. We are looking into ways to avoid 
such forced syncs. 

8.4 Crash Handling and Recovery 
Crash handling was expected to be the area in which 
most overhead is incurred. However, we have at- 
tempted to minimize the slowdown. Processes unaf- 
fected by the crash, or only minimally affected [their 
correspondents have crashed) may begin to execute be- 
fore all crash handling has been completed. Crash han- 
dling which requires that no regular user processes be 
executing is done by special high priority user proc- 
esses. Remaining tasks, such as bringing up new back- 
ups is done by the executive processor, creating mini- 
mal interference with the unaffected processes. 

9. Project Status 
The development team has successfully transformed 
UNIX* into a distributed message-based operating sys- 
tem. We are currently integrating and testing process 
synchronization and crash handling. We expect to have 
a working two-cluster fault tolerant system in the early 
fall of 1983. 

The difficulties we have encountered during two 
years of design, development, and implementation 
have resulted from the complexity of the task. The two 
major parts of the project, conversion of UNIX to a dis- 
tributed system and the addition of fault tolerance, 
complicated each other and were difficult to divide into 
managable and independent pieces. Providing suffic- 
ient organization, without limiting creativity with over 
management, has been a formidable task. 

"I~o factors have made our task easier. First, the sim- 
plicity of the underlying idea provided a commonly un- 
derstandable and unifying base from which to begin. 
Secondly, we began with an existing operating system 
which defined our interface with the world and pro- 
vided a common framework in which to build. 

10. Future Developments  
In the very near future AurosTM's fault tolerant capabili- 
ties will be extended in the following areas. Hardware 
failures which do not affect all processes in a cluster 
will not cause the cluster to crash, but will cause indi- 
vidual backups to be brought up for the affected proc- 
esses. An efficient method for allowing asynchronous 

reads and writes and intracluster shared memory to be 
backed up will be implemented. The difficulty lies in 
the nondeterminism of asynchronous IO and of shared 
memory reference which would seem to require noti- 
fying the backup for each action of the primary. We 
plan to avoid the overhead of continually notifying the 
backup by waiting until the primary has an ordinary 
messge to send and including information about the 
results of any nondeterministic events with this mes- 
sage, a copy of which will be seen by the backup. A 
crash of the primary after this message can be handled 
by recreating the "nondeterministic" events determi- 
nistically in the backup. A crash before this message 
would wipe out any evidence of the events (since no 
message escaped the cluster prior to crash) and thus 
could be repeated in the backup without inconsistency. 

11. Conclusion 
This paper has described the design and initial imple- 
mentation of an operating system in which message- 
based communication is used to assure that processes 
survive hardware failures. A message system, embed- 
ded in the operating system kernel, provides each inac- 
tive backup process with all information necessary to 
take over execution should its primary fail. Periodic 
synchronization of the backup with its primary limits 
the amount of recomputation required for the backup 
to catch up during recovery. 

Fault tolerant operation is automatic and transparent 
to the user. This, together with UNIX compatibility, al- 
lows much existing software to be run fault tolerantly 
without modification. 

The system is designed for use in on-line transaction 
processing environments where short delays during re- 
covery are acceptable. Maximal productive use of re- 
sources in the absence of failure, at the expense of short 
delays during recovery, is of primary importance. 

The separation of the operating system into a kernel 
for local management and resource control, and backed 
up servers for global resource management, provides 
many of the benefits of distributed operation without 
loss of central control. 
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