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Abstract

In developing a distributed file system, there are several good reasons for implementing the client file cache manager
as a user-level process. These include ease of implementation, increased portability, and minimal impact on kernel
size. For reasons of compatibility it is also desirable to use a standard file intercept mechanism on the client. The Sun
VFS/Vnode file system interface is such a standard. However, this interface is designed for kernel-based file systems,
and a user-level cache manager that used the Vnode mechanism would pay a large performance penalty due to the
high number of kernel to cache manager context switches per file system call.

This paper describes our solution to the problem for the Coda file system. By using a relatively small amount of kernel
code to cache critical information, we are able to retain the much larger and more complex components of the Coda
cache manager in a user level process. The measurements of Coda presented here confirm the performance benefits of
this strategy, and indicate the relative merits of caching different kinds of information in the kernel.
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1. Introduction

In this paper we describe and evaluate our approach for implementing a user-level client cache manager
on top of the Sun Vnode interface. Our work was carried out in the context of the Coda file system [5],
a descendant of the Andrew file system (AFS) [4]. Coda is a highly available file system for a large-scale
distributed computing environment composed of Unix1 workstations. It provides resiliency to server and
network failures through the use of two distinct but complementary mechanisms. One mechanism, server
replication, stores copies of a file at multiple servers. The other mechanism, disconnected operation, is a
mode of execution in which a caching site temporarily assumes the role of a replication site. Disconnected
operation is particularly useful for supporting portable workstations.

The design of Coda optimizes for availability and performance, and strives to provide the highest degree
of consistency attainable in the light of these objectives. In the presence of network partitions, Coda
places availability above consistency and allows potentially conflicting updates to occur. Such updates
are detected as inconsistencies at the earliest possible time. The most complex part of Coda is the client
cache manager, known as Venus. Besides cache management, Venus is responsible for emulation of Unix
semantics, coordination of the replica control algorithm, detection of inconsistencies, and disconnected
operation.

Given the complexity of Venus, we saw good reasons for it to be a user-level process rather than part of
the kernel. Our experience has been that kernel code takes much longer to develop, debug and maintain.
We felt that designing Venus as a user-level process would substantially ease our implementation effort and
also increase Coda’s portability.

A different design consideration, with conflicting implications, was our desire to adhere to standards.
We saw many advantages, particularly that of portability, in using the Sun Vnode interface [2]. This
interface is a de facto standard for file system call interception in Unix. Unfortunately, it imposes a
component-by-component interaction between the kernel and the cache manager when translating path-
names. Consequently, a naive user-level cache manager implementation on this interface would result in
unacceptable overhead.

To reduce this overhead, we decided to build a caching module in the kernel, called the MiniCache. Since
most Unix applications show strong locality of reference, we felt that this would achieve a large reduction
in the number of calls to Venus. We also conjectured that much of this reduction could be achieved with a
MiniCache whose size and complexity were a small fraction of that of Venus. Our conjecture has indeed
proved to be true. The performance of Coda with the MiniCache is comparable to that of the current
production version of AFS, whose cache manager is in the kernel.

2. Design Considerations

The dominant influence on the design of the MiniCache was the Vnode interface. This interface was
created in conjunction with the Sun Network File System (NFS) [3]. It behaves as a file system multiplexor,
permitting multiple file systems to coexist in the same name space. The interface specifies two types of
operations: those on a Virtual File System (VFS), and those on a Virtual Inode (Vnode). VFS operations

1Unix is a trademark of AT&T.
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such as mount and unmount pertain to the binding of different file systems into one name space. Vnode
operations such as open, close, and getattr pertain to individual files and directories. To add a new
file system, one need only provide a VFS driver, which provides an entry point for each VFS and Vnode
operation.

An implicit assumption of the Vnode interface is that the VFS driver resides in the kernel. The most obvious
manifestation of this assumption is the strategy used to perform pathname translation. Rather than passing
the entire pathname to the driver, translation is performed on a component-by-component basis. Although
this simplifies symbolic link traversal across file systems, it would impose a serious performance penalty
on an out-of-kernel driver when translating multi-component pathnames.

