Carnegie Mellon Univ.
Dept. of Computer Science
15-415 - Database Applications

15-415/Fall '2010
Lecture\#7: Relational calculus
(slides from Christos Faloutsos)

General Overview - rel. model

- history
- concepts
- Formal query languages
- relational algebra
- rel. tuple calculus
- rel. domain calculus

Motivation

- Q: weakness of rel. algebra?
- A: procedural
- describes the steps (ie., 'how')
- (still useful, for query optimization)
- equivalence with rel. algebra
- more examples; ‘safety’ of expressions
- re. domain calculus +QBE

Rel. tuple calculus (RTC)

- first order logic

$$
\{t \mid P(t)\}
$$

'Give me tuples ' t ', satisfying predicate P - eg:

$$
\{t \mid t \in S T U D E N T\}
$$

Details	
- symbols allowed: $\begin{aligned} & \wedge, \vee, \neg, \Rightarrow \\ & >,<,=, \neq, \leq, \geq, \\ & (,), \in \end{aligned}$	
- quantifiers $\quad \forall, \exists$	
Falususs \quad cmuscs 15415	47

Specifically		
- Formula: - atom - if P1, P2 are formulas, so are $P 1 \wedge P 2 ; P 1 \vee P 2 \ldots$ - if $\mathrm{P}(\mathrm{s})$ is a formula, so are $\exists s(P(s))$ $\forall s(P(s))$		
${ }_{\text {Fatauses }}$	cwuscc 15 S/4	49

Specifically

- Reminders:
- DeMorgan $\quad P 1 \wedge P 2 \equiv \neg(\neg P 1 \vee \neg P 2)$
- implication: $\quad P 1 \Rightarrow P 2 \equiv \neg P 1 \vee P 2$
- double negation:
$\forall s \in \operatorname{TABLE}(P(s)) \equiv \neg \exists s \in \operatorname{TABLE} \quad(\neg P(s))$
'every human is mortal : no human is immortal'

Examples

- find all student records

Examples		
- (selection) find student record with ssn=123		

cmuscs

Examples

- (projection) find name of student with ssn=123

$$
\begin{gathered}
\{t \mid \exists s \in S T U D E N T(\text { s.ssn }=123 \wedge \\
\text { t.name }=\text { s.name })\} \\
\text { ' } \mathbf{t} \text { ' has only one column }
\end{gathered}
$$

Examples cont'd

- (union) get records of both PT and FT students

CMUSCS

Examples cont'd

- (union) get records of both PT and FT students

$$
\begin{gathered}
\left\{t \mid t \in F T_{-} S T U D E N T \vee\right. \\
\left.t \in P T_{-} S T U D E N T\right\}
\end{gathered}
$$

Examples

- difference: find students that are not staff

$$
\begin{aligned}
& \{t \mid t \in S T U D E N T \wedge \\
& \quad t \notin S T A F F\}
\end{aligned}
$$

Cartesian product

- eg., dog-breeding: MALE x FEMALE
- gives all possible couples

Faloutsos
CMU SCS 15-415
\#22

cmuscs

Cartesian product

- find all the pairs of (male, female)

$$
\begin{aligned}
& \{t \mid \exists m \in \text { MALE } \wedge \\
& \quad \exists f \in \text { FEMALE } \\
& \text { t.m-name }=\text { m.name } \wedge \\
& \text { t.f }- \text { name }=\text { f.name }\}
\end{aligned}
$$

CMUSCS

Overview - detailed

- rel. tuple calculus
- why?
- details
- examples
- equivalence with rel. algebra
- more examples; ‘safety’ of expressions
- re. domain calculus +QBE

More examples

- join: find names of students taking 15-415

$$
\begin{aligned}
& \{t \mid \exists s \in S T U D E N T \\
& \wedge \exists e \in \text { TAKES }(\text { s.ssn }=\text { e.ssn } \wedge \\
& \quad \text { t.name }=\text { s.name } \wedge \\
& \quad \text { e.c }-i d=15-415)\}
\end{aligned}
$$

