Distributed Hash Tables

15-415 (Fall 2010)

Adapted from a presentation by Jeff Pang in 15-744, Spring 2007

DHTs

. Like it sounds — a distributed hash table
. Put(Key, Value)
. Get(Key) -> Value

Interface vs. Implementation

. Put/Get is an abstract interface
- Very convenient to program to
-~ Doesn't require a “DHT” in today's sense of the
world.
- e.g., Amazon's S3 storage service
. /bucket-name/object-id -> data
. We'll mostly focus on the back-end log(n)
lookup systems like Chord
- But researchers have proposed alternate

architectures that may work better, depending
on assumptions!

DHTs

. Two options:

- lookup(key) => node ID
- lookup(key) —> data

. When you know the nodelD, you can ask it directly for the

data, but specifying interface as —> data provides more
opportunities for caching and computation at
intermediaries

. Different systems do either. We'll focus on the problem of

locating the node responsible for the data. The solutions
are basically the same.

Algorithmic Requirements

. Every node can find the answer
. Keys are load-balanced among nodes

- Note: We're not talking about popularity of
keys, which may be wildly different.
Addressing this is a further challenge...

. Routing tables must adapt to node failures
and arrivals

. How many hops must lookups take?

- Trade-off possible between state/maint. traffic
and num lookups...

Consistent Hashing

. How can we map a key to a node?

. Consider ordinary hashing

- func(key) % N -> node ID
- What happens if you add/remove a node?

. Consistent hashing:

- Map node IDs to a (large) circular space
- Map keys to same circular space

- Key “belongs” to nearest node

DHT: Consistent Hashing

Key5 —— K

Node 105

K8
A key is stored at its sUécessor: node with next higher ID

15-441 Spring 2004, Jeff Pang

DHT: Chord Basic Lookup

N12

N] 0 \\Where is key 80?"

N90 has K80"
K8 |N9 l
0

N6

15-441 Spring 2004, Jeff Pang

DHT: Chord Join

» Assume an identifier space [0..8]

* Node nl joins Suce. Table

iid+2]
sficc

o 2|1
1

15-441 Spring 2004, Jeff Pang

Consistent Hashing

. Very useful algorithmic trick outside of
DHTs, etc.

- Any time you want to not greatly change object
distribution upon bucket arrival/departure
. Detail:

- To have good load balance

- Must represent each bucket by log(N) “virtual”
buckets

15-441 Spring 2004, Jeff Pang

DHT: Chord “Finger Table”

Entry i in the finger table of node n is the first node that succeeds or equals n + 2/
« In other words, the ith finger points 1/2" way around the ring

15-441 Spring 2004, Jeff Pang

DHT: Chord Join

* Node n2 joins Suco. Table
i lid+2]|
spice

o 2 2
1 3 1

Succ. Table
ilid+2]
sficc

0o 3|1
1 41

15-

441 Spring 2004, Jeff Pang

DHT: Chord Join

Succ. Table
i lid+2]
shice
o 1 1
1 2 2
» Nodes n0, n6 join l\\— Suce. Table
0 8 i[ig+2]
<; 1" sficc
0 2|2
1 3 6
Succ. Table 5
i |id+2]

ficc 2 ‘.

Succ. Table
ifia+2]
sficc
o 3|6
1| 4

15-441 Spring 2004, Jeff Pang

DHT: Chord Join

Succ. Table

Items
id+2] 7
* Nodes: Slec
o 1 1
nl, n2, nO, n6 s 122
Tldelod |

o Ttems: 0 \‘. Succ. Table jrems

7. 2 N7 1 ilig+2]
, sficc
o 2|2
13|86
[Swo Tl 8,6 g
ilic+2| l\
spcc
0 Succ. Table
! ilic+2]
spicc
o 3|6
146
15-441 Spring 2004, Jeff Pang 14

DHT: Chord Routing

Succ. Table

Items
I . . jd+2] 7
« Upon receiving a query for item 7d, a n élcc
» Checks whether stores the item locall ? ; ;
« If not, forwards the query to the lar.I gde iy ils sucjcessor table that do

0 \‘. Succ. Table jems

N7 A1 ilig+2]
sice
query(7 o 2|2
136

Succ. Table “s

lid+2]
ficc

Succ. Table
i lic+2]
spcc
o 3
1 4

i
s
0|
1

oo

15-441 Spring 2004, Jeff Pang

DHT: Chord Summary

* Routing table size?
—Log N fingers

* Routing time?
—Each hop expects to 1/2 the distance to the desirg

15-441 Spring 2004, Jeff Pang 16

LH=*: A Distributed Linear Hash

Just because we spoke about Linear Hashing earlier in the semester during our
discussion of growable hashing schemes---

+ lItis easy to see that Linear Hashing can be distributed.

Each of the buckets is a host

The buckets can even be RAM-only

A coordinator is invoked by the host of a bucket upon collision

The coordinator assigns a new host from a pool of available hosts

It then communicates with the two hosts to coordinate the split

After the split, the old hosts knows who it split with and can forward
queries

A retiring host is problematic.

Coordinator can supply replacement host to accept bucket of storage

Coordinator needs to inform all hosts that cold have split with the retiring
host over time, so that they can forward

Alternate approach: If unable to find a host, contact the coordinator to find its replacement

One extension of Linear Hashing to the distributed
environment is called LH*

Cassandra and HBase

* Cassandra uses a Chord-based ring as its data store

* HBase is built above HDFS, the Hadoop File System.

« Replicas go to (a) local node, (b) local rack, (¢) some other
rack, (d) random after that

+« NameNode knows the mapping — not a hash