We therefore decided to split the VFS driver into two pieces: a small piece inside the kernel (the MiniCache),
and a more sophisticated piece outside the kernel (Venus). Essentially, the MiniCache behaves as buffering
agent between the Vnode interface and Venus, as illustrated in figure 1. When an application program
generates a file system call on an object in Coda, it is intercepted by the Vnode interface and routed to the
MiniCache. If the MiniCache has sufficient information, it services the call. Otherwise, it passes the request
to Venus. Venus handles the request, possibly contacting Coda servers in the process. Control is returned
to the application via the MiniCache and the Vnode interface.

Kernel

User
Application

Vnode Interface

Venus
Client Coda

   Servers

Coda MiniCache

Figure 1: Coda Structure

A consequence of the splitting of the VFS driver is that state is shared between its two components. The
correctness of the system requires coherence in this shared state. It is clear to see that mutating file system
calls will change MiniCache state, and that these changes must be propagated to Venus and thence to the
servers. But there are also situations in Coda where Venus may need to invalidate MiniCache state. Such
invalidations may arise in a number of different ways. First, a server may invalidate a cache entry in Venus
because of a modification at another client. Second, authentication tokens held by Venus on behalf of a user
may expire, implicitly revoking his privileges. Third, Venus may discover that an object is inconsistent,
and therefore discard all local knowledge of it. Shared state also has an important implication for the
communication mechanism between the MiniCache and Venus: both parties need to be able to initiate
message exchanges.
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A broader consideration is the need to strike the right balance between complexity and efficiency. The
MiniCache needs to be sophisticated enough to improve performance substantially, but should not be so
complex that it amounts to moving Venus completely into the kernel. Further, the MiniCache needs to be
particularly efficient because it is in the critical path of many operations.

3. The MiniCache

This section describes four major aspects of the MiniCache. The first subsection discusses the main data
structures. The second describes the communication between Venus and the MiniCache. The third presents
the performance enhancements we have implemented, and the fourth discusses a limitation of the Vnode
interface that we encountered when dealing with the exec system call.

3.1. Data Structures

The MiniCache consists of two interdependent caches. The first cache, the Cnode cache, contains a set of
Cnodes, which are Vnodes augmented with Coda-specific fields. The latter include the CFid (an identifier
unique to each Coda object) as well as fields used in the performance enhancements described in Section 3.3.
For efficiency, Cnodes are kept on an internal freelist rather than being deallocated. To provide Venus with
a fast access path, this cache can be looked up via a hash table keyed on CFids.

The second cache, the name cache, contains precomputed translations of pathnames. Each entry in the
cache is indexed by a triple: a pointer to the Cnode for a directory, a component name in that directory, and
a user id. A Coda object may have multiple entries in the cache, one for each user who has accessed the file
recently. The value of the cache entry is a pointer to the Cnode corresponding to that component. The name
cache supports the basic operations of insertion, lookup, and deletion. Deletion happens to be a particularly
complex operation since it occurs in multiple flavors. The simplest case is when a deletion occurs via the
Vnode interface. More complex cases occur when Venus deletes entries for one of the three reasons cited
in Section 2.

The functioning of the name cache can be best understood by following a typical pathname translation. At
any step in the translation one has a pointer, DCP, to the Cnode of a directory, a name, N, in that directory,
and the id, U, of the user on whose behalf the translation is being performed. If the triple (DCP, N, U) is
missing from the name cache, Venus is contacted to fill the entry. Translation continues by replacing DCP
by the value of the cache entry, N by the next component of the pathname, and repeating the cache lookup.
Translation begins with DCP set to the root (for absolute pathnames) or the current directory (for relative
pathnames).

Our name cache is similar in many ways to the Directory Name Lookup Cache (DNLC), supplied with the
Sun Vnode interface[3]. Unfortunately the DNLC does not provide the full range of invalidation functions
needed by Venus. Rather than modify it, we chose to build our own name cache.
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3.2. Communication

In addition to the need for either peer to initiate action, the communication mechanism between the
MiniCache and Venus needs to satisfy two conditions. First, it has to be interruptible in a manner that
allows cleanup of state at both ends. Second, it must provide at-most-once semantics since many of the
operations are not idempotent.

We initially tried using Sun RPC [6] for communication between the MiniCache and Venus. This would
have enhanced the portability of the MiniCache, since Sun RPC is normally available in any kernel that has
the Vnode interface. Unfortunately, we found it impossible to meet both the constraints mentioned above
using that approach.

