
CMU SCS

Carnegie Mellon Univ.

Dept. of Computer Science

15-415 - Database Applications

Crash Recovery - part 2

(R&G, ch. 18)

CMU SCS

Faloutsos CMU SCS 15-415 2

Motivation

• Atomicity:

– Transactions may abort (“Rollback”).

• Durability:

– What if DBMS stops running? (Causes?)

crash!
 Desired state after system

restarts:

– T1 & T3 should be durable.

– T2, T4 & T5 should be
aborted (effects not seen).

T1
T2
T3
T4
T5

Abort

Commit

Commit

CMU SCS

Faloutsos CMU SCS 15-415 3

General Overview

• Preliminaries

• Write-Ahead Log - main ideas

• (Shadow paging)

• Write-Ahead Log: ARIES

CMU SCS

Faloutsos CMU SCS 15-415 4

Main ideas so far:

• Write-Ahead Log, for loss of volatile

storage,

• with incremental updates (STEAL, NO

FORCE)

• and checkpoints

• On recovery: undo uncommitted; redo

committed transactions.

CMU SCS

Faloutsos CMU SCS 15-415 5

Today: ARIES

With full details on

– fuzzy checkpoints

– recovery algorithm

C. Mohan (IBM)

CMU SCS

Faloutsos CMU SCS 15-415 6

Overview

• Preliminaries

• Write-Ahead Log - main ideas

• (Shadow paging)

• Write-Ahead Log: ARIES

– LSN‟s

– examples of normal operation & of abort

– fuzzy checkpoints

– recovery algo

CMU SCS

Faloutsos CMU SCS 15-415 7

LSN

• Log Sequence Number

• every log record has an LSN

• Q: Why do we need it?

CMU SCS

Faloutsos CMU SCS 15-415 8

LSN
<T1 start>

<T2 start>

<T4 start>

<T4, A, 10, 20>

<T1 commit>

<T4, B, 30, 40>

<T3 start>

<T2 commit>

<T3 commit>

~~~~ CRASH ~~~~ 

A1: e.g, undo T4 - it is 

faster, if we have a 

linked list of the T4 log 

records 

A2: and many other 

uses - see later 



CMU SCS 

Faloutsos CMU SCS 15-415 9 

Types of log records 
<T1 start> 

<T2 start> 

<T4 start> 

<T4, A, 10, 20> 

<T1 commit> 

<T4, B, 30, 40> 

<T3 start> 

<T2 commit> 

<T3 commit> 

~~~~ CRASH ~~~~ 

Q1: Which types?

A1:

Q2: What format?

A2:

