
CMU SCS

Carnegie Mellon Univ.

Dept. of Computer Science

15-415 - Database Applications

Crash Recovery - part 1

(R&G, ch. 18)

CMU SCS

Faloutsos CMU SCS 15-415 2

General Overview

• Preliminaries

• Write-Ahead Log - main ideas

• (Shadow paging)

• Write-Ahead Log: ARIES

CMU SCS

Faloutsos CMU SCS 15-415 3

NOTICE:

• NONE of the methods in this lecture is used

„as is‟

• we mention them for clarity, to illustrate the

concepts and rationale behind ‘ARIES’,

which is the industry standard.

CMU SCS

Faloutsos CMU SCS 15-415 4

Transactions - dfn

= unit of work, eg.

move $10 from savings to checking

Atomicity (all or none)

Consistency

Isolation (as if alone)

Durability

recovery

concurrency

control

CMU SCS

Faloutsos CMU SCS 15-415 5

Overview - recovery

• problem definition

– types of failures

– types of storage

• solution#1: Write-ahead log - main ideas

– deferred updates

– incremental updates

– checkpoints

• (solution #2: shadow paging)

CMU SCS

Faloutsos CMU SCS 15-415 6

Recovery

• Durability - types of failures?

CMU SCS

Faloutsos CMU SCS 15-415 7

Recovery

• Durability - types of failures?

• disk crash (ouch!)

• power failure

• software errors (deadlock, division by zero)

CMU SCS

Faloutsos CMU SCS 15-415 8

Reminder: types of storage

• volatile (eg., main memory)

• non-volatile (eg., disk, tape)

• “stable” (“never” fails - how to implement

it?)

CMU SCS

Faloutsos CMU SCS 15-415 9

Classification of failures:

• logical errors (eg., div. by 0)

• system errors (eg. deadlock - pgm can run

later)

• system crash (eg., power failure - volatile

storage is lost)

• disk failure

frequent; ‘cheap’

rare; expensive

CMU SCS

Faloutsos CMU SCS 15-415 10

Problem definition

• Records are on disk

• for updates, they are copied in memory

• and flushed back on disk, at the discretion

of the O.S.! (unless forced-output:

„output(B)‟ = fflush())

CMU SCS

Faloutsos CMU SCS 15-415 11

Problem definition - eg.:

read(X)

X=X+1

write(X)

disk
main

memory

5

}page
buffer{

5

reminder

CMU SCS

Faloutsos CMU SCS 15-415 12

Problem definition - eg.:

read(X)

X=X+1

write(X)

disk
main

memory

6

5

reminder

CMU SCS

Faloutsos CMU SCS 15-415 13

Problem definition - eg.:

read(X)

X=X+1

write(X)

disk

6

5

buffer joins an ouput queue,

but it is NOT flushed immediately!

Q1: why not?

Q2: so what?

reminder

CMU SCS

Faloutsos CMU SCS 15-415 14

Problem definition - eg.:

read(X)

read(Y)

X=X+1

Y=Y-1

write(X)

write(Y)

disk

6

Q2: so what?

X
3

5

Y
3

reminder

CMU SCS

Faloutsos CMU SCS 15-415 15

Problem definition - eg.:

read(X)

read(Y)

X=X+1

Y=Y-1

write(X)

write(Y)

disk

6

3

Q2: so what?

Q3: how to guard against it?

X
3

5

Y

reminder

CMU SCS

Faloutsos CMU SCS 15-415 16

Overview - recovery

• problem definition

– types of failures

– types of storage

• solution#1: Write-ahead log - main ideas

– deferred updates

– incremental updates

– checkpoints

• (solution #2: shadow paging)

CMU SCS

Faloutsos CMU SCS 15-415 17

Solution #1: W.A.L.

• redundancy, namely

• write-ahead log, on „stable‟ storage

• Q: what to replicate? (not the full page!!)

• A:

• Q: how exactly?

CMU SCS

Faloutsos CMU SCS 15-415 18

W.A.L. - intro

• replicate intentions: eg:

<T1 start>

<T1, X, 5, 6>

<T1, Y, 4, 3>

<T1 commit> (or <T1 abort>)

CMU SCS

Faloutsos CMU SCS 15-415 19

W.A.L. - intro

• in general: transaction-id, data-item-id, old-

value, new-value

• (assumption: each log record is

immediately flushed on stable store)

• each transaction writes a log record first,

before doing the change

• when done, write a <commit> record & exit

CMU SCS

Faloutsos CMU SCS 15-415 20

W.A.L. - deferred updates

• idea: prevent OS from flushing buffers,

until (partial) „commit‟.

• After a failure, “replay” the log

CMU SCS

Faloutsos CMU SCS 15-415 21

W.A.L. - deferred updates

• Q: how, exactly?

– value of W on disk?

– value of W after recov.?

– value of Z on disk?

– value of Z after recov.?

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

<T1 commit>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415 22

W.A.L. - deferred updates

• Q: how, exactly?

– value of W on disk?

– value of W after recov.?

– value of Z on disk?