Consequently, we settled on a pseudo-device as the basis of our communication. The device is used to pass
messages between the MiniCache and Venus. At-most-once semantics is trivially obtained because there are
no retransmissions or timeouts. Interruptibility is ensured by careful implementation of the device driver.
In addition, the pseudo-device supports concurrency by permitting an arbitrary number of outstanding
messages.

Although the use of a pseudo-device limits portability to Unix-like systems, the communication code is
limited to a small section of the MiniCache. The pseudo-device could easily by replaced by any other
reasonable IPC mechanism.

3.3. Performance Enhancements

There are many conceivable ways in which the MiniCache can be used to improve performance. Given our
desire to keep the MiniCache simple, we have only chosen to make those performance optimizations that
provide substantial benefit relative to implementation complexity. We elaborate on these optimizations in
this section.

The first, and most obvious, optimization is the reduction in MiniCache-Venus traffic during pathname
translation. This reduces the average cost of the lookup Vnode operation, and is provided by the name
cache described in Section 3.1.

The second optimization eliminates the need for the MiniCache to contact Venus on individual read and
write operations. Besides reducing the number of MiniCache-Venus interactions, this substantially reduces
the amount of data copying done by Coda. On a successful open of a file, the MiniCache saves a pointer to
the Vnode of the locally cached copy. It can then service rdwr Vnode operations on the file by redirecting
them to the local file system. Readdir Vnode operations on directories are handled in a similar manner.
The MiniCache notifies Venus of close operations, giving Venus the opportunity to write a file back to
the server if necessary.

The next performance enhancement we implemented was to provide an attribute cache, allowinggetattr
operations to be serviced by the MiniCache without contacting Venus. Such operations occur frequently,
typically due to the stat system call which is extensively used by Unix applications. Space for the cache
is provided as an extension of each Cnode, with a flag indicating whether the attribute fields are valid. The
attributes for an object are invalidated when Venus flushes the object from its cache. Attributes are also
invalidated in two other cases: when a file that has been modified is closed, and when a child of a directory
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is modified. Access permissions are correctly enforced for getattr since a user needs appropriate access
rights to lookup the Cnode.

The fourth enhancement takes advantage of the presence of the name cache to reduce the number ofaccess
calls to Venus. Access is a Vnode operation that is used to determine a user’s permissions on an object.
Checking access rights in Coda is substantially more complex than checking Unix mode bits because Coda
uses an access list mechanism with group inheritance. A full implementation of access in the MiniCache
would greatly add to its complexity. Fortunately, we have been able to trivially implement an important
subset of the full access check. It turns out that a large percentage of the access operations occur during
pathname translation, and simply determine if a user has permission to lookup entries in a directory. Since
name cache entries include the user id as part of the key, we are able to infer lookup permission on a cache
hit. In all other cases, the MiniCache forwards access operations to Venus.

The last performance enhancement is to speed up symbolic link traversal by caching the link value within
the Cnode. Symbolic links are frequently encountered during pathname translation, particularly in Unix
environments that support heterogeneous machines. The symbolic link cache does not violate access
constraints because a user needs to have proper access to look up the Cnode of the directory containing a
symbolic link. In Unix, lookup permission on a directory automatically implies permission to read symbolic
links in that directory.

3.4. Program Execution

In the course of our implementation we ran into a serious limitation of the Vnode interface: there is no
provision for a VFS driver to be notified of exec and exit system calls. All the driver sees are read
operations on the individual pages of an executable file. This is a problem for any stateful file system, since
it now has to infer when to allocate and free internal state. For example, it needs to guess when a file must
be cached, and when it is safe to flush it.

This problem is magnified for Coda since Venus cannot directly access kernel data structures. Although it
is possible for the MiniCache to infer opens, it does not possess enough of Venus’ state to determine when
it is appropriate to flush a file. On the other hand, Venus knows when it is appropriate to flush a file, but
does not possess enough kernel context to know if this would be safe. So the flushing or replacement of
a cache entry by Venus is preceded in our implementation by a call to the MiniCache to determine if the
operation is safe. Besides degrading performance, this approach also limits portability since it depends on
specific details of the virtual memory subsystem.

4. Performance Evaluation

Our evaluation of the MiniCache focuses on two important questions. First, how much improvement does
the MiniCache provide, both in absolute terms and relative to the current production version of AFS with
an in-kernel VFS driver? Second, what is the individual contribution of each performance enhancement?

