
15-415 Faloutsos

1

CMU SCS

Carnegie Mellon Univ.

Dept. of Computer Science

15-415 - Database Applications

Concurrency Control

(R&G ch. 17)

CMU SCS

Faloutsos SCS 15-415 2

Review

• DBMSs support ACID Transaction

semantics.

• Concurrency control and Crash Recovery

are key components

CMU SCS

Faloutsos SCS 15-415 3

Review

• For Isolation property, serial execution of

transactions is safe but slow

– Try to find schedules equivalent to serial

execution

• One solution for “conflict serializable”

schedules is Two Phase Locking (2PL)

CMU SCS

Faloutsos SCS 15-415 4

Outline

• Serializability - concepts and algorithms

• One solution: Locking

– 2PL

– variations

• Deadlocks

CMU SCS

Faloutsos SCS 15-415 5

Conflicting Operations

• We need a formal notion of equivalence that can be
implemented efficiently…

– Base it on the notion of “conflicting” operations

• Definition: Two operations conflict if:

– They are by different transactions,

– they are on the same object,

– and at least one of them is a write.

CMU SCS

Faloutsos SCS 15-415 6

Conflict Serializable Schedules

• Definition: Two schedules are conflict equivalent iff:

– They involve the same actions of the same transactions, and

– every pair of conflicting actions is ordered the same way

• Definition: Schedule S is conflict serializable if:

– S is conflict equivalent to some serial schedule.

• Note, some “serializable” schedules are NOT conflict
serializable (see example #4‟, later)

15-415 Faloutsos

2

CMU SCS

Faloutsos SCS 15-415 7

Conflict Serializability –

Intuition
• A schedule S is conflict serializable if:

– You are able to transform S into a serial schedule by

swapping consecutive non-conflicting operations of

different transactions.

• Example:

R(A) R(B)W(A) W(B)

R(A) W(A) R(B) W(B)W(A)

R(B)R(B)

R(A)

W(B)

W(A)

W(B)

R(A)

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

CMU SCS

Faloutsos SCS 15-415 8

Conflict Serializability

(Continued)

• Here‟s another example:

• Serializable or not????

R(A) W(A)
R(A) W(A)

CMU SCS

Faloutsos SCS 15-415 9

Conflict Serializability

(Continued)

• Here‟s another example:

• Serializable or not????

R(A) W(A)
R(A) W(A)

NOT!

CMU SCS

Faloutsos SCS 15-415 10

Serializability

• Q: any faster algorithm? (faster than

transposing ops?)

CMU SCS

Faloutsos SCS 15-415 11

Dependency Graph

• One node per Xact

• Edge from Ti to Tj if:

– An operation Oi of Ti conflicts with an

operation Oj of Tj and

– Oi appears earlier in the schedule than Oj.

Ti Tj

CMU SCS

Faloutsos SCS 15-415 12

Dependency Graph

• Theorem: Schedule is conflict serializable

if and only if its dependency graph is

acyclic.

(‘dependency graph’: a.k.a.‘precedence graph’)

15-415 Faloutsos

3

CMU SCS

Faloutsos SCS 15-415 13

Example #1

• A schedule that is not conflict serializable:

• The cycle in the graph reveals the problem. The

output of T1 depends on T2, and vice-versa.

T1 T2
A

B

Dependency graph

T1: R(A), W(A), R(B), W(B)
T2:
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

CMU SCS

Faloutsos SCS 15-415 14

Example #2 (Lost update)

T1

Read(N)

N = N -1

Write(N)

T2

Read(N)

N = N -1

Write(N)

CMU SCS

Faloutsos SCS 15-415 15

Example #2 (Lost update)

T1

Read(N)

N = N -1

Write(N)

T2

Read(N)

N = N -1

Write(N)

R/W

CMU SCS

Faloutsos SCS 15-415 16

Example #2 (Lost update)

T1

Read(N)

N = N -1

Write(N)

T2

Read(N)

N = N -1

Write(N)

R/W

CMU SCS

Faloutsos SCS 15-415 17

Example #2 (Lost update)

T1

Read(N)

N = N -1

Write(N)

T2

Read(N)

N = N -1

Write(N)

R/W

T1

T2

CMU SCS

Faloutsos SCS 15-415 18

Example #3
T1

Read(A)

…

write(A)

T2 T3

Read(A)

…

Write(A)

Read(B)

…

Write(B)

Read(B)

…

Write(B)

15-415 Faloutsos

4

CMU SCS

Faloutsos SCS 15-415 19

Example #3
T1

Read(A)

…

write(A)

T2 T3

Read(A)

…

Write(A)

Read(B)

…

Write(B)

Read(B)

…

Write(B)

T1

T2

T3

A

B

equivalent serial

execution?