CMU SCS

Faloutsos CMU SCS 15-415 10

Types of log records
<T1 start>

<T2 start>

<T4 start>

<T4, A, 10, 20>

<T1 commit>

<T4, B, 30, 40>

<T3 start>

<T2 commit>

<T3 commit>

~~~~ CRASH ~~~~ 

Q1: Which types? 

A1: Update, commit, ckpoint, … 

Q2: What format? 

A2: x-id, type, (old value, …) 

 



CMU SCS 

Faloutsos CMU SCS 15-415 11 

Log Records 

Possible log record types: 

• Update, Commit, Abort 

• Checkpoint (for log 

maintenance) 

• Compensation Log 

Records (CLRs)  

– for UNDO actions 

• End (end of commit or 

abort) 

 

prevLSN 

XID 

type 

length 

pageID 

offset 

before-image 

after-image 

LogRecord fields: 

update 
records 
only 



CMU SCS 

Faloutsos CMU SCS 15-415 12 

Overview 

• Preliminaries 

• Write-Ahead Log - main ideas 

• (Shadow paging) 

• Write-Ahead Log: ARIES 

– LSN‟s 

– examples of normal operation & of abort 

– fuzzy checkpoints 

– recovery algo 



CMU SCS 

Faloutsos CMU SCS 15-415 13 

Writing log records 

• We don‟t want to write one record at a time 

– (why not?) 

• How should we buffer them? 



CMU SCS 

Faloutsos CMU SCS 15-415 14 

Writing log records 

• We don‟t want to write one record at a time 

– (why not?) 

• How should we buffer them? 

– Batch log updates; 

– Un-pin a data page ONLY if all the 

corresponding log records have been flushed to 

the log. 



CMU SCS 

Faloutsos CMU SCS 15-415 15 

WAL & the Log 

• Each data page contains a pageLSN. 

– The LSN of the most recent update to 
that page. 

• System keeps track of flushedLSN. 

– The max LSN flushed so far. 

• WAL:  For a page i to be written 

must flush log at least to the  

point where: 

pageLSNi flushedLSN 

pageLSN 

Log records 
flushed to disk 

“Log tail” 
  in RAM 

flushedLSN 



CMU SCS 

Faloutsos CMU SCS 15-415 16 

WAL & the Log 

• Can we un-pin the gray page? 

pageLSN 

Log records 
flushed to disk 

“Log tail” 
  in RAM 

flushedLSN 



CMU SCS 

Faloutsos CMU SCS 15-415 17 

WAL & the Log 

• Can we un-pin the gray page?  

• A: yes 

pageLSN 

Log records 
flushed to disk 

“Log tail” 
  in RAM 

flushedLSN 



CMU SCS 

Faloutsos CMU SCS 15-415 18 

WAL & the Log 

• Can we un-pin the red page?  

pageLSN 

Log records 
flushed to disk 

“Log tail” 
  in RAM 

flushedLSN 



CMU SCS 

Faloutsos CMU SCS 15-415 19 

WAL & the Log 

• Can we un-pin the red page?  

• A: no 

pageLSN 

Log records 
flushed to disk 

“Log tail” 
  in RAM 

flushedLSN 



CMU SCS 

Faloutsos CMU SCS 15-415 20 

WAL & the Log 

LSNs 

DB 

pageLSNs 

RAM 

flushedLSN 

pageLSN 

Log records 
flushed to disk 

“Log tail” 
  in RAM 

flushedLSN 

Q: why not on disk or log? 



CMU SCS 

Faloutsos CMU SCS 15-415 21 

Overview 

• Preliminaries 

• Write-Ahead Log - main ideas 

• (Shadow paging) 

• Write-Ahead Log: ARIES 

– LSN‟s 

– examples of normal operation & of abort 

– fuzzy checkpoints 

– recovery algo 



CMU SCS 

Faloutsos CMU SCS 15-415 22 

Normal Execution of an Xact 

• Series of reads & writes, followed by commit 

or abort. 

– We will assume that disk write is atomic. 

• In practice, additional details to deal with non-atomic 

writes. 

• Strict 2PL.  

• STEAL, NO-FORCE buffer management, with 

Write-Ahead Logging. 



CMU SCS 

Faloutsos CMU SCS 15-415 23 

Normal execution of an Xact 