The primary basis for this evaluation is the Andrew Benchmark[1], consisting of a series of Unix operations
on a subtree containing the source code of a Unix application. The input to the benchmark consists of
70 files, totalling about 200 Kbytes. The benchmark consists of five phases: MakeDir, which constructs
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a copy of the source subtree; Copy, which copies the source files to the new subtree; ScanDir, which
examines the status of each file in the target subtree; ReadAll which scans every byte in every file in the
target subtree; and Make, which compiles and links all the files.

Since the Andrew benchmark does not make extensive use of symbolic links, we use a different criteria for
measuring the effect of caching them. Details of this test are provided in Section 4.3.

The tests reported here were conducted on a single client and server located on a single segment of Ethernet.
Both machines were IBM APC-RTs with 12 MB of memory, running the Mach 2.5 operating system. To
limit interference, nonessential processes on the client were killed before running the benchmarks. Although
experimental control on the servers and the network was less strict, the low variance in our results indicates
that this was not a problem.

4.1. Comparison with AFS

In estimating the absolute and relative performance benefits of the MiniCache we have chosen to focus on
two phases of the Andrew benchmark. These phases, ScanDir and ReadAll, are the most demanding
phases in terms of pathname translation. They involve no server interactions in Coda and AFS because they
operate on data cached in an earlier phase of the benchmark. Hence the performance degradation due to an
out-of-kernel VFS driver would be most apparent in these phases.

Table 1 presents the elapsed times, in seconds, of these phases averaged over four runs of the benchmark.
With the MiniCache turned on, Coda performs as well as AFS. Our original goal of obtaining good
performance without moving Venus into the kernel has thus been met. Without the MiniCache, substantial
degradation is apparent. This is to be expected, since all Vnode operations are simply redirected to Venus,
suffering at least two context switches in the process.

Configuration ScanDir ReadAll
Coda without MiniCache 44 (1) 71 (1)
Coda with MiniCache 26 (1) 43 (1)
AFS (in-kernel cache manager) 26 (0) 43 (1)

Running times in seconds of the third and fourth phases of the Andrew Benchmark. Numbers in
parentheses indicate standard deviations.

Table 1: Performance Improvements Due to the MiniCache

4.2. Individual Contributions

In this section we present the observed performance improvement due to each of the enhancements described
in Section 3.3. The metric used is the number of Vnode operations seen by Venus during the running of the
Andrew benchmark. This is a completely deterministic metric, for three reasons: our measurements were
made after an initial run to warm cache entries for the source subtree, the benchmark is small enough to
avoid cache overflow, and target subtrees were deleted between benchmark runs.

Table 2 shows the reduction in number of Vnode operations due to the individualperformance enhancements,
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with the listed operations accounting for about 80% of the total number in the benchmark. The table indicates
that the name cache eliminates all lookup operations on Coda.

VFS Operation Enhancement MkDir Copy ScanDir ReadAll Make Total
lookup Name Caching off 33 745 1586 2139 886 5369

on 0 0 0 0 0 0
rdwr/readdir RdWr Intercept off 0 332 136 498 2107 3073

on 0 0 0 0 0 0
getattr Attribute Caching off 0 70 361 360 84 875

on 0 0 83 0 29 112
access Access Caching off 0 70 241 500 202 1013

on 0 70 68 234 201 573

This table contains a summary of the number of operations seen by Venus during a run of the Andrew
Benchmark. The values for lookup are the number of lookup operations performed by Venus that
succeeded. The Name Cache row indicates that all lookups of Coda files were handled in the kernel.
ReadWrite is a combination of the number of rdwr and readdir Vnode operations seen by Venus.

Table 2: Contribution of Performance Enhancements

Although rdwr calls to Venus have been eliminated, our measurements indicate that there is not a corre-
spondingly large savings in elapsed time. We suspect that this is because the cost of accessing the local disk
far outweighs the cost of contacting Venus.

The number of getattrs that reach Venus has been reduced by nearly a factor of 8. The reason that
getattrs are not totally eliminated is that attributes are flushed whenever a file is modified or a directory
is updated. Thus the 83 getattrs in the ScanDir phase correspond to the 70 files that were created in the
Copy phase and the 13 directories in which files were modified.

