Carnegie Mellon Univ.
 School of Computer Science
 15-415 - Database Applications

15-515 (Fall 2010)
Lecture \#6: Relational Algebra
(Slides from Christos Faloutsos)

Overview

- history
- concepts
- Formal query languages
- relational algebra
- rel. tuple calculus
- rel. domain calculus

History

- before: records, pointers, sets etc
- introduced by E.F. Codd in 1970
- revolutionary!
- first systems: 1977-8 (System R; Ingres)
- Turing award in 1981

Database:

SSN	c-id	grade
123	$15-413$	A
234	$15-413$	B

cmuscs

- Database: a set of relations (= tables)
- rows: tuples
- columns: attributes (or keys)
- superkey, candidate key, primary key

Example: cont'd

Example: cont'd

- Di: the domain of the i-th attribute (eg., char(10)

STUDENT

Ssn	Name	Address
	123 smith	main str
	234 jones	forbes ave

rel. schema (attr+domains)
 instance

 234 jones forbes ave| Ssn | Name | Address |
| :---: | :--- | :--- |
| | 123 smith | main str |
| 234 jones | forbes ave | |

rel. schema (attr+domains) 234 smith
forbes av 234 jone instance

Overview

- history
- concepts
- Formal query languages
- relational algebra
- rel. tuple calculus
- rel. domain calculus

Relational operators

- .
-.
- set union U
- set difference '-'

PT-STUDENT

Ssn Name Address 123 smith main str 234 jones forbes ave

Observations:

- two tables are 'union compatible' if they have the same attributes ('domains')
- Q: how about intersection $\boldsymbol{\Omega}$

Observations:

- A: redundant:
- STUDENT intersection STAFF =

STAFF

Faloutsos

Observations:

- A: redundant:
- STUDENT intersection STAFF = STUDENT - (STUDENT - STAFF)

Double negation:

We'll see it again, later...

Other operators?
 Other operators?

- eg, find all students on 'Main street'
- A: 'selection'

$$
\sigma_{\text {address='mainstr' }} \quad(S T U D E N T)
$$

STUDENT

STUDENT		
Ssn	Name	Address
	123 smith	main str
	234 jones	forbes ave

Other operators?

- Notice: selection (and rest of operators) expect tables, and produce tables ($->$ can be cascaded!!)
- For selection, in general:

$$
\sigma_{\text {condition }}(\text { RELATION })
$$

Selection - examples

- Find all 'Smiths' on 'Forbes Ave'

$$
\sigma_{\text {name='Smith' } \wedge \text { addresss'Forbes ave' }}(S T U D E N T)
$$

'condition' can be any boolean combination of '=‘, '>', ‘>=',..

Relational operators

- selection picks rows - how about columns?
- A: ‘projection' - eg.: $\pi_{s s n}(S T U D E N T)$
finds all the 'ssn' - removing duplicates

STUDENT		
Ssn	Name	Address
123	smith	main str
234	jones	forbes ave

Relational operators

- selection

$$
\sigma_{\text {condition }}
$$

(R)
-

- .
- set union
R U S
- set difference

R-S

Cascading: 'find ssn of students on 'forbes ave'

Relational operators

- selection
- projection
- .
- set union

R U S

- set difference

R-S

Relational operators

A: any query across two or more tables, eg., 'find names of students in 15-415'
Q: what extra operator do we need??

STUDENT			TAKES		grade
Ssn	Name	Address	SSN	c-id	
	smith	main str	123	15-413	A
	jones	forbes ave	234	15-413	B

[^0]
Cartesian product

- eg., dog-breeding: MALE x FEMALE
- gives all possible couples

Cartesian product

- A:
$\ldots \ldots . . \sigma_{\text {STUDENT.ssn } n \text { TAKES.ssn }}(S T U D E N T \times$ TAKES $)$

Ssn	Name	Address	ssn	cid	grade
123	smith	main str	123	15-415	A
234	jones	forbes ave	123	15-415	A
123	smith	mainstr	234	-45-443	B
234	jones	forbes ave	234	15-413	B

$$
\pi_{\text {name }}(
$$

)

Ssn	Name	Address	ssn	cid	grade
123	smith	main str	123	15-415	A
234	jorres	forbes ave	123	15-415	A
423	smith	mainstr	234	45-443	B
234	jenes	ferbes-ave	234	45-443	B

Relational ops

- Surprisingly, they are enough, to help us answer almost any query we want!!
- derived/convenience operators:
- set intersection
- join (theta join, equi-join, natural join) \bowtie
- 'rename' operator $\rho_{R^{\prime}}(R)$
- division $R \div S$

FUNDAMENTAL

Relational operators

- selection	$\sigma_{\text {condition }}(R)$
- projection	$\pi_{\text {att-list }}(R)$
- cartesian product	MALE x FEMALE
- set union	R U S
- set difference	$\mathrm{R}-\mathrm{S}$

Cartesian product

- $\mathrm{A}: \ldots \ldots . \sigma_{\text {STUDENT.ssn=TAKES.ssn }}(S T U D E N T \times T A K E S)$

Ssn	Name	Address	ssn
cid	grade		
123 smith	main str	123	$15-415 \mathrm{~A}$
234 jories	forbes ave	$123-15-415 \mathrm{~A}$	
423 smith		mainstr	$234-45-443 \mathrm{~B}$
234 jones	forbes ave	234	$15-413 \mathrm{~B}$