• Page „i‟ can be written out only after the 

corresponding log record has been flushed 



CMU SCS 

Transaction Commit 

• Write commit record to log. 

• All log records up to Xact‟s commit record 

are flushed to disk. 

Q: why not flush the dirty pages, too? 



CMU SCS 

Transaction Commit 

• Write commit record to log. 

• All log records up to Xact‟s commit record 

are flushed to disk. 

– Note that log flushes are sequential, 

synchronous writes to disk. 

– Many log records per log page. 

• Commit() returns. 

• Write end record to log. 



CMU SCS 

Faloutsos CMU SCS 15-415 26 

Example 
LSN  prevLSN  tid  type        item  old  new 

10     NULL     T1  update    X       30   40 

.... 

50     10            T1 update    Y        22   25 

... 

63     50            T1 commit 

... 

 

68     63            T1 end 

dbms flushes  

log records 

+ some  

record-keeping 



CMU SCS 

Faloutsos CMU SCS 15-415 27 

Overview 

• Preliminaries 

• Write-Ahead Log - main ideas 

• (Shadow paging) 

• Write-Ahead Log: ARIES 

– LSN‟s 

– examples of normal operation & of abort 

– fuzzy checkpoints 

– recovery algo 



CMU SCS 

Faloutsos CMU SCS 15-415 28 

Abort 

Actually, a special case of the up-coming 

„undo‟ operation, 

applied to only one transaction - e.g.: 



CMU SCS 

Faloutsos CMU SCS 15-415 29 

Abort - Example 
LSN  prevLSN  tid  type        item  old  new 

10     NULL     T2  update    Y       30   40 

... 

63     10            T2 abort 

 



CMU SCS 

Faloutsos CMU SCS 15-415 30 

Abort - Example 
LSN  prevLSN  tid  type        item  old  new 

10     NULL     T2  update    Y       30   40 

... 

63     10            T2 abort 

... 

72     63            T2 CLR   (LSN 10) 

... 

78     72            T2 end 

compensating 

log 

record 



CMU SCS 

Faloutsos CMU SCS 15-415 31 

Abort - Example 
LSN  prevLSN  tid  type        item  old  new undoNextLSN  

10     NULL     T2  update    Y       30   40 

... 

63     10            T2 abort 

... 

72     63            T2 CLR        Y       40   30   NULL    

... 

78     72            T2 end 



CMU SCS 

Faloutsos CMU SCS 15-415 32 

CLR record - details 

• a CLR record has all the fields of an 

„update‟ record 

• plus the „undoNextLSN‟ pointer, to the 

next-to-be-undone LSN 



CMU SCS 

Faloutsos CMU SCS 15-415 33 

Abort - algorithm: 

• First, write an „abort‟ record on log and 

• Play back updates, in reverse order: for each 

update 

– write a CLR log record 

– restore old value 

• at end, write an „end‟ log record 

 

Notice: CLR records never need to be undone 



CMU SCS 

Faloutsos CMU SCS 15-415 34 

Overview 

• Preliminaries 

• Write-Ahead Log - main ideas 

• (Shadow paging) 

• Write-Ahead Log: ARIES 

– LSN‟s 

– examples of normal operation & of abort 

– fuzzy checkpoints 

– recovery algo 



CMU SCS 

Faloutsos CMU SCS 15-415 35 

(non-fuzzy) checkpoints 

• they have performance problems - recall 

from previous lecture: 



CMU SCS 

Faloutsos CMU SCS 15-415 36 

(non-fuzzy) checkpoints 

We assumed that the DBMS: 

• stops  all transactions, and 

• flushes on disk the „dirty 

pages‟ 

Both decisions are expensive 

Q: Solution? 

<T1 start> 

... 

<T1 commit> 

... 

<T499, C, 1000, 1200> 

<checkpoint> 

<T499 commit> 

