

Overview - detailed

- Why q-opt?
- Equivalence of expressions
- Cost estimation
- Plan generation
- Plan evaluation

Why Q-opt?

- SQL: ~declarative
- good q-opt -> big difference
- eg., seq. Scan vs
- B -tree index, on $\mathrm{P}=1,000$ pages

Equivalence of expressions

- A.k.a.: syntactic q-opt
- in short: perform selections and projections early
- More details: see transf. rules in text

Equivalence of expressions

$\sigma_{P}(R 1 \cup R 2) \stackrel{?}{=} \sigma_{P}(R 1) \cup \sigma_{P}(R 2)$
$t \in L H S \Leftrightarrow$
$t \in(R 1 \cup R 2) \wedge P(t) \Leftrightarrow$
$(t \in R 1 \quad \vee \quad t \in R 2) \wedge P(t) \Leftrightarrow$
$(t \in R 1 \wedge P(t)) \quad \vee \quad(t \in R 2) \wedge P(t)) \quad \Leftrightarrow$

Equivalence of expressions

- Q: how to disprove a rule??

$$
\pi_{A}(R 1-R 2) \stackrel{?}{=} \pi_{A}(R 1)-\pi_{A}(R 2)
$$

${ }^{\text {cmss }}$ Equivalence of expressions

- Selections
- perform them early
- break a complex predicate, and push
$\sigma_{p 1^{\wedge} p 2^{\wedge} \ldots p n}(R)=\sigma_{p 1}\left(\sigma_{p 2}\left(\ldots \sigma_{p n}(R)\right) \ldots\right)$
- simplify a complex predicate
- (' $\mathrm{X}=\mathrm{Y}$ and $\mathrm{Y}=3$ ') -> ' $\mathrm{X}=3$ and $\mathrm{Y}=3$ '

Equivalence of expressions

- Joins - Q: n-way join - how many diff. orderings?
- A: Catalan number $\sim 4^{\wedge} \mathrm{n}$
- Exhaustive enumeration: too slow.

Cost estimation

- Statistics: for each relation 'r' we keep
- nr : \# tuples;
-Sr : size of tuple in bytes

Derivable statistics

- blocking factor $=$ max\# records/block (=??)
- br: \# blocks (=??)
- $\mathrm{SC}(\mathrm{A}, \mathrm{r})=$ selection cardinality = avg\# of records with $\mathrm{A}=$ given (=??)

\#br

- blocking factor $=\max \#$ records/block $(=$ B / Sr; B : block size in bytes)
- br: \# blocks (= nr / (blocking-factor))

Derivable statistics

- $\mathrm{SC}(\mathrm{A}, \mathrm{r})=$ selection cardinality $=$ avg\# of records with $\mathrm{A}=$ given $(=\mathrm{nr} / \mathrm{V}(\mathrm{A}, \mathrm{r})$) (assumes uniformity...) - eg: 10,000 students, 10 colleges - how many students in SCS?

Additional quantities we need:

- For index ' i ':
- fi: average fanout ($\sim 50-100$)
- HTi: \# levels of index 'i' ($\sim 2-3$)

- ~ $\log ($ \#entries $) / \log (f i)$
- LBi: \# blocks at leaf level
- Where do we store them?
- How often do we update them?

Statistics

 --
Selections

- we saw simple predicates ($\mathrm{A}=$ constant; eg., 'name=Smith')
- how about more complex predicates, like
- 'salary > 10 K '
- 'age $=30$ and job-code="analyst",
- what is their selectivity?