CMUSCS

More examples

- 3-way join: find names of students taking a 2-unit course

Even more examples:

- self -joins: find Tom's grandparent(s)

$$
\begin{gathered}
\{t \mid \exists p \in P C \wedge \exists q \in P C \\
(\text { p.c-id }=q \cdot p-i d \wedge \\
\text { p.p-id }=t \cdot p-i d \wedge \\
\text { q.c-id }=" \text { Tom" })\}
\end{gathered}
$$

Hard examples: DIVISION

- find suppliers that shipped all the ABOMB parts

SHIPMENT		\div	$\frac{\mathrm{ABOMB}}{\frac{\mathrm{p} \#}{\mathrm{p} 1}}$	$=$	$\begin{aligned} & \text { BAD_S } \\ & \hline \mathbf{s \#} \\ & \hline \mathbf{s 1} \\ & \hline \end{aligned}$
s\#	p\#				
s1	p1				
s2	p1				
s1	p2		p2		
s3	p1				
s5	p3				

Hard examples: DIVISION

- find suppliers that shipped all the ABOMB parts

$$
\begin{gathered}
\{t \mid \forall p(p \in A B O M B \Rightarrow(\\
\exists s \in \operatorname{SHIPMENT}(\\
t . s \#=s . s \# \wedge \\
\text { s.p\#=p.p\#)}))\}
\end{gathered}
$$

- If a is true, b must be true for the implication to be true. If a is true and b is false, the implication evaluates to false.
- If a is not true, we don't care about b, the expression is always
- find (SSNs of) students that take all the courses that $\mathrm{ssn}=123$ does (and maybe even more)
find students ' s ' so that if 123 takes a course => so does ' s '

More on division

- find students that take all the courses that $\operatorname{ssn}=123$ does (and maybe even more)

$$
\begin{gathered}
\{o \mid \forall t((t \in T A K E S \wedge t . s s n=123) \Rightarrow \\
\quad \exists t 1 \in \text { TAKES }(\\
\quad t 1 . c-i d=t . c-i d \wedge \\
\quad t 1 . s s n=o . s s n) \\
\quad)\}
\end{gathered}
$$

CMUSCS

Overview - conclusions

- rel. tuple calculus: DECLARATIVE
- dfn
- details
- equivalence to rel. algebra
- rel. domain calculus +QBE

Overview - detailed

- rel. tuple calculus
- dfn
- details
- equivalence to rel. algebra
- rel. domain calculus +QBE

Rel. Dom. Calculus		
- find STUDENT record with ssn=123'		
$\{<s, n, a\rangle \ll s, n, a\rangle \in S T U D E N T \wedge s=123\}$		
Faloutsos CMU SCS 15.415		

Details

- Like R.T.C - symbols allowed:
$\wedge, \vee, \neg, \Rightarrow$
$>,<,=, \neq, \leq, \geq$,
(,), \in
- quantifiers $\quad \forall, \exists$

Reminder: our Mini-U db

cmuscs

Examples

- (selection) find student record with $\operatorname{ssn}=123$

Examples		
- (selection) find student record with ssn=123		
$\{<123, n, a><123, n, a>\in S T U D E N T\}$		
or		
$\{<s, n, a\rangle\|<s, n, a\rangle \in S T U D E N T \wedge s=123\}$		
RTC:	$\{t \mid t \in S T U D$	
Falousos	cmuscs 5 S. 115	${ }_{43}$

cmuscs

Examples

- (projection) find name of student with ssn=123
$\{<n>\mid<123, n, a>\in S T U D E N T\}$
cuscs
- (projection) find name of student with ssn=123
$\{<n>\mid \exists a(<123, n, a>\in S T U D E N T)\}$
$\dagger_{\text {need to 'restrict' " } \mathrm{a} \text { " }}$
RTC: $\{t \mid \exists s \in \operatorname{STUDENT}($ s.ssn $=123 \wedge$
t.name $=$ s.name $)\}$

