

Data mining - detailed outline

\rightarrow - Problem

- Getting the data: Data Warehouses, DataCubes, OLAP
- Supervised learning: decision trees
- Unsupervised learning
- association rules
- (clustering)

Data Ware-housing

First step: collect the data, in a single place (= Data Warehouse)
How?
How often?
How about discrepancies / nonhomegeneities?

Data Ware-housing First step: collect the data, in a single place (= Data Warehouse) How? A: Triggers/Materialized views How often? A: [Art!] How about discrepancies / nonhomegeneities? A: Wrappers/Mediators

Data Ware-housing

Step 2: collect counts. (DataCubes/OLAP) Eg.:

DataCubes

'color', ‘size': DIMENSIONS
'count': MEASURE

Faloutsos

DataCubes

'color', ‘size': DIMENSIONS
'count': MEASURE

color; size

Faloutsos
CMU SCS 15-415

DataCubes

SQL query to generate DataCube:

- Naively (and painfully:)
select size, color, count(*)
from sales where p-id = 'shirt'
group by size, color
select size, count(*)
from sales where p-id = 'shirt'
group by size

DataCubes

DataCube issues:
Q1: How to store them (and/or materialize portions on demand)
Q2: Which operations to allow

DataCubes

Q1: How to store a dataCube?

C / S	S	M	L	TOT
Red	20	3	5	28
Blue	3	3	8	14
Gray	0	0	5	5
TOT	23	6	18	47

A1: Relational (R-OLAP)
Color Size count
'all' 'all' 47
Blue 'all' 14
Blue M 3

C / S	S	M	L	TOT
Red	20	3	5	28
Blue	3	3	8	14
Gray	0	0	5	5
TOT	23	6	18	47

DataCubes

Q1: How to store a dataCube?

DataCubes

Pros/Cons:
ROLAP strong points: (DSS, Metacube)

- use existing RDBMS technology
- scale up better with dimensionality
DataCubes
Pros/Cons:
MOLAP strong points: (EssBase/hyperion.com)
• faster indexing
(careful with: high-dimensionality; sparseness)
HOLAP: (MS SQL server OLAP services)
• detail data in ROLAP; summaries in MOLAP
Faloutsos

DataCubes

Q1: How to store a dataCube
Q2: What operations should we support?

DataCubes

Q2: What operations should we support?

color; size

DataCubes

Q2: What operations should we support? Roll-up

color; size

DataCubes

Q2: What operations should we support?
Slice

color; size

C / S	S	M	L
Red	20	3	5
Blue	3	3	8
Gray	0	0	5

Faloutsos

DataCubes

Q2: What operations should we support?

- Roll-up
- Drill-down
- Slice
- Dice
- (Pivot/rotate; drill-across; drill-through
- top N
- moving averages, etc)

Faloutsos
CMU SCS 15-415
30

CMUSCS

Outline

- Problem
- Getting the data: Data Warehouses, DataCubes, OLAP
- Supervised learning: decision trees
- Unsupervised learning
- association rules
- (clustering)

Decision trees

- Pictorially, we have num. attr\#2 (eg., chol-level)

num. attr\#1 (eg., 'age')
Faloutsos CMU SCS $15-415$

CMUSCS
skip

Outline

cnu scs
Problem

- Getting the data: Data Warehouses, DataCubes, OLAP
- Supervised learning: decision trees
- problem
\square - approach
- scalability enhancements
- Unsupervised learning
- association rules
- (clustering)

Decision trees - Typically, two steps: - tree building - tree pruning (for over-training/over-fitting)	

- Q1: how to introduce splits along attribute A_{i}
- A1:
- for num. attributes:
- binary split, or
- multiple split
- for categorical attributes:
- compute all subsets (expensive!), or
- use a greedy algo

Tree building

- Q1: how to introduce splits along attribute A_{i}
- Q2: how to evaluate a split?