Faloutsos
CMU SCS 15-415
30

cmu scs

Selections - complex predicates

disjunction:
$-\operatorname{sel}($ grade $=$ 'C' or course $=$ '415')
$-\operatorname{sel}(\mathrm{P} 1$ or P 2$)=\operatorname{sel}(\mathrm{P} 1)+\operatorname{sel}(\mathrm{P} 2)-\operatorname{sel}(\mathrm{P} 1$ and P 2$)$
$-=\operatorname{sel}(\mathrm{P} 1)+\operatorname{sel}(\mathrm{P} 2)-\operatorname{sel}(\mathrm{P} 1) * \operatorname{sel}(\mathrm{P} 2)$

- INDEPENDENCE ASSUMPTION, again

Faloutsos
CMU SCS 15-415
36

Selections - summary

$-\operatorname{sel}(\mathrm{A}=$ constant $)=1 / \mathrm{V}(\mathrm{A}, \mathrm{r})$
$-\operatorname{sel}(A>a)=(A \max -a) /(A \max -A \min)$
$-\operatorname{sel}(\operatorname{not} P)=1-\operatorname{sel}(P)$
$-\operatorname{sel}(\mathrm{P} 1$ and P 2$)=\operatorname{sel}(\mathrm{P} 1) * \operatorname{sel}(\mathrm{P} 2)$
$-\operatorname{sel}(\mathrm{P} 1$ or P 2$)=\operatorname{sel}(\mathrm{P} 1)+\operatorname{sel}(\mathrm{P} 2)-\operatorname{sel}(\mathrm{P} 1) * \operatorname{sel}(\mathrm{P} 2)$
$-\operatorname{sel}(\mathrm{P} 1$ or \ldots or Pn$)=1-(1-\operatorname{sel}(\mathrm{P} 1))^{*} \ldots *(1-\operatorname{sel}(\mathrm{Pn}))$

- UNIFORMITY and INDEPENDENCE ASSUMPTIONS

Result Size Estimation for Joins

- Q: Given a join of R and S, what is the range of possible result sizes (in \#of tuples)?
- Hint: what if R_cols $\cap S$ _cols $=\varnothing$?
- R_cols \cap S_cols is a key for R (and a Foreign Key in S)?

Result Size Estimation for Joins

- General case: R_cols $\cap S _$cols $=\{A\}$ (and A is key for neither)
- match each R-tuple with S-tuples
est_size $<\sim$ NTuples(R) * NTuples(S)/NKeys(A,S)
$<\sim n r * n s / V(A, S)$
- symmetrically, for S:
est_size $<\sim$ NTuples(R) $*$ NTuples(S)/NKeys(A,R)

$$
<\sim \mathrm{nr} * \mathrm{~ns} / \mathrm{V}(\mathrm{~A}, \mathrm{R})
$$

- Overall:
est_size $=$ NTuples $(\mathrm{R}) *$ NTuples $(\mathrm{S}) /$ MAX $\{$ NKeys (A, S), NKeys(A,R)\}

Faloutsos
CMU SCS 15-415
40

plan generation

seq. scan - cost?

- br (worst case)
- br/2 (average, if we search for primary key)

Cardena's formula

- Pessimistic:
$-\mathrm{Q}=\mathrm{q}$
- More realistic
$-\mathrm{Q}=\mathrm{q}$ if $\mathrm{q}<=\mathrm{B}$
$-\mathrm{Q}=\mathrm{B}$ otherwise

Plans for single relation summary

- no index: scan (dup-elim; sort)
- with index:
- single index access path
- multiple index access path
- sorted index access path
- index-only access path

Frequently cited database publications http://www.informatik.uni-trier.de/~ey/db/abouttop.htm|

$\#$	Publication
608	Peter P. Chen: The Entity-Relationship Model - Toward a Unified View of Data. ACM Trans. Database Syst. 1(1): 9- 36(1976)
580	E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Commun. ACM 13(6): 377-387(1970)
371	Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, Thomas G. Price: Access Path Selection in a Relational Database Management System. SIGMOD Conference 1979: 23-34
366	Jeffrey D. Ullman: Principles of Database and Knowledge Base Systems, Volume I. Computer Science Press 1988, ISBN 0- $7167-8158-1$
\ldots	\ldots

(2) cmuscs
 Statistics for Optimization

- NCARD (T) - cardinality of relation T in tuples
- TCARD (T) - number of pages containing tuples from T
- $\mathrm{P}(\mathrm{T})=\mathrm{TCARD}(\mathrm{T}) /(\#$ of non-empty pages in the segment)
- If segments only held tuples from one relation there would be no need for $\mathrm{P}(\mathrm{T})$
- ICARD(I) - number of distinct keys in index I
- NINDX(I) - number of pages in index I