<T500 start> 

<T500, A, 200, 400> 

<checkpoint> 

<T500, B, 10, 12> 

before 

crash 



CMU SCS 

Faloutsos CMU SCS 15-415 37 

(non-fuzzy) checkpoints 

Q: Solution? 

Hint1: record state as of the 

beginning of the ckpt 

Hint2: we need some 

guarantee about which 

pages made it to the disk 

<T1 start> 

... 

<T1 commit> 

... 

<T499, C, 1000, 1200> 

<checkpoint> 

<T499 commit> 

<T500 start> 

<T500, A, 200, 400> 

<checkpoint> 

<T500, B, 10, 12> 

before 

crash 



CMU SCS 

Faloutsos CMU SCS 15-415 38 

checkpoints 

Q: Solution? 

A: write on the log: 

• the id-s of active 

transactions and 

• the id-s (ONLY!) of dirty 

pages (rest: obviously 

made it to the disk!) 

<T1 start> 

... 

<T1 commit> 

... 

<T499, C, 1000, 1200> 

<checkpoint> 

<T499 commit> 

<T500 start> 

<T500, A, 200, 400> 

<checkpoint> 

<T500, B, 10, 12> 

before 

crash 



CMU SCS 

Faloutsos CMU SCS 15-415 39 

(Fuzzy) checkpoints 

Specifically, write to log: 

–  begin_checkpoint record: indicates start of ckpt 

–  end_checkpoint record:  Contains current Xact table 
and dirty page table.  This is a `fuzzy checkpoint‟: 

• Other Xacts continue to run; so these tables accurate only 
as of the time of the begin_checkpoint record. 

• No attempt to force dirty pages to disk; effectiveness of 
checkpoint limited by oldest unwritten change to a dirty 
page.  



CMU SCS 

Faloutsos CMU SCS 15-415 40 

(Fuzzy) checkpoints 

Specifically, write to log: 

–  begin_checkpoint record: indicates start of ckpt 

–  end_checkpoint record:  Contains current Xact table 
and dirty page table.  This is a `fuzzy checkpoint‟: 

• Other Xacts continue to run; so these tables accurate only 
as of the time of the begin_checkpoint record. 

• No attempt to force dirty pages to disk; effectiveness of 
checkpoint limited by oldest unwritten change to a dirty 
page.  

solved both problems of non-fuzzy ckpts!! 



CMU SCS 

Faloutsos CMU SCS 15-415 41 

(Fuzzy) checkpoints - cont‟d 

And:  

– Store LSN of most recent chkpt record on disk 
(master record) 

•  Q: why do we need that? 



CMU SCS 

Faloutsos CMU SCS 15-415 42 

(Fuzzy) Checkpoints 
More details: Two in-memory tables: 

#1) Transaction Table 

Q: what would you store there? 



CMU SCS 

Faloutsos CMU SCS 15-415 43 

(Fuzzy) Checkpoints 
More details: Two in-memory tables: 

#1) Transaction Table 

• One entry per currently active Xact. 

– entry removed when Xact commits or aborts 

• Contains  

– XID,  

– status (running/committing/aborting), and  

– lastLSN (most recent LSN written by Xact). 



CMU SCS 

Faloutsos CMU SCS 15-415 44 

(Fuzzy) Checkpoints 
#2) Dirty Page Table: 

– One entry per dirty page currently in buffer pool. 

– Contains recLSN -- the LSN of the log record 

which first caused the page to be dirty. 



CMU SCS 

Faloutsos CMU SCS 15-415 45 

Overview 

• Preliminaries 

• Write-Ahead Log - main ideas 

• (Shadow paging) 

• Write-Ahead Log: ARIES 

– LSN‟s 

– examples of normal operation & of abort 

– fuzzy checkpoints 

– recovery algo 



CMU SCS 

Faloutsos CMU SCS 15-415 46 

The Big Picture:  What‟s Stored 

Where 

DB 

Data pages 
    each with a 

    pageLSN 

Xact Table 
 lastLSN 

 status 

 

Dirty Page Table 
 recLSN 

 

flushedLSN 
 

RAM 

prevLSN 

XID 

type 

