Project 2: Part 5: Caching Locks

Due: 11:59PM Thursday, March 24, 2011

1 Introduction

In this part you will build a server and client that cache locks at the client, reducing the load on the
server and improving client performance. For example, when client 1 asks for lock 42 repeatedly
and no other client wants the lock, then all acquire and releases can be performed on client 1
without having to contact the server.

The challenge in the lab is the protocol between the clients and the server. For example, when
client 2 acquires a lock that client 1 has cached, the server must revoke that lock from client 1
by sending a revoke RPC to client 1. The server can give client 2 the lock only after client 1 has
released the lock, which may be a long time after sending the revoke (e.g., if a thread on client 1
holds the lock for a long period). The protocol is is further complicated by the fact that packets
may be lost, duplicated, and delivered out of order. The at-most-once RPC server you implemented
in Part 1 will take care of most of these problems, but RPCs may still be delivered out of order.
We will test your lock server code with RPC_LOSSY set to 5, like in Part 1.

To make the lock service fault tolerant, we will want to put a constraint on the lock server operations.
This constraint will have implications for the protocol between the lock clients and lock server. The
constraint is that handlers on the server should run to completion without blocking. That is, a
server thread should not block on condition variables or remote RPCs. Of course, the thread can
wait to take out locks as long as it can be sure that the lock will never be held by another thread
across an RPC, and once it has acquired the lock it should run to completion. Your implementation
of the lock server for this part should adhere to this non-blocking constraint.

Your server will be a success if it manages to operate out of its local lock cache when reading /writing
files and directories that other hosts aren’t looking at, but maintains correctness when the same

files and directories are concurrently read and updated on multiple hosts. We will test with both
RPC_LOSSY set to 0 and RPC_LOSSY set to 5.

2 Getting started

As in part 4, copy the additional files found in the part5 subdirectory of the handout into your
working directory. Make sure you choose to keep the new Makefile.

The following is some additional information about the new files given to you and other changes
made.

- lock_client_cache.cc,h: This will be the new lock client class that the lock_tester and your
