Faloutsos
CMU SCS 15-415

Examples cont'd

- (union) get records of both PT and FT students

$$
\begin{aligned}
& \left\{<s, n, a>\ll s, n, a>\in F T_{-} \text {STUDENT } \vee\right. \\
& \left.\quad<s, n, a>\in P T_{-} S T U D E N T\right\}
\end{aligned}
$$

cmuscs

Examples

- difference: find students that are not staff
$\{<s, n, a\rangle \ll s, n, a>\in S T U D E N T \wedge$ $<s, n, a>\notin S T A F F\}$

Cartesian product

- eg., dog-breeding: MALE x FEMALE
- gives all possible couples

Faloutsos
CMU SCS 15-415

T

cmuscs

Cartesian product

- find all the pairs of (male, female) - RTC:

$$
\begin{aligned}
& \{t \mid \exists m \in M A L E \wedge \\
& \quad \exists f \in \text { FEMALE } \\
& t . m-\text { name }=\text { m.name } \wedge \\
& t . f-\text { name }=\text { f.name }\}
\end{aligned}
$$

'Proof' of equivalence

- rel. algebra <-> rel. domain calculus
<-> rel. tuple calculus

CMUSCS

More examples

- join: find names of students taking 15-415

Reminder: our Mini-U db

CMUSCS

More examples

- join: find names of students taking 15-415in RTC

$$
\begin{aligned}
& \{t \mid \exists s \in S T U D E N T \\
& \quad \wedge \exists e \in \text { TAKES }(\text { s.ssn }=\text { e.ssn } \wedge \\
& \quad \text { t.name }=\text { s.name } \wedge \\
& \quad \text { e.c }- \text { id }=15-415)\}
\end{aligned}
$$

More examples

- join: find names of students taking 15-415in RDC

$$
\begin{aligned}
\{< & n>\mid \exists s \exists a \exists g(<s, n, a>\in S T U D E N T \\
& \wedge<s, 15-415, g>\in T A K E S)\}
\end{aligned}
$$

cmuscs	
	More examples

- 3-way join: find names of students taking a 2-unit course - in RTC:

$\{t \mid \exists s \in S T U D E N T \wedge \exists e \in T A K E S$ | $\exists c \in C L A S S(s . s s n=e . s s n$ | |
| :---: | :---: |
| | join |
| $e . c-i d=c . c-i d \wedge$ | | t.name $=$ s.name \wedge

c.units $=2$) \}

More examples		
- 3-way join: find names of students taking a 2-unit course$\{<n>\mid \exists s, a, c, g, c n($		
$<s, n, a>\in S T U D E N T \wedge$		
$\langle s, c, g>\in T A K E S \wedge$		
$<c, c n, 2>\in C L A S S$		
)\}		
${ }_{\text {Fabueum }}$	cmuscs 15415	${ }^{474}$

Even more examples:

- self -joins: find Tom's grandparent(s)

Faloutsos
CMU SCS 15-415

CMUSCS

Even more examples:

- self -joins: find Tom's grandparent(s)

$$
\begin{array}{cc}
\{t \mid \exists p \in P C \wedge \exists q \in P C & \{<g>\mid \exists p(<g, p>\in P C \wedge \\
(p . c-i d=q \cdot p-i d \wedge & \left.\left.<p, \text { Tom" }^{\prime}>\in P C\right)\right\} \\
\text { p.p-id }=t . p-\text { id } \wedge & \\
\text { q.c-id }=\text { "Tom" })\} &
\end{array}
$$

Even more examples:

- self -joins: find Tom's grandparent(s)

$$
\begin{gathered}
\{<g>\mid \exists p(<g, p>\in P C \wedge \\
<p, \text { "Tom" }>\in P C)\}
\end{gathered}
$$