Faloutsos
CMU SCS 15-415

Costs per Access Path Case	
Unique index matching equal predicate	1+1+W
Clustered index I matching $>=1$ preds	F(preds)*(NINDX(I)+TCARD)+W*RSICARD
Non-clustered index I matching $>=1$ preds	F(preds)*(NINDX(I)+NCARD)+W*RSICARD
Segment scan	TCARD/P + W*RSICARD
Faloutsos	CMU SCS 15-415 ${ }^{\text {c }}$

n-way joins

- r1 JOIN r2 JOIN ... JOIN rn
- typically, break problem into 2-way joins
- choose between NL, sort merge, hash join, ...

Queries Over Multiple Relations

As number of joins increases, number of alternative plans grows rapidly \rightarrow need to restrict search space

- Fundamental decision in System R: only left-deep join trees are considered. Advantages?

Queries over Multiple Relations

- Enumerate the orderings (= left deep tree)
- enumerate the plans for each operator
- enumerate the access paths for each table

Dynamic programming, to save cost estimations

- bring query in internal form (eg., parse tree)
- ... into 'canonical form' (syntactic q-opt)
- generate alt. plans
- single relation
- multiple relations
- Main idea
- Dynamic programming - reminder
- Example
- estimate cost; pick best

Faloutsos
CMU SCS 15-415

Q-opt and Dyn. Programming

cmuscs

- Details: how to record the fact that, say R is sorted on R.a? or that the user requires sorted output?
- A: record orderings, in the state
- E.g., consider the query
select *
from R, S, T
where R. $\mathrm{a}=\mathrm{S} . \mathrm{a}$ and S.b $=$ T. b order by R.a

Q-opt steps

- bring query in internal form (eg., parse tree)
- ... into 'canonical form' (syntactic q-opt)
- generate alt. plans
- single relation
- multiple relations
- Main idea
- Dynamic programming - reminder
- Example
- estimate cost; pick best

Faloutsos
CMU SCS 15-415

Candidate Plans

SELECT S.sname, B.bname, R.day FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid AND R.bid = B.bid
2. Enumerate join algorithm choices:

Q-opt steps

- Everything so far: about a single query block

Example: Decorrelating a Query

SELECT S.sid
FROM Sailors S
WHERE EXISTS
\quad (SELECT *
FROM Reserves R
WHERE R.bid=103
AND R.sid=S.sid)

Equivalent uncorrelated query: SELECT S.sid FROM Sailors S WHERE S.sid IN
(SELECT R.sid
FROM Reserves R WHERE R.bid=103)

- Advantage: nested block only needs to be executed once (rather than once per S tuple)

Example: "Flattening" a Query

Equivalent non-nested query: SELECT S.sid FROM Sailors S, Reserves R WHERE S.sid=R.sid AND R.bid=103

- Advantage: can use a join algorithm + optimizer can select among join algorithms \& reorder freely
Faloutsos CMU SCS $15-415$

Structure of query optimizers:

System R:

- break query in query blocks
- simple queries (ie., no joins): look at stats
- n-way joins: left-deep join trees; ie., only one intermediate result at a time - pros: smaller search space; pipelining
- cons: may miss optimal
- 2-way joins: NL and sort-merge

Faloutsos
CMU SCS 15-415
98

Structure of query optimizers:

More heuristics by Oracle, Sybase and Starburst (-> DB2)
In general: q-opt is very important for large databases.
('explain select <sql-statement>' gives plan)

Q-opt steps

- bring query in internal form (eg., parse tree)
- ... into 'canonical form' (syntactic q-opt)
- generate alt. plans
- estimate cost; pick best

Conclusions
 cmuscs^{2}

- Ideas to remember:
- syntactic q-opt - do selections early
- selectivity estimations (uniformity, indep.; histograms; join selectivity)
- hash join (nested loops; sort-merge)
- left-deep joins
- dynamic programming