– value of Z after recov.?

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415 23

W.A.L. - deferred updates

• Thus, the recovery algo:

– redo committed transactions

– ignore uncommited ones

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415 24

W.A.L. - deferred updates

Observations:

- no need to keep „old‟ values

- Disadvantages?

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415 25

W.A.L. - deferred updates

- Disadvantages?

(e.g., “increase all balances by 5%”)

May run out of buffer space!

Hence:

CMU SCS

Faloutsos CMU SCS 15-415 26

Overview - recovery

• problem definition

– types of failures

– types of storage

• solution#1: Write-ahead log

– deferred updates

– incremental updates

– checkpoints

• (solution #2: shadow paging)

CMU SCS

Faloutsos CMU SCS 15-415 27

W.A.L. - incremental updates

- log records have „old‟ and „new‟ values.

- modified buffers can be flushed at any time

Each transaction:

- writes a log record first, before doing the

change

- writes a „commit‟ record (if all is well)

- exits

CMU SCS

Faloutsos CMU SCS 15-415 28

W.A.L. - incremental updates

• Q: how, exactly?

– value of W on disk?

– value of W after recov.?

– value of Z on disk?

– value of Z after recov.?

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

<T1 commit>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415 29

W.A.L. - incremental updates

• Q: how, exactly?

– value of W on disk?

– value of W after recov.?

– value of Z on disk?

– value of Z after recov.?

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415 30

W.A.L. - incremental updates

• Q: recovery algo?

• A:

– redo committed xacts

– undo uncommitted ones

• (more details: soon)

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415 31

High level conclusion:

• Buffer management plays a key role

• FORCE policy: DBMS immediately forces

dirty pages on the disk (easier recovery;

poor performance)

• STEAL policy == „incremental updates‟:

the O.S. is allowed to flush dirty pages on

the disk

CMU SCS

Faloutsos CMU SCS 15-415 32

Buffer Management summary

Force

No Force

No Steal Steal

 UNDO
REDO

Force

No Force

No Steal Steal

Slowest

Fastest

Performance
Implications

Logging/Recovery
Implications

No UNDO

No REDO

CMU SCS

Faloutsos CMU SCS 15-415 33

W.A.L. - incremental updates

Observations

• “increase all balances by

5%” - problems?

• what if the log is huge?

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415 34

Overview - recovery

• problem definition

– types of failures

– types of storage

• solution#1: Write-ahead log

– deferred updates

– incremental updates

– checkpoints

• (solution #2: shadow paging)

CMU SCS

Faloutsos CMU SCS 15-415 35

W.A.L. - check-points

Idea: periodically, flush

buffers

Q: should we write

anything on the log?

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

...

<T500, B, 10, 12>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415 36

W.A.L. - check-points

Q: should we write

anything on the log?

A: yes!

Q: how does it help us?

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

<checkpoint>

...

<checkpoint>

<T500, B, 10, 12>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415 37

W.A.L. - check-points

Q: how does it help us?

A=? on disk?

A=? after recovery?

B=? on disk?

B=? after recovery?

C=? on disk?

C=? after recovery?

<T1 start>

...

<T1 commit>

...

<T499, C, 1000, 1200>

<checkpoint>

<T499 commit>

<T500 start>

<T500, A, 200, 400>

<checkpoint>

<T500, B, 10, 12>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415 38

W.A.L. - check-points

Q: how does it help us?

I.e., how is the recovery

algorithm?

<T1 start>

...

<T1 commit>

...

<T499, C, 1000, 1200>

<checkpoint>

<T499 commit>

<T500 start>

<T500, A, 200, 400>

<checkpoint>

<T500, B, 10, 12>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415 39

W.A.L. - check-points

Q: how is the recovery

algorithm?

A:

 - undo uncommitted

xacts (eg., T500)

 - redo the ones

committed after the last

checkpoint (eg., none)

<T1 start>

...

<T1 commit>

...

<T499, C, 1000, 1200>

<checkpoint>

<T499 commit>

<T500 start>

<T500, A, 200, 400>

<checkpoint>

<T500, B, 10, 12>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415 40

W.A.L. - w/ concurrent xacts

Assume: strict 2PL

CMU SCS

Faloutsos CMU SCS 15-415 41

W.A.L. - w/ concurrent xacts

Log helps to rollback

transactions (eg., after a

deadlock + victim

selection)

Eg., rollback(T500): go

backwards on log;

restore old values

<T1 start>

<checkpoint>

<T499 commit>

<T500 start>

<T500, A, 200, 400>

<T300 commit>

<checkpoint>

<T500, B, 10, 12>

<T500 abort>

before

CMU SCS

Faloutsos CMU SCS 15-415 42

W.A.L. - w/ concurrent xacts

-recovery algo?

- undo uncommitted ones

- redo ones committed

after the last checkpoint

<T1 start>

...

<T300 start>

...

<checkpoint>

<T499 commit>

<T500 start>

<T500, A, 200, 400>

<T300 commit>

<checkpoint>

<T500, B, 10, 12>

before

CMU SCS

Faloutsos CMU SCS 15-415 43

W.A.L. - w/ concurrent xacts

-recovery algo?