CMU SCS

Faloutsos SCS 15-415 20

Example #3

A: T2, T1, T3

(Notice that T3 should go after T2, although it

starts before it!)

Q: algo for generating serial execution from

(acyclic) dependency graph?

CMU SCS

Faloutsos SCS 15-415 21

Example #3

A: T2, T1, T3

(Notice that T3 should go after T2, although it

starts before it!)

Q: algo for generating serial execution from

(acyclic) dependency graph?

A: Topological sorting

CMU SCS

Faloutsos SCS 15-415 22

Example #4 (Inconsistent Analysis)

T1

R (A)

A = A-10

W (A)

R(B)

B = B+10

W(B)

T2

R(A)

Sum = A

R (B)

Sum += B

dependency
graph?

CMU SCS

Faloutsos SCS 15-415 23

Example #4 (Inconsistent Analysis)

T1

R (A)

A = A-10

W (A)

R(B)

B = B+10

W(B)

T2

R(A)

Sum = A

R (B)

Sum += B

create a ‘correct’
schedule that is not
conflict-serializable

CMU SCS

Faloutsos SCS 15-415 24

Example #4‟ (Inconsistent Analysis)

T1

R (A)

A = A-10

W (A)

R(B)

B = B+10

W(B)

T2

R(A)

if (A>0), count=1

R (B)

if (B>0), count++

A: T2 asks for
the count
of my active
accounts

15-415 Faloutsos

5

CMU SCS

Faloutsos SCS 15-415 25

An Aside: View Serializability

• Alternative (weaker) notion of serializability.

• Schedules S1 and S2 are view equivalent if:
1. If Ti reads initial value of A in S1, then Ti also reads

initial value of A in S2

2. If Ti reads value of A written by Tj in S1, then Ti also

reads value of A written by Tj in S2

3. If Ti writes final value of A in S1, then Ti also writes

final value of A in S2

T1: R(A) W(A)
T2: W(A)
T3: W(A)

T1: R(A),W(A)
T2: W(A)
T3: W(A)

view

CMU SCS

Faloutsos SCS 15-415 26

View Serializability

• Basically, allows all conflict serializable

schedules + “blind writes”

T1: R(A) W(A)
T2: W(A)
T3: W(A)

T1: R(A),W(A)
T2: W(A)
T3: W(A)

view

CMU SCS

Faloutsos SCS 15-415 27

View Serializability

• Basically, allows all conflict serializable

schedules + “blind writes”

T1: R(A) W(A)
T2: W(A)
T3: W(A)

T1: R(A),W(A)
T2: W(A)
T3: W(A)

view

A: 5 10 8 25 A: 5 8 10 25

CMU SCS

Faloutsos SCS 15-415 28

Notes on Serializability

Definitions

• View Serializability allows (slightly) more
schedules than Conflict Serializability does.

– Problem is that it is difficult to enforce
efficiently.

• Neither definition allows all schedules that
you would consider “serializable”.

– This is because they don‟t understand the
meanings of the operations or the data (recall
example #4‟)

CMU SCS

Faloutsos SCS 15-415 29

Notes on Serializability
Definitions

• In practice, Conflict Serializability is what
gets used, because it can be enforced
efficiently.

– To allow more concurrency, some special cases
do get handled separately, such as for travel
reservations, etc.

CMU SCS

Faloutsos SCS 15-415 30

Outline

• Serializability - concepts and algorithms

• One solution: Locking

– 2PL

– variations

• Deadlocks

15-415 Faloutsos

6

CMU SCS

Faloutsos SCS 15-415 31

Two-Phase Locking (2PL)

• Locking Protocol

– „S‟ (shared) and „X‟ (eXclusive) locks

– A transaction can not request additional locks
once it releases any locks.

– Thus, there is a “growing phase” followed by a
“shrinking phase”.

S X

S  –

X – –

Lock
Compatibility
Matrix

CMU SCS

Faloutsos SCS 15-415 32

2PL

THEOREM: if all transactions obey 2PL ->

all schedules are serializable

CMU SCS

Faloutsos SCS 15-415 33

2PL

THEOREM: if all transactions obey 2PL ->

all schedules are serializable

(if even one violates 2PL, non-serializability

is possible -example?)

CMU SCS

Faloutsos SCS 15-415 34

Two-Phase Locking (2PL), cont.

• 2PL on its own is sufficient to guarantee

conflict serializability (i.e., schedules whose

precedence graph is acyclic), but, it is subject

to Cascading Aborts.

time

locks held

release phaseacquisition
phase

CMU SCS

Faloutsos SCS 15-415 35

2PL

• Problem: Cascading Aborts

• Example: rollback of T1 requires rollback of T2!

