

 Problem Set 2
15-440/15-640 Distributed Systems Spring 2025

Assigned: Thursday, February 6, 2025

Due: Thursday, February 13, 2025 at 11.59 pm

Submission procedure:
● Create a .pdf of your answers and upload to Gradescope. All enrolled students should

have Gradescope accounts. Ask well in advance of the deadline to be added to Gradescope
if you don’t have access; it is unacceptable to ask to be added immediately before the
deadline.

● Here are some tips to make your submission easy to read and to grade. Remember, the
easier you make this, the less likely we are to make grading errors. Following these guidelines
will help us to focus on the technical content of your answers rather than trying to understand
what you have written.

○ Don’t hand write your answers. Use Latex or Google Docs or some similar input
mechanism. If you use Latex, a template can be found on the course web page.

○ Put the answer to each question on a separate page.

○ Carefully tag your pdf pages to each question on gradescope. You can use the
SHIFT key to select multiple pages and associate them with a single question.

● Assume SI notation

○ 1 KB = 103 bytes, 1 MB = 106 bytes, 1 GB = 109 bytes

○ 1 Kbps = 103 bits per second (bps), 1 Mbps = 106 bps, 1 Gbps = 109 bps

○ but a byte is still 8 bits (not 10 bits) :-)

● Remember that you have a limit of 2 grace days totaled over all four problem sets.
You can use at most one of those grace days per problem set. Although Gradescope does
not track grace days, we will. Exceeding your grace days will result in a zero grade for that
problem set.

1

Question 1 (15 points)

A team of CMU employees is working on a project that is spread across the Pittsburgh, Rwanda,
Adelaide, and Qatar sites. Network latency between these sites is high, with unpredictable variability.
Project data is kept as spreadsheet files (one per site) in a distributed file system called the Swift File
System (SFS) that uses whole-file caching with session semantics. There is a single file server for
SFS, and it is located in Pittsburgh. Files are cached on the desktop or laptop of each user. SFS
supports a wide range of caching protocols. The choice of protocol can be configured (and
reconfigured) on a per-project basis by administrative staff. The usage pattern involves opening an
SFS file, briefly viewing and/or modifying it, and then closing it. Files are never kept open for long
periods of time.

A. In the initial phase of the project, the team member who is visiting a site does most of the
viewing and modification of that site’s spreadsheet. For example, most of the file operations
on the Rwanda spreadsheet are done by the team member at Rwanda; most of the file
operations on the Adelaide spreadsheet are done by the team member at Adelaide; and so on.
A few times a day, a team member at one site may reach out to view the state of progress at
one or more of the other sites; he or she never makes a modification.

What caching policy would you recommend for this phase of the project? Briefly explain your
reasoning.

B. After the initial phase, all team members return to Pittsburgh to continue the project from their
on-campus offices. In this intermediate phase of the project, team members view and modify
files for all sites. In other words, there is no clear association between a team member’s file
accesses and the specific file for a site. The usage pattern remains the same as before:
opening an SFS file, briefly viewing and/or modifying it, and then closing it. As before, SFS
files are never kept open for long periods of time.

What caching policy would you recommend for this intermediate phase of the project? Briefly
explain your reasoning.

C. In the final phase of the project, the team members invite other key stakeholders at all sites to
view the state of their work. These stakeholders mostly view the spreadsheet files; only very
rarely do they modify them by adding a comment or question. It is important that their
modifications be immediately visible to everyone else, across all sites. The per-file usage
pattern (i.e., a file not remaining open for long) remains unchanged.

What caching policy would you recommend for this final phase of the project? Briefly explain
your reasoning.

Question 2 (20 points)

Helen is a boba entrepreneur. She tirelessly creates new boba recipes and updates existing recipes
for her chain of boba shops. The stores are eager to use her latest recipes, as soon as they become
available. All recipes are stored as files on a server in California, one recipe per file. Helen’s boba
shops nationwide are clients in this distributed file system, and cache recipes as specified in the

2

questions below. You may assume that caches are infinitely large, that each recipe is 1KB in size,
and that whole-file caching is used. You may also assume that the Internet is perfectly reliable, with
no packet loss, damage or reordering.