length 

pageID 

offset 

before-image 

after-image 

LogRecords 

LOG 

master record 
    LSN of most  

    recent checkpoint 

update 

CLR 

undoNextLSN CLR 



CMU SCS 

Faloutsos CMU SCS 15-415 47 

Crash Recovery: Big Picture 

• Start from a checkpoint (found 
via master record). 

• Three phases. 

– Analysis - Figure out which 
Xacts committed since 
checkpoint, which failed. 

– REDO all actions (repeat 
history) 

– UNDO effects of failed Xacts. 

Oldest log 
rec. of Xact 
active at 
crash 

Smallest 
recLSN in 
dirty page 
table after 
Analysis 

Last chkpt 

CRASH 

A R U 



CMU SCS 

Faloutsos CMU SCS 15-415 48 

Crash Recovery: Big Picture 

• Notice: relative ordering of A, 
B, C may vary! 

Oldest log 
rec. of Xact 
active at 
crash 

Smallest 
recLSN in 
dirty page 
table after 
Analysis 

Last chkpt 

CRASH 

A R U 

A 

B 

C 



CMU SCS 

Faloutsos CMU SCS 15-415 49 

Recovery: The Analysis Phase 

• Re-establish knowledge of state at checkpoint. 

– via transaction table and dirty page table stored in the 
checkpoint 



CMU SCS 

Faloutsos CMU SCS 15-415 50 

Recovery: The Analysis Phase 

• Scan log forward from checkpoint. 

–  End record: Remove Xact from Xact table. 

– All Other records:  

• Add Xact to Xact table, with status „U‟ (=candidate for undo) 

•  set lastLSN=LSN,  

• on commit, change Xact status to „C‟. 

– also, for Update records: If page P not in Dirty Page 
Table,  

• add P to DPT, set its recLSN=LSN. 



CMU SCS 

Faloutsos CMU SCS 15-415 51 

Recovery: The Analysis Phase 

• At end of Analysis: 

– transaction table says which xacts were active at time 
of crash. 

– DPT says which dirty pages might not have made it to 
disk 



CMU SCS 

Faloutsos CMU SCS 15-415 52 

Phase 2: REDO 

Goal: repeat History to reconstruct state at crash: 

– Reapply all updates (even of aborted Xacts!), redo 
CLRs. 

– (and try to avoid unnecessary reads and writes!) 

Specifically: 

• Scan forward from log rec containing smallest 
recLSN in DPT.    Q: why start here? 



CMU SCS 

Faloutsos CMU SCS 15-415 53 

Phase 2: REDO (cont‟d) 

• ... 

• For each update log record or CLR  with a given 
LSN, REDO the action unless:   

– Affected page is not in the Dirty Page Table, or 

– Affected page is in D.P.T., but has recLSN > LSN, 
or 

– pageLSN (in DB) LSN. (this last case requires I/O) 



CMU SCS 

Faloutsos CMU SCS 15-415 54 

Phase 2: REDO (cont‟d) 

• ... 

• To REDO an action: 

– Reapply logged action. 

– Set pageLSN to LSN.  No additional logging, no 
forcing! 



CMU SCS 

Faloutsos CMU SCS 15-415 55 

Phase 2: REDO (cont‟d) 

• ... 

• at the end of REDO phase, write „end‟ log 
records for all xacts with status „C‟, 

• and remove them from transaction table 



CMU SCS 

Faloutsos CMU SCS 15-415 56 

Phase 3: UNDO 

Goal: Undo all transactions that were active at 
the time of crash („loser xacts‟) 

 

• That is, all xacts with „U‟ status on the xact 
table of the Analysis phase 

• Process them in reverse LSN order 

• using the lastLSN‟s to speed up traversal 

• and issuing CLRs 



CMU SCS 

Faloutsos CMU SCS 15-415 57 

Phase 3: UNDO 
ToUndo={lastLSNs of „loser‟ Xacts} 

Repeat: 

– Choose (and remove) largest LSN among ToUndo. 

– If this LSN is a CLR and undonextLSN==NULL 

• Write an End record for this Xact. 