• Solution: Strict 2PL, i.e,

• keep all locks, until „commit‟

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A)

CMU SCS

Faloutsos SCS 15-415 36

Strict 2PL

• Allows only conflict serializable schedules, but it

is actually stronger than needed for that purpose.

locks held

acquisition
phase

time

release all locks
at end of xact

15-415 Faloutsos

7

CMU SCS

Faloutsos SCS 15-415 37

Strict 2PL (continued)

• In effect, “shrinking phase” is delayed until

– Transaction commits (commit log record on disk), or

– Aborts (then locks can be released after rollback).

locks held

acquisition
phase

time

release all locks
at end of xact

CMU SCS

Faloutsos SCS 15-415 38

Next ...

• A few examples

CMU SCS

Faloutsos SCS 15-415 39

Lock_X(A)

Read(A) Lock_S(A)

A: = A-50

Write(A)

Unlock(A)

Read(A)

Unlock(A)

Lock_S(B)

Lock_X(B)

Read(B)

Unlock(B)

PRINT(A+B)

Read(B)

B := B +50

Write(B)

Unlock(B)

Non-2PL, A= 1000, B=2000, Output =?
CMU SCS

Faloutsos SCS 15-415 40

Lock_X(A)

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B)

Unlock(A)

Read(A)

Lock_S(B)

Read(B)

B := B +50

Write(B)

Unlock(B) Unlock(A)

Read(B)

Unlock(B)

PRINT(A+B)

2PL, A= 1000, B=2000, Output =?

CMU SCS

Faloutsos SCS 15-415 41

Lock_X(A)

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B)

Read(B)

B := B +50

Write(B)

Unlock(A)

Unlock(B)

Read(A)

Lock_S(B)

Read(B)

PRINT(A+B)

Unlock(A)

Unlock(B)

Strict 2PL, A= 1000, B=2000, Output =? CMU SCS

Faloutsos SCS 15-415 42

Venn Diagram for Schedules

All Schedules

Avoid

Cascading

Abort
Serial

View Serializable

Conflict Serializable

15-415 Faloutsos

8

CMU SCS

Faloutsos SCS 15-415 43

Q: Which schedules does Strict 2PL

allow?

All Schedules

Avoid

Cascading

Abort
Serial

View Serializable

Conflict Serializable

CMU SCS

Faloutsos SCS 15-415 44

Q: Which schedules does Strict 2PL

allow?

All Schedules

Avoid

Cascading

Abort
Serial

View Serializable

Conflict Serializable

CMU SCS

Faloutsos SCS 15-415 45

Lock Management

• Lock and unlock requests handled by the Lock
Manager (LM).

• LM contains an entry for each currently held lock.

• Q: structure of a lock table entry?

CMU SCS

Faloutsos SCS 15-415 46

Lock Management

• Lock and unlock requests handled by the Lock
Manager (LM).

• LM contains an entry for each currently held lock.

• Lock table entry:

– Ptr. to list of transactions currently holding the lock

– Type of lock held (shared or exclusive)

– Pointer to queue of lock requests

CMU SCS

Faloutsos SCS 15-415 47

Lock Management, cont.

• When lock request arrives see if any other xact
holds a conflicting lock.

– If not, create an entry and grant the lock

– Else, put the requestor on the wait queue

• Lock upgrade: transaction that holds a shared
lock can be upgraded to hold an exclusive lock

CMU SCS

Faloutsos SCS 15-415 48

Lock Management, cont.

• Two-phase locking is simple enough, right?

• We‟re not done. There‟s an important wrinkle …

15-415 Faloutsos

9

CMU SCS

Faloutsos SCS 15-415 49

Example: Output = ?

Lock_X(A)

Lock_S(B)

Read(B)

Lock_S(A)

Read(A)

A: = A-50

Write(A)

Lock_X(B)

CMU SCS

Faloutsos SCS 15-415 50

Example: Output = ?

Lock_X(A)

Lock_S(B)

Read(B)

Lock_S(A)

Read(A)

A: = A-50

Write(A)

Lock_X(B)

lock mgr:
grant

grant

wait

wait

CMU SCS

Faloutsos SCS 15-415 51

Outline

• Serializability - concepts and algorithms

• One solution: Locking

– 2PL

– variations

• Deadlocks

– detection

– prevention

CMU SCS

Faloutsos SCS 15-415 52

Deadlocks

• Deadlock: Cycle of transactions waiting for

locks to be released by each other.

• Two ways of dealing with deadlocks:

– Deadlock prevention

– Deadlock detection

• Many systems just punt and use Timeouts

– What are the dangers with this approach?

