
Lab 1: Process Migration

Due: 1/29/09

January 15, 2009

1 Introduction

Process migration refers to a system where running processes can be moved
from one node to another over the course of their life. A process should be
agnostic to what node it is running on and should be unaware of whether
it has been moved from one node to another. Thus, the process is provided
with the illusion that it is running on a single node during its entire execu-
tion. To achieve this, it is necessary to be able to pause and package up a
process, ship it to another node, and unpackage and resume it such that it
is running again. The process should not lose it’s location in the program,
variables, open files, network connections or any other state.

In this lab, you will work with a partner to write a basic process migra-
tion system in Java.

2 Important Dates

-Lab Due: 11:59:59pm EST, January 29th, 2009

3 Lab Requirements

In this lab you will need to create a utility for migrating java processes.
This utility, implemented as the ProcessManager, will need to launch new
processes and migrate processes from one node to another in order to bal-
ance load. Additionally, you will be required to implement two migratable
processes.

1



3.1 Migratable Processes

For this lab we will focus our attention on processes that are specially built to
be migratable. To that end, we will look only at processes that implement
the MigratableProcess interface. The MigratableProcess interface ex-
tends java.lang.Runnable (allowing it to be run via a java.lang.Thread

object) and the java.io.Serializable interface to permit it to be serial-
ized and writen to or read from a stream (see Section 3.6). The interface re-
quires a void suspend(void) method which will be called before the object
is serialized to allow an opportunity for the process to enter a known safe
state. A String toString(void) method is also required. This method
should print the class name of the process as well as the original set of ar-
guments with which it was called. Furthermore, all MigratableProcesses
must include a constructor which takes, as it’s sole argument, an array of
strings. Finally, the process will limit it’s I/O to files accessed via the
TransactionalFileInputStream and TransactionalFileOutputStream

classes, discussed in Section 3.2.

3.2 Transactional I/O

To facilitate migrating processes with open files, you will need to implement
TransactionalFileInputStream and TransactionalFileOutputStream.
These classes will extend java.io.InputStream and java.io.OutputStream,
respectively, as well as implement the java.io.Serializable interface.
When a read or write is requested via one of these classes, they should
open the file, seek to the requisite location, perform the operation, and close
the file again. In this way, they will maintain all the information they require
in order to continue performing operations on the file even if the process is
transferred to another node. Note that you may assume that all of the nodes
share a common filesystem, such as afs, where all of the files to be accessed
will be located.

3.3 Launching Processes

The ProcessManager monitors standard in for requests to launch processes.
These requests take the form of “<processName> [arg1] [arg2] ... [argN]”.
When a request is made, a new object of class <processName> should be
instantiated and all of the arguments should be passed in an array to the
constructor. If an invalid class is named (does not exist or does not imple-
ment MigratableProcess), then an appropriate error message should be
printed and operations should continue as normal.

2



Do not hard-code support for mapping particular known strings to par-
ticular classes. Your ProcessManager should be able to handle any
MigratableProcess, not just the ones you have implemented. This means
that you will not know what class you are instantiating until runtime. Thus,
you will likely need to use the java.lang.Class<T> class and
java.lang.reflect.Constructor<T> class. In particular, the following
functions are likely to be of use:

- Class.forName(...)

- Class.getConstructor(...)

- Constructor.newInstance()

Note well: The java class names for arrays are not what you might
expect. For example, the class name for an array of strings (String[]) is
“[Ljava.lang.String;”.

3.4 Accepting Commands

Your ProcessManager should create a provide a prompt on which commands
can be entered. The following commands must be supported:

- <processName> [arg1] [arg2] ... [argN] (see Section 3.3)

- ps (prints a list of local running processes and their arguments)

- quit (exits the ProcessManager)

In addition to supporting these commands, your ProcessManager should
print a message when a process is terminated.

An interaction with the ProcessManager might look something like this:

==> ps

no running processes

==> TestProcess foo.dat 1000

==> TestProcess bar.dat 50

==> ps

TestProcess foo.dat 1000

TestProcess bar.dat 50

==> ps

TestProcess foo.dat 1000

Process "TestProcess bar.dat 50" was terminated

==> quit

Finally, you are welcome to add other commands if you wish.

3



3.5 ProcessManager Arguments

If the ProcessManager is supplied with the arguments ”-c <hostname>”
then the ProcessManager should run as a slave and connect to the mas-

ter running on <hostname>. If no such argument is supplied, then the
ProcessManager should run as the master. You are welcome to support
other arguments if you wish. In particular, it may be of value to have an
argument for selecting a port to use for communications between the master
and the slaves.

3.6 Migrating Processes

One of the running ProcessManager instances will be designated the master

instance. This instance is required to query the other instances for their load
and migrate processes to balance the load as well as possible. These queries
should be made at a rate of once every 5 seconds. For the purposes of this
lab, the load on a node is defined to be the number of migratable processes
currently running on it.

In order to migrate a process, it will be necessary to move the
MigratableProcess object from one ProcessManager to another. To ac-
complish this, you will want to make use of the java.io.ObjectOutputStream
and java.io.ObjectInputStream classes.

3.7 Implemented Processes

In addition to writing the ProcessManager, you will write two different
MigratableProcesses that run under your system. These need not be long
complex programs, but they should be interesting and should involve I/O. A
few suggestions include: zip, image processing such as edge detection, and a
basic webcrawler. If you would like to do something else, please check your
idea with us.

4 Technical Requirements

- Your project must function on the linux.andrew.cmu.edu pool of com-
puters

- Your code must compile properly in Java 1.5.0

- Your project must include a Makefile that builds your project

4



5 Grading

25% code quality, style

55% functionality and robustness of ProcessManager

20% functionality of implemented processes

6 Handin

Projects are to be handed in electronically in the following directory:
/afs/andrew.cmu.edu/course/15/440-sp09/handin/lab1/

You should create a directory there that consists of the hyphenation
of your andrew IDs (e.g. gkesden-mpa or jdkaufma-jzaman) and drop your
code inside. If, for whatever reason, you wish to re-handin your code, simply
create a new directory with the same name as before followed by .<version
number> (e.g. gkesden-mpa.1). You may submit as many versions as you
would like. We will grade only the one with the highest version number.

7 Nota Bene

- Find a partner right away. If you need help, let us know.

- Set up and use version control. Now.

- Settle any major style wars with your partner before starting to write
code. Inconsistent code is painful to read will be reflected in your
grade.

- Document your code (and its bugs) as you write it. Do not put docu-
mentation off until the last minute.

- Think/write test code for your process migration utility concurrently
with developing your process migration utility. How will you know it
works?

- Set aside time to meet regularly with your partner.

- Remember to ask for help sooner rather than later.

5


