

15-440 Recitation/Lecture Thing.

● Today: recitation style going over the second lab
● Find a partner, email staff-440 with your andrew

ids
● Tomorrow: lecture with Kesden during normal

recitation time

Plans

Summary

● There are 6 parts to this lab.
● The first part is due next Wednesday.
● There is a large code base, START ASAP.
● The last 5 parts are due March 24.

You get to build a DFS!

● 6 stages that build on each other:

- Lock server, at-most-once RPC semantics

- Extent server, create/lookup/readdir

- read/write/open/setattr

- mkdir/unlink, more lock stuff

- caching locks

- caching extents

Today: Part 1

● Implementing the lock server

- provide mutual exclusion

- use pthread mutexes and condition variables

● Implementing at-most-once RPC semantics

Vms! Yay!

● Nifty!
● VirtualBox
● We provide the image for you
● If you want other packages, the password is

'systems'
● sudo apt-get install package
● demo...

Dist Mutual Exclusion

● Lock is a 64-bit number

- the client would:

acquire(lock_a) ; do work; release(lock_a);

● Create the lock if it doesn't exist on the server

What we give you

● Simple RPC framework, a skeleton for the lock

server
● Sets up sockets, marshalling/unmarshalling, and

 sending stuff over TCP
● BUT it does not keep track of the RPC request

state, so duplicate RPCs are invoked twice!

Example RPC call

lock_protocol::status
lock_server::stat(int clt, lock_protocol::lockid_t lid,
int &r)
{
 lock_protocol::status ret = lock_protocol::OK;
 printf("stat request from clt %d\n", clt);
 r = nacquire;
 return ret;
}

Your Job

lock_protocol::status
lock_server::acquire(int clt, lock_protocol::lockid_t
lid, int &r)
{}

lock_protocol::status
lock_server::release(int clt, lock_protocol::lockid_t
lid, int &r)
{}

Figuring out if it works

● RPC_LOSSY: drops, duplicates, delays
● Run lock_tester with RPC_LOSSY=0

● Run lock_tester with RPC_LOSSY=5

Should fail!

Why does it fail?

● At-most-once RPC semantics have not yet been

implemented
● If the reply was dropped, a duplicate is sent

- acquire(a); acquire(a)

Implementing at-most-once RPC

● Start the timeout thread in the rpc server

constructor
● On the server side, manage the state of the

RPCs sent and the replies

Naïve Approach

● Remember every RPC call (the client sends a

unique RPC identifier)
● Remember every RPC reply (to avoid invoking

the actual function)
● What's the problemo?

Sliding Window RPCs

Client sends:

marshall m1 << clt nonce //client id

 << srv nonce //server id

 << proc //procedure # (acquire,etc)

 << myxid //unique request id for this RPC

 << xid_rep_window.front() //Last out of order

 RPC reply received

 << req.str() //Data

How to use this info

● You have to make sure of the client id, the xid,

and the last out of order RPC

- check whether the request is new, done, in

progress, or forgotten

- figure out which replies you can forget

- keep track of replies of local RPC calls to

ensure at-most-once semantics

Other Stuff

● You'll be required to know a bit about C++ STL

data structures for this project.

 - not to fear, the internet is here
● pthread mutexes, condition variables

 - read the man pages!

 - make sure you initialize them

You should start ASAP!

Go home and read the handouts!

Email us with your partner!

● svn add
● svn commit
● svn update
● svn copy

SVN review

We're here to help!

Email us with questions!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