– If this LSN is a CLR, and undonextLSN != NULL 

• Add undonextLSN to ToUndo  

– Else this LSN is an update.  Undo the update, write 
a CLR, add prevLSN to ToUndo. 

Until ToUndo is empty. 



CMU SCS 

Faloutsos CMU SCS 15-415 58 

Phase 3: UNDO - illustration 
LSN         LOG 

     00 

     05 

     10 

     20 

     30 

     40 

     45 

     50 

     60 

suppose that after end of  

analysis phase we have: 

xact table 

 xid   status   lastLSN 

T32   U 

T41   U 

prevLSNs 



CMU SCS 

Faloutsos CMU SCS 15-415 59 

Phase 3: UNDO - illustration 
LSN         LOG 

     00 

     05 

     10 

     20 

     30 

     40 

     45 

     50 

     60 

suppose that after end of  

analysis phase we have: 

xact table 

 xid   status   lastLSN 

T32   U 

T41   U 

undo 

in reverse 

LSN order 



CMU SCS 

Faloutsos CMU SCS 15-415 60 

RAM 

Example of Recovery 

begin_checkpoint 

 end_checkpoint 

update: T1 writes P5 

update T2 writes P3 

T1 abort 

CLR: Undo T1 LSN 10 

T1 End 

update: T3 writes P1 

update: T2 writes P5 

CRASH 

LSN         LOG 

     00 

     05 

     10 

     20 

     30 

     40 

     45 

     50 

     60 

Xact Table 

 lastLSN 

 status 

Dirty Page Table 

 recLSN 

flushedLSN 

 

ToUndo 

prevLSNs 



CMU SCS 

Faloutsos CMU SCS 15-415 61 

Questions 

• Q1: After the Analysis phase, which are the 

„loser‟ transactions? 

 

• Q2: UNDO phase - what will it do? 



CMU SCS 

Faloutsos CMU SCS 15-415 62 

Questions 

• Q1: After the Analysis phase, which are the 

„loser‟ transactions? 

• A1: T2 and T3 

• Q2: UNDO phase - what will it do? 

• A2: undo ops of LSN 60, 50, 20 



CMU SCS 

Faloutsos CMU SCS 15-415 63 

Example: Crash During Restart! 

begin_checkpoint, end_checkpoint 

update: T1 writes P5 

update T2 writes P3 

T1 abort 

CLR: Undo T1 LSN 10, T1 End 

update: T3 writes P1 

update: T2 writes P5 

CRASH, RESTART 

CLR: Undo T2 LSN 60 

CLR: Undo T3 LSN 50, T3 end 

CRASH, RESTART 

 

LSN         LOG 
00,05 

     10 

     20 

     30 

40,45 

     50 

     60 

 

     70 

80,85 

 

 

Xact Table 

 lastLSN 

 status 

Dirty Page Table 

 recLSN 

flushedLSN 

 

ToUndo 

RAM 



CMU SCS 

Faloutsos CMU SCS 15-415 64 

Example: Crash During Restart! 

begin_checkpoint, end_checkpoint 

update: T1 writes P5 

update T2 writes P3 

T1 abort 

CLR: Undo T1 LSN 10, T1 End 

update: T3 writes P1 

update: T2 writes P5 

CRASH, RESTART 

CLR: Undo T2 LSN 60 

CLR: Undo T3 LSN 50, T3 end 

CRASH, RESTART 

 

LSN         LOG 
00,05 

     10 

     20 

     30 

40,45 

     50 

     60 

 

     70 

80,85 

 

 

Xact Table 

 lastLSN 

 status 

Dirty Page Table 

 recLSN 

flushedLSN 

 

ToUndo 

undonextLSN 

RAM 



CMU SCS 

Faloutsos CMU SCS 15-415 65 

Example: Crash During Restart! 

begin_checkpoint, end_checkpoint 

update: T1 writes P5 

update T2 writes P3 

T1 abort 

CLR: Undo T1 LSN 10, T1 End 

update: T3 writes P1 

update: T2 writes P5 

CRASH, RESTART 

CLR: Undo T2 LSN 60 

CLR: Undo T3 LSN 50, T3 end 

CRASH, RESTART 

 

LSN         LOG 
00,05 

     10 

     20 

     30 

40,45 

     50 

     60 

 

     70 

80,85 

 

 

Xact Table 

 lastLSN 

 status 

Dirty Page Table 

 recLSN 

flushedLSN 

 

ToUndo 

undonextLSN 

RAM 