CMUSCS

Hard examples: DIVISION

- find suppliers that shipped all the ABOMB parts

SHIPMENT		\div	ABOMB		$\begin{aligned} & \text { BAD_S } \\ & \hline \frac{\mathrm{s} \#}{\mathbf{s} 1} \\ & \hline \end{aligned}$
s\#	p\#				
s1	p1		p\#		
s2	p1		p1		
s1	p2		p1		
s3	p1				
s5	p3				

cmuscs

Hard examples: DIVISION

- find suppliers that shipped all the ABOMB parts

$$
\left.\left.\begin{array}{cc}
\{t \mid \forall p(p \in A B O M B \Rightarrow & \{<s>\mid \forall p(<p>\in A B O M B \Rightarrow \\
\exists s \in \operatorname{SHIPMENT}(& <s, p>\in \operatorname{SHIPMENT})\} \\
\text { t.s\# }=\text { s.s\# }) \\
\text { s.p\# }=\text { p.p\# }))
\end{array}\right)\right\}
$$

CMUSCS

More on division

- find students that take all the courses that ssn=123 does (and maybe even more)
$\{<s\rangle \mid \forall c(\exists g(<123, c, g>\in T A K E S) \Rightarrow$ $\left.\left.\left.\exists g^{\prime}\left(<s, c, g^{\prime}>\right) \in T A K E S\right)\right)\right\}$

Safety of expressions

- similar to RTC
- FORBIDDEN:

$$
\{<s, n, a\rangle|<s, n, a\rangle \notin S T U D E N T\}
$$

Overview - detailed	
- rel. domain calculus + QBE - dfn - details - equivalence to rel. algebra	
Frautuss \quad cmuccs 15415	${ }_{48}{ }^{5}$

cmuscs

Overview - detailed

- rel. domain calculus +QBE
- dfn
- details
- equivalence to rel. algebra
cmuscs

Answers ...

- Find all movies by Paramount studio
\{ $\mathrm{M} \mid \mathrm{M} \in$ Movie ^ M.studioName = 'Paramount' $\}$

cmuscs
Answers ...
- Stars who have been in a film w/Kevin Bacon
$\{S \mid S \in S t a r \wedge$
$\exists \mathrm{A} \in$ ActsIn(A.starName $=$ S.name \wedge $\exists \mathrm{A} 2 \in$ ActsIn(A2.movieTitle = A.movieTitle \wedge A2.starName = 'Bacon') $)$ \}

name

Faloutsos
CMU SCS 15-415
cMUSCS

Answers ...

- Stars connected to K. Bacon via any number of films
- Sorry ... that was a trick question
- Not expressible in relational calculus!!
- What about in relational algebra?
- We will be able to answer this question shortly ...

CMU SCS $15-415$

Expressive Power

- Expressive Power (Theorem due to Codd):
- Every query that can be expressed in relational algebra can be expressed as a safe query in DRC / TRC; the converse is also true.
- Relational Completeness:

Query language (e.g., SQL) can express every query that is expressible in relational algebra/calculus.
(actually, SQL is more powerful, as we will see...)
Faloutsos
CMU SCS 15-415
\#95

Question:

- Can we express previous query ('any \# steps') in relational algebra?
- A: If we could, then by Codd's theorem we could also express it in relational calculus. However, we know the latter is not possible, so the answer is no.

Summary
- The relational model has rigorously defined query
languages - simple and powerful.
- Relational algebra is more operational/procedural
- useful as internal representation for query evaluation
plans
- Relational calculus is declarative
- users define queries in terms of what they want, not in terms of how to compute it. Faloutsos
сми

cmuscs
 Summary - cnt'd

- Several ways of expressing a given query
- a query optimizer should choose the most efficient version.
- Algebra and safe calculus have same expressive power
- leads to the notion of relational completeness.