A. Suppose caching is done locally at each shop, and a callback-based caching policy is used.
In Pennsylvania, Helen’s boba shops are located in Pittsburgh, Philadelphia, and Harrisburg.
The end-to-end network performance from the server to these three shops is as follows:

● Pittsburgh: B bps bandwidth and 100 ms one-way latency
● Philadelphia: 2B bps bandwidth and 100 ms one-way latency
● Harrisburg: 0.1B bps bandwidth and 100 ms one-way latency

When a new recipe is created, or an old one is modified, how long does the callback break
take? Clearly state any assumptions that you make. After a new recipe is released at the
server, how long is it before that recipe is available at all the Pennsylvania stores? Give a
brief explanation of your calculation, and illustrate it with a timeline.

(Hint: remember that a callback break only invalidates a cache entry. New contents are not
pushed. The fetching of new contents occurs on a later client-initiated operation.)

B. In addition to caching locally, suppose the three shops in Pennsylvania also share a caching
proxy in Chicago. In other words, there are two levels of caching. Both levels use a
callback-based caching policy. The network performance is as follows:

● server to Chicago proxy: 100*B bps bandwidth and 40 ms one-way latency
● Chicago proxy to Pittsburgh: B bps bandwidth and 40 ms one-way latency
● Chicago proxy to Philadelphia: 2B bps bandwidth and 40 ms one-way latency
● Chicago proxy to Harrisburg: 0.1 B bps bandwidth and 40 ms one-way latency

When a recipe is updated at the server, what is the total delay before that recipe is available at
all Pennsylvania shops?

C. Helen decides to let each boba shop create its own city-specific recipes and share them with

her nationwide set of shops. Regardless of where they were created, all recipes are stored
on the server in California. The caching policy is changed from callback-based to
check-on-use. The RPC to check if a file is up to date involves a 100-byte request packet and
a 10-byte reply packet.

Suppose no caching proxy is used, and network performance is that described for (A). A
recipe is updated by the Philadelphia shop. From the moment the file is closed in Philadelphia,
what is the minimum delay before it is visible to an open at the Pittsburgh shop? Explain your
work, and show your reasoning using a timeline.

D. Suppose the Chicago caching proxy, with network performance as shown in (B), is used. You

may assume that check-on-use is used at both levels of caching. A brand new recipe appears
on the server from Harrisburg. Sometime later, the Pittsburgh shop opens this new recipe for
the first time. For the best case and worst case, what is the minimum delay before the open
completes? Explain your work, and show your reasoning using a timeline.

3

Question 3 (20 points)

A team of observers is logging the entry of people into a large room with many doors. The fire
marshall strictly limits the number of people that are allowed in the room. This limit should not be
exceeded. The log is stored as a single file counter.txt in a distributed file system. The file is
initially empty. As each person enters the room, the timestamp, current headcount (including this
person), and the door by which the person entered are recorded: e.g., the entry “293, 8, G” would
mean “at timestamp 293, the 8th person to enter the room came in through door G”.

Each observer stands at a different door with their laptop in hand. When a person enters through that
door, the observer opens counter.txt, reads the latest headcount in the file, adds a new line
“<timestamp, previous_headcount+1 door name\n>”, and then closes the file. You may
assume that this entire process, including update propagation to the server, happens instantaneously.

Suppose the distributed file system uses whole-file caching with session semantics. In case of write
sharing, the last close wins. Each laptop has its own cache. There is no shared caching proxy.

Suppose the following pattern of people entering the room is observed:
(an “X” means entrance at the timestamp corresponding to that row, via the door corresponding to that
column)

Time
(seconds)

Door A Door B Door C Door D Door E

1 X

2 X

3 X

4 X

5 X

6 X

7 X

8 X

9 X

10 X

A. Suppose check-on-use is used as the caching policy.

i. What are the contents of observer A’s cached counter.txt right after t = 3?
ii. What are the contents of observer C’s cached counter.txt right after t = 7?

B. Suppose faith-based caching with a TTL of 3.5 seconds is used instead of check-on-use.

4

i. What are the contents of observer A’s cached counter.txt right after t = 3?
ii. What are the contents of observer C’s cached counter.txt right after t = 7?

C. Describe one advantage of each of the caching policies used in (A) and (B) above. For this
application, which method would you recommend and why?

Question 4 (20 points)

Ruiqi’s board game has become a smash hit. One of her most loyal fans, Michael, suggests a cool
new feature — letting players revisit past game states to learn from their mistakes. Sunny offers to
add a caching mechanism to speed up the revisiting of old game states. Each entry in the cache is
the entire game state at some point in the past. There are 8 cache entries. For the following
questions, assume that each number corresponds to a unique game state.