- undo uncommitted

ones

- redo ones

committed after

the last checkpoint

- Eg.?

time

T1

T2

T3

T4

ck ck crash

CMU SCS

Faloutsos CMU SCS 15-415 44

W.A.L. - w/ concurrent xacts

-recovery algo?

specifically:

- find latest

checkpoint

- create the „undo‟

and „redo‟ lists

time

T1

T2

T3

T4

ck ck crash

CMU SCS

Faloutsos CMU SCS 15-415 45

W.A.L. - w/ concurrent xacts

time

T1

T2

T3

T4

ck ck crash <T1 start>

<T2 start>

<T4 start>

<T1 commit>

<checkpoint >

<T3 start>

<T2 commit>

<checkpoint >

<T3 commit>

CMU SCS

Faloutsos CMU SCS 15-415 46

W.A.L. - w/ concurrent xacts
<T1 start>

<T2 start>

<T4 start>

<T1 commit>

<checkpoint >

<T3 start>

<T2 commit>

<checkpoint >

<T3 commit>

<checkpoint> should

also contain a list of

‘active’ transactions

(= not commited yet)

CMU SCS

Faloutsos CMU SCS 15-415 47

W.A.L. - w/ concurrent xacts
<T1 start>

<T2 start>

<T4 start>

<T1 commit>

<checkpoint {T4, T2}>

<T3 start>

<T2 commit>

<checkpoint {T4,T3} >

<T3 commit>

<checkpoint> should

also contain a list of

‘active’ transactions

CMU SCS

Faloutsos CMU SCS 15-415 48

W.A.L. - w/ concurrent xacts
<T1 start>

<T2 start>

<T4 start>

<T1 commit>

<checkpoint {T4, T2}>

<T3 start>

<T2 commit>

<checkpoint {T4,T3} >

<T3 commit>

Recovery algo:

- build ‘undo’ and ‘redo’ lists

- scan backwards, undoing ops

 by the ‘undo’-list transactions

- go to most recent checkpoint

- scan forward, re-doing ops by

the ‘redo’-list xacts

CMU SCS

Faloutsos CMU SCS 15-415 49

W.A.L. - w/ concurrent xacts
<T1 start>

<T2 start>

<T4 start>

<T1 commit>

<checkpoint {T4, T2}>

<T3 start>

<T2 commit>

<checkpoint {T4,T3} >

<T3 commit>

Recovery algo:

- build ‘undo’ and ‘redo’ lists

- scan backwards, undoing ops

 by the ‘undo’-list transactions

- go to most recent checkpoint

- scan forward, re-doing ops by

the ‘redo’-list xacts

Actual ARIES algorithm: more

clever (and more complicated)

than that

swap?

CMU SCS

Faloutsos CMU SCS 15-415 50

W.A.L. - w/ concurrent xacts
<T1 start>

<T2 start>

<T4 start>

<T1 commit>

<checkpoint {T4, T2}>

<T3 start>

<T2 commit>

<checkpoint {T4,T3} >

<T3 commit>

Observations/Questions

1) what is the right order to

undo/redo?

2) during checkpoints: assume

that no changes are allowed by

xacts (otherwise, „fuzzy

checkpoints‟)

3) recovery algo: must be

idempotent (ie., can work, even

if there is a failure during

recovery!

4) how to handle buffers of

stable storage?

CMU SCS

Faloutsos CMU SCS 15-415 51

Observations

ARIES (coming up soon) handles all issues:

1) redo everything; undo after that

2) „fuzzy checkpoints‟

3) idempotent recovery

4) buffer log records;

– flush all necessary log records before a page is

written

– flush all necessary log records before a x-act

commits

CMU SCS

Faloutsos CMU SCS 15-415 52

Overview - recovery

• problem definition

– types of failures

– types of storage

• solution#1: Write-ahead log

– deferred updates

– incremental updates

– checkpoints

• (solution #2: shadow paging)

CMU SCS

Faloutsos CMU SCS 15-415 53

Shadow paging

• keep old pages on disk

• write updated records on new pages on disk

• if successful, release old pages; else release

„new‟ pages

• tried in early IBM prototype systems, but

• not used in practice - why not?

NOT USED

CMU SCS

Faloutsos CMU SCS 15-415 54

Shadow paging

• not used in practice - why not?

• may need too much disk space (“increase all

by 5%”)

• may destroy clustering/contiguity of pages.

CMU SCS

Faloutsos CMU SCS 15-415 55

Other topics

• against loss of non-volatile storage: dumps

of the whole database on stable storage.

CMU SCS

Faloutsos CMU SCS 15-415 56

Conclusions

• Write-Ahead Log, for loss of volatile

storage,

• with incremental updates (STEAL, NO

FORCE)

• and checkpoints

• On recovery: undo uncommitted; redo

committed transactions.

CMU SCS

Faloutsos CMU SCS 15-415 57

Next time:

ARIES, with full details on

– fuzzy checkpoints

– recovery algorithm