Table 2 also shows that our simple strategy for reducing access calls to Venus works very well: the
number of such calls is reduced by nearly half. Complete elimination of access calls to Venus would
have required much greater effort.

4.3. Symbolic Link Caching

To evaluate the effect of caching symbolic links, we wrote a small program to repeatedly invoke the stat
system call on the head of a chain of symbolic links. The first name in the chain pointed to the second,
which pointed to the third, and so on. We tried two variants of this test: one in which the symbolic links
were relative, and the other in which the symbolic links were absolute pathnames that were 5 components
long. The target file was the same in both cases, and all links and the target file were in the same directory.

Each stat generates a lookup on the name of symbolic link, which generates a readlink to get its
value. This is then followed by a lookup on the name specified in the link and then a getattr. With
relative pathnames, this amounts to two lookups, one readlink, and one getattr. The use of
absolute pathnames adds five more lookup calls, one for each directory in the pathname.

Table 3 shows mean and standard deviation of the elapsed time in seconds to perform 10000stats on each
link of the chains. The table indicates that it takes about 10 seconds longer per link with absolute pathnames
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Number Without Cache With Cache
of links Rel Path Abs Path Rel Path Abs Path

1 84.0 (.21) 94.6 (.30) 9.9 (.07) 20.1 (.13)
2 160.4 (.19) 182.5 (1.56) 13.1 (.15) 33.2 (.10)
3 237.4 (.32) 268.3 (.29) 16.3 (.08) 46.5 (.12)
4 313.5 (.45) 359.1 (1.55) 19.4 (.14) 59.7 (.11)
5 393.2 (2.99) 443.9 (1.58) 22.6 (.08) 73.0 (.15)

This table contains the time in seconds to execute 10000 stat calls on symbolic links. Two kinds of
links were tested, one using absolute pathnames as the values of the links and the other using relative
pathnames. The number of links refers to the number of symbolic link expansions needed to find the
real file. Each number is the average of four runs, with the standard deviation in parentheses.

Table 3: Performance of the Symlink Cache

than with relative pathname links. With the name cache enabled, all the lookups can be satisfied in the
kernel. Thus the cost of looking up an entry in the name cache is roughly two tenths of a millisecond.

The table also shows that each additional link adds about 3 seconds with the symlink cache enabled, and
about 77 seconds otherwise. Each link causes an additional readlink and lookup operation. Since the
name cache was enabled in both cases, almost all of the 77 seconds is due to calls to Venus.

Symbolic links are used quite heavily in our environment. In the Coda source subtree alone, there are
439 symbolic links out of roughly 10,000 files and directories. Typically symbolic links occur high in the
subtree, and are encountered a disproportionate fraction of the time. The benefits of symbolic link caching
are therefore quite substantial.

5. Conclusion

Although early versions of AFS demonstrated that efficient user-level cache management is possible, they
depended on a customized system call intercept mechanism. When AFS adopted the Vnode interface, Venus
was moved into the kernel to avoid excessive performance degradation. Rather than follow this approach,
we decided to investigate the possibility of retaining Venus as a user-level process.

Our approach has been to move relatively simple, yet critical, pieces of Venus functionality into the
kernel. Our analysis of representative Unix file system activity indicates that five such pieces (pathname
translation, data read/write, attribute read, access checking, symlink expansion) account for the bulk of the
Vnode operations. A key aspect of our solution is that the code we have added to the kernel is relatively
small and simple. Our results indicate that we are able to match the performance of an in-kernel client cache
manager, AFS, in the most demanding phases of the Andrew benchmark.

Two aspects of the MiniCache limit its portability slightly. One is our use of a Unix device driver, rather than
Sun RPC, for communication. The other is our dependence on code specific to the Mach virtual memory
implementation in order to correctly handle the execution of files. These limitations are unfortunate, since
portability was one of the factors motivating our use of the Vnode interface.

The concerns which motivated this work are fundamental to a distributed system. On one hand, performance
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concerns lead one to design the system as part of the kernel. On the other, issues of portability and
maintainability suggest that development should proceed at the user-level. The key result of this work is
that an efficient portable user-level cache manager can be built on the Sun Vnode interface. In addition, it
can be achieved via a small and simple piece of code in the kernel.
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