Joins

- Equijoin: $R \bigotimes_{R . a=S . b} S=\sigma_{R . a=S . b}(R \times S)$
- theta-joins: $R \bigotimes_{\theta} S$
generalization of equi-join - any condition θ
- very popular: natural join: $R \bowtie S$
- like equi-join, but it drops duplicate columns:
STUDENT (ssn, name, address)
TAKES (ssn, cid, grade)

Faloutsos

Natural Joins - nit-picking

- if no attributes in common between R, S : nat. join -> cartesian product
- nat. join has 5 attributes $S T U D E N T \bowtie T A K E S$

Ssn	Name	Address	ssn	cid	grade
123	smith	main str	123	15-415	A
234	jones	forbes ave	123	15-415	A
123	smith	main str	234	15-413	B
234	jones	forbes ave	234	15-413	B

equi-join: 6 STUDENT $\bigwedge_{\text {sTUDENTT.ssn=TAKES.ssn }}$ TAKES

- fundamental operators
- derived operators
- joins etc
- rename
- division
- examples

Rename op.

- Q: why? $\quad \rho_{\text {AFTER }}($ BEFORE $)$
- A: shorthand; self-joins; ...
- for example, find the grand-parents of 'Tom', given PC (parent-id, child-id)

Rename op.

- first, WRONG attempt:

$P C \bowtie P C$

- (why? how many columns?)
- Second WRONG attempt:

$$
P C \bigwedge_{P C . c-i d=P C, p-i d} P C \backsim
$$

- fundamental operators
- derived operators
- joins etc
- rename
- division
- examples

Rename op.

- PC (parent-id, child-id) $P C \Perp P C$

PC		PC	
p-id	c-id	p-id	c-id
Mary	Tom	Mary	Tom)
Peter	Mary	Peter	Mary
John	Tom	John	Tom

Rename op.

- we clearly need two different names for the same table - hence, the 'rename' op.

$$
\rho_{P C 1}(P C) \bowtie \bigwedge_{P C 1 . c-i d=P C . p-i d} P C
$$

Faloutsos
CMU SCS 15-415
\#46

Division

SHIPMENT		\div	ABOMB	$=$	$\begin{aligned} & \text { BAD_S } \\ & \hline \text { s\# } \\ & \hline \text { s1 } \\ & \hline \end{aligned}$
s\#	p\#				
s1	p1		p\#		
s2	p1		p1		
s1	p2		p2		
s3	p1				
s5	p3				

Division

- Observations: ~reverse of cartesian product
- It can be derived from the 5 fundamental operators (!!)
- How?

Faloutsos
CMU SCS $15-415$
\#50

Division

- Answer:
$r \div S=\pi_{(R-S)}(r)-\pi_{(R-S)}\left[\left(\pi_{(R-S)}(r) \times S\right)-r\right]$
- Observation: find 'good' suppliers, and subtract! (double negation)

Division

- Answer:
$r \div s=\pi_{(R-S)}(r)-\pi_{(R-S)}\left[\left(\pi_{(R-S)}(r) \times s\right)-r\right]$
- Observation: find 'good' suppliers, and subtract! (double negation)

All bad parts

- Answer:

$$
r \div s=\pi_{(R-S)}(r)-\pi_{(R-S)}\left[\left(\pi_{(R-S)}(r) \times s\right)-r\right]
$$

-

Division

- Answer:

$$
r \div s=\pi_{(R-S)}(r)-\pi_{(R-S)}\left[\left(\pi_{(R-S)}(r) \times s\right)-r\right]
$$

all possible
suspicious shipments
cmuscs
Division

- Answer:

$r \div s=\pi_{(R-S)}(r)-\pi_{(R-S)}\left[\left(\pi_{(R-S)}(r) \times S\right)-r\right]$
\qquad
suspicious shipments
that didn't happen
Faloutsos
CMU SCS 15-415
cmuscs
Overview - rel. algebra
- fundamental operators
- derived operators
- joins etc
- rename
- division
- examples
\#58

Examples

- find names of students that take 15-415

Sample schema

find course names of 'smith'

STUDENT			CLASS		
Ssn	Name	Address	c-id	c-name	units
	123 smith	main str	15-413	s.e.	2
	234 jones	forbes ave	15-412	o.s.	2

TAKES

SSN C-id grade
123 15-413 A
234 15-413 B

Faloutsos
CMU SCS 15-415 take 412, 413, 415

- find ssn of 'overworked' students, ie., that take 412, 413, 415 - Correct answer:

$$
\begin{aligned}
& \pi_{\text {ssl }}\left[\sigma_{c-n a m e-412}(T A K E S)\right] \cap \\
& \pi_{s \text { ssl }}\left[\sigma_{\text {chame-413 }}(T A K E S)\right] \cap \\
& \pi_{\text {sspl }}\left[\sigma_{\text {cname-415 }}(T A K E S)\right]
\end{aligned}
$$

Examples

- find ssn of 'overworked' students, ie., that

Examples

- find course names of 'smith'
$\pi_{c-\text { name }}\left[\sigma_{\text {names } \text { sminh }^{\prime}}(\right.$
STUDENT $\triangle T A K E S \bowtie C L A S S$
$) \rightleftarrows$
cmuscs

Examples

- find ssn of 'overworked' students, ie., that take 412, 413, 415: almost correct answer:

Faloutsos

Sample schema

STUDENT			CLASS		
Ssn	Name	Address	c-id	c-name	units
123	smith	main str	15-413	s.e.	2
234	jones	forbes ave	15-412	o.s.	2

TAKES

SSN c-id grade
123 15-413 A
234 15-413 B

Conclusions

- Relational model: only tables ('relations')
- relational algebra: powerful, minimal: 5 operators can handle almost any query!

[^0]: Faloutsos
 CMU SCS $15-415$