CMU SCS

Faloutsos SCS 15-415 53

Deadlock Detection

• Create a waits-for graph:

– Nodes are transactions

– Edge from Ti to Tj if Ti is waiting for Tj to

release a lock

• Periodically check for cycles in waits-for

graph

CMU SCS

Faloutsos SCS 15-415 54

Deadlock Detection (Continued)

Example:

T1: S(A), S(D), S(B)

T2: X(B) X(C)

T3: S(D), S(C), X(A)

T4: X(B)

T1 T2

T4 T3

15-415 Faloutsos

10

CMU SCS

Faloutsos SCS 15-415 55

Another example

T1 T2

T3 T4

• is there a deadlock?

• if yes, which xacts are

involved?

CMU SCS

Faloutsos SCS 15-415 56

Another example

T1 T2

T3 T4

• now, is there a deadlock?

• if yes, which xacts are

involved?

CMU SCS

Faloutsos SCS 15-415 57

Deadlock detection

• how often should we run the algo?

• how many transactions are typically

involved?

CMU SCS

Faloutsos SCS 15-415 58

Deadlock handling

T1 T2

T3 T4

• Q: what to do?

CMU SCS

Faloutsos SCS 15-415 59

Deadlock handling

T1 T2

T3 T4

• Q0: what to do?

• A: select a ‘victim’ &

‘rollback’

• Q1: which/how to choose?

CMU SCS

Faloutsos SCS 15-415 60

Deadlock handling

• Q1: which/how to choose?

• A1.1: by age

• A1.2: by progress

• A1.3: by # items locked already...

• A1.4: by # xacts to rollback

• Q2: How far to rollback?

T1 T2

T3 T4

15-415 Faloutsos

11

CMU SCS

Faloutsos SCS 15-415 61

Deadlock handling

• Q2: How far to rollback?

•A2.1: completely

•A2.2: minimally

• Q3: Starvation??

T1 T2

T3 T4

CMU SCS

Faloutsos SCS 15-415 62

Deadlock handling

• Q3: Starvation??

• A3.1: include #rollbacks in victim

selection criterion.

T1 T2

T3 T4

CMU SCS

Faloutsos SCS 15-415 63

Outline

• Serializability - concepts and algorithms

• One solution: Locking

– 2PL

– variations

• Deadlocks

– detection

– prevention

CMU SCS

Faloutsos SCS 15-415 64

Deadlock Prevention
• Assign priorities based on timestamps (older ->

higher priority)

• We only allow „old-wait-for-young‟

• (or only allow „young-wait-for-old‟)

• and rollback violators. Specifically:

• Say Ti wants a lock that Tj holds - two policies:

Wait-Die: If Ti has higher priority, Ti waits for Tj;

otherwise Ti aborts (ie., old wait for young)

Wound-wait: If Ti has higher priority, Tj aborts;

otherwise Ti waits (ie., young wait for old)

CMU SCS

Deadlock prevention

Faloutsos SCS 15-415 65

Wait-Die Wound-Wait
Ti wants Tj has Ti wants Tj has

CMU SCS

Faloutsos SCS 15-415 66

Deadlock Prevention
• Q: Why do these schemes guarantee no deadlocks?

• A:

• Q: When a transaction restarts, what is its (new)

priority?

• A:

15-415 Faloutsos

12

CMU SCS

Faloutsos SCS 15-415 67

Deadlock Prevention
• Q: Why do these schemes guarantee no deadlocks?

• A: only one „type‟ of direction allowed.

• Q: When a transaction restarts, what is its (new)

priority?

• A: its original timestamp. -- Why?

CMU SCS

Faloutsos SCS 15-415 68

SQL statement

• usually, conc. control is transparent to the

user, but

• LOCK <table-name>

[EXCLUSIVE|SHARED]

CMU SCS

Faloutsos SCS 15-415 69

Concurrency control -

conclusions

• (conflict) serializability <-> correctness

• automatically correct interleavings:

– locks + protocol (2PL, 2PLC, ...)

– deadlock detection + handling

• (or deadlock prevention)

CMU SCS

Faloutsos SCS 15-415 70

Quiz:

• is there a serial schedule (= interleaving)

that is not serializable?

• is there a serializable schedule that is not

serial?

• can 2PL produce a non-serializable

schedule? (assume no deadlocks)

CMU SCS

Faloutsos SCS 15-415 71

Quiz - cont‟d

• is there a serializable schedule that can not

be produced by 2PL?

• a xact obeys 2PL - can it be involved in a

non-serializable schedule?

• all xacts obey 2PL - can they end up in a

deadlock?

CMU SCS

Faloutsos SCS 15-415 72

Quiz - hints:

2PL

schedules

serializable

schedules
serial sch’s

Q: 2PLC??

15-415 Faloutsos

13

CMU SCS

Faloutsos SCS 15-415 73

Quiz - hints:

2PL schedules

serializable

schedules
serial sch’s2PLC