A. Suppose the cache uses an LRU replacement policy. It is presented with the following
reference stream:

 “71 72 73 74 75 76 77 78 71 79 72 73 74 75 76 77 78”.

What is the cache state after the entire reference stream is processed? What is the hit ratio of
the cache on this reference stream?

B. Suppose the cache replacement policy is changed from LRU to FIFO. Repeat (A) for this
replacement policy.

C. Suppose a different reference stream is used:

“70, 71, 72, 73, 74, 75, 76, 77, 70, 71, 72, 73, 78, 79, 80, 70, 72, 71, 77, 73”

a. If an LRU cache replacement policy is used, what is the final cache state and hit ratio?

b. If FIFO is used instead of LRU, what is the final cache state and hit ratio?

D. What do the results suggest about the effectiveness of different cache policies in relation to
temporal locality? Can there be a reference stream for which neither LRU nor FIFO
performs well? If no such reference stream can exist, explain why. If such a reference
stream is possible, give an example with explanation.

5

Question 5 (25 points)

Melody, Max, and Monica are on three different clients connected to a file server storing files
place.txt and drink.txt. The initial contents of the files are as shown in the figure above. Each
client has its own local cache, which starts off empty and is infinitely large. The cache uses whole-file
caching with open-close session semantics and check-on-use. Here are some additional clarifying
details that may be relevant:

● Recall that check-on-open with session semantics implies store-after-close. For a set of
concurrent open() operations on a file at a client, only the first involves a check (and possible
fetch). No further checks are done for that file until the set becomes empty (i.e., a close()
has been issued for every one of the concurrent open() operations). While a file is open at a
client, no changes on the server are visible; the only visible changes during this period arise
from local write() operations to the file. The store of a modified cache copy is only
performed after the last close() of the set of concurrent open() operations by the same
client.

● read() and write() operations always start at the current file pointer, that is internally
maintained separately for each open() (i.e., it is per-file-descriptor). The file pointer is set to
zero at open().

● read(fd, n) reads n bytes from the current read pointer for fd, and advances the file
pointer by n; the bytes read are returned as the value of the call. An end-of-file exception is
raised if an attempt is made to read more bytes than remain to be read.

● All operations in finish before . 𝑇
𝑖

𝑇
𝑖+1

● Network latency is negligible and can be safely ignored.

● There are no failures of any kind (network, server or client).

● The bytes written are exactly as shown in the write() calls below; e.g. no extra null
terminator is added for strings.

6

A. For the read() operations shown in the table, indicate its result. Please give your answer as
tuples in the following form:

([client name], [timestamp], [content read])

If the read() operation raises an end-of-file error, put “EOF error” as the content read in the
tuple.

7

Time (T) Melody Max Monica

1 fd1 = open(“place.txt”) fd1 = open(“drink.txt”)

2 fd1 = open(“place.txt”) write(fd1, “Oolong milk
tea”)

3 write(fd1, “Mango
Mango”)

 close(fd1)

4 read(fd1, 11) read(fd1, 3) fd1 = open(“drink.txt”)

5 close(fd1) write(fd1, “Wushiland”) write(fd1, “Grass jelly”)

6 close(fd1)

7 fd2 = open(“drink.txt”) fd2 = open(“place.txt”)

8 write(fd2, “Smoothie”) read(fd2, 12)

9 close(fd2) close(fd2)

10 fd2 = open(“drink.txt”) fd3 = open(“drink.txt”)

11 read(fd2, 6) read(fd3, 5)

12 close(fd2) close(fd3)

13 close(fd1)

14 fd2 = open(“drink.txt”)

15 read(fd2, 11)

16 close(fd2)

B. List the contents of the cache at each of the clients just before each of the time indicated

below. Please include which files are present in each cache and their contents.

T Name Cache Content

2 Melody

Max

Monica

11 Melody

Max

Monica

17 Melody

Max

Monica

C. Suppose callback-based caching is used instead of check-on-use. Suppose all clients start
out with warm caches (i.e., they have both files in their cache before T = 1). List the contents
of the cache at each of the clients just before each of the times indicated below. Please include
which files are present in each cache and their contents.

T Name Cache Content

4 Melody

Max

Monica

11 Melody

Max

Monica

8

	 Problem Set 2
	15-440/15-640 Distributed Systems Spring 2025
	Question 1 (15 points)
	Question 2 (20 points)
	Question 3 (20 points)
	
	Question 4 (20 points)
	Question 5 (25 points)