CMU SCS 

Faloutsos CMU SCS 15-415 66 

Example: Crash During Restart! 

begin_checkpoint, end_checkpoint 

update: T1 writes P5 

update T2 writes P3 

T1 abort 

CLR: Undo T1 LSN 10, T1 End 

update: T3 writes P1 

update: T2 writes P5 

CRASH, RESTART 

CLR: Undo T2 LSN 60 

CLR: Undo T3 LSN 50, T3 end 

CRASH, RESTART 

 

LSN         LOG 
00,05 

     10 

     20 

     30 

40,45 

     50 

     60 

 

     70 

80,85 

 

 

undonextLSN 

RAM 



CMU SCS 

Faloutsos CMU SCS 15-415 67 

Questions 

• Q3: After the Analysis phase, which are the 

„loser‟ transactions? 

 

• Q4: UNDO phase - what will it do? 



CMU SCS 

Faloutsos CMU SCS 15-415 68 

Questions 

• Q3: After the Analysis phase, which are the 

„loser‟ transactions? 

• A3: T2 only 

• Q4: UNDO phase - what will it do? 

• A4: follow the string of prevLSN of T2, 

exploiting undoNextLSN 



CMU SCS 

Faloutsos CMU SCS 15-415 69 

Example: Crash During Restart! 

begin_checkpoint, end_checkpoint 

update: T1 writes P5 

update T2 writes P3 

T1 abort 

CLR: Undo T1 LSN 10, T1 End 

update: T3 writes P1 

update: T2 writes P5 

CRASH, RESTART 

CLR: Undo T2 LSN 60 

CLR: Undo T3 LSN 50, T3 end 

CRASH, RESTART 

 

LSN         LOG 
00,05 

     10 

     20 

     30 

40,45 

     50 

     60 

 

     70 

80,85 

 

 

Xact Table 

 lastLSN 

 status 

Dirty Page Table 

 recLSN 

flushedLSN 

 

ToUndo 

undonextLSN 

RAM 



CMU SCS 

Faloutsos CMU SCS 15-415 70 

Questions 

• Q5: show the log, after the recovery is 

finished: 



CMU SCS 

Faloutsos CMU SCS 15-415 71 

Example: Crash During Restart! 

begin_checkpoint, end_checkpoint 

update: T1 writes P5 

update T2 writes P3 

T1 abort 

CLR: Undo T1 LSN 10, T1 End 

update: T3 writes P1 

update: T2 writes P5 

CRASH, RESTART 

CLR: Undo T2 LSN 60 

CLR: Undo T3 LSN 50, T3 end 

CRASH, RESTART 

CLR: Undo T2 LSN 20, T2 end 

LSN         LOG 
00,05 

     10 

     20 

     30 

40,45 

     50 

     60 

 

     70 

80,85 

 

90, 95 

Xact Table 

 lastLSN 

 status 

Dirty Page Table 

 recLSN 

flushedLSN 

 

ToUndo 

undonextLSN 

RAM 



CMU SCS 

Faloutsos CMU SCS 15-415 72 

Additional Crash Issues 

• What happens if system crashes during 

Analysis?  During REDO? 

• How do you limit the amount of work in 

REDO? 

– Flush asynchronously in the background. 

• How do you limit the amount of work in 

UNDO? 

– Avoid long-running Xacts. 



CMU SCS 

Faloutsos CMU SCS 15-415 73 

Summary of Logging/Recovery 

•  Recovery Manager guarantees Atomicity & 

Durability. 

 

Atomicity 

Consistency 

Isolation 

Durability 



CMU SCS 

Faloutsos CMU SCS 15-415 74 

Summary of Logging/Recovery 

ARIES - main ideas: 

– WAL (write ahead log), STEAL/NO-

FORCE 

– fuzzy checkpoints (snapshot of dirty 

page ids) 

– redo everything since the earliest dirty 

page; undo „loser‟ transactions 

– write CLRs when undoing, to survive 

failures during restarts 

let OS 

do its best 

idempotency 



CMU SCS 

Faloutsos CMU SCS 15-415 75 

Summary of Logging/Recovery 

Additional concepts: 

• LSNs identify log records; linked into 

backwards chains per transaction (via 

prevLSN). 

• pageLSN allows comparison of data page 

and log records. 

• (and several other subtle concepts: undoNextLSN, 

recLSN etc) 