cmuscs
 -

- Q1: how to introduce splits along attribute A_{i}
- Q2: how to evaluate a split?
- A: by how close to uniform each subset is ie., we need a measure of uniformity:

cusscs		skip
Tree pruning		
- Q: How to do it?		
- A1: use a 'training' and a 'testing' set prune nodes that improve classification in the 'testing' set. (Drawbacks?)		
- (A2: or, rely on MDL (= Minimum Description Language))		
Falause	cmuscs 15415	54

cuscs skip

Scalability enhancements

- Interval Classifier [Agrawal+,vldb92]: dynamic pruning
- SLIQ: dynamic pruning with MDL; vertical partitioning of the file (but label column has to fit in core)
- SPRINT: even more clever partitioning

Conclusions for classifiers

- Classification through trees
- Building phase - splitting policies
- Pruning phase (to avoid over-fitting)
- For scalability:
- dynamic pruning
- clever data partitioning

Outline

- Problem
- Getting the data: Data Warehouses, DataCubes, OLAP
- Supervised learning: decision trees
- problem
- approach
- scalability enhancements
- Unsupervised learning
\square - association rules
- (clustering)

Faloutsos

cmuscs		
Association rules - idea		
[Agrawal+SIGMOD93]		
- Consider 'market basket' case:(milk, bread)		
(milk)		
(milk, chocolate)		
(milk, bread)		
- Find 'interesting things', eg., rules of the form: milk, bread -> chocolate \| 90%		
Faloutsos	CMU SCS 15-415	59

Association rules - idea

In general, for a given rule $\mathrm{Ij}, \mathrm{Ik}, \ldots . \mathrm{Im}->\mathrm{Ix} \mid \mathrm{c}$
' c ' = 'confidence' (how often people by Ix, given that they have bought Ij, \ldots Im
's' = support: how often people buy Ij, ... Im, Ix

CMUSCS

Association rules - idea

Closely related concept: "large itemset" Ij, Ik, ... Im, Ix
is a 'large itemset', if it appears more than 'minsupport' times

Observation: once we have a 'large itemset', we can find out the qualifying rules easily (how?)
Thus, let's focus on how to find 'large itemsets'

Association rules - idea

Naive solution: scan database once; keep 2**|I| counters
Drawback? 2**1000 is prohibitive...
Improvement? scan the $\mathrm{db}|\mathrm{I}|$ times, looking for 1-, 2 -, etc itemsets

Eg., for $|I|=3$ items only (A, B, C), we have

	Association rules - idea			
	$\begin{gathered} (A) \\ 100 \end{gathered}$	$\begin{aligned} & \text { (B) } \\ & 200 \end{aligned}$	(C) 2 mi	first pass
Fata				${ }^{65}$

Association rules - idea

Faloutsos
CMU SCS 15-415

Association rules - idea
CMUSCs
Compute L(1), by scanning the database. repeat, for $\mathrm{i}=2,3 \ldots$, 'join' $\mathrm{L}(\mathrm{i}-1)$ with itself, to generate C(i) two itemset can be joined, if they agree on their first $i-2$ elements prune the itemsets of C(i) (how?) scan the db, finding the counts of the C(i) itemsets - set this to be L(i) unless L(i) is empty, repeat the loop (see example 6.1 in [Han+Kamber]) Faloutsos

$\int_{\text {Association rules - Conclusions }}$

Association rules: a new tool to find patterns

- easy to understand its output
- fine-tuned algorithms exist
- still an active area of research

Overall Conclusions

- Data Mining: of high commercial interest
- $\mathrm{DM}=\mathrm{DB}+\mathrm{ML}+$ Stat
- Data warehousing / OLAP: to get the data
- Tree classifiers (SLIQ, SPRINT)
- Association Rules - 'a-priori' algorithm
- (clustering: BIRCH, CURE, OPTICS)

Additional references

- Agrawal, R., S. Ghosh, et al. (Aug. 23-27, 1992). An Interval Classifier for Database Mining Applications. VLDB Conf. Proc., Vancouver, BC, Canada.
- Jiawei Han and Micheline Kamber, Data Mining , Morgan Kaufman, 2001, chapters 2.2-2.3, 6.1-6.2, 7.3.5

