
Faloutsos, CMU SCS 15-415

1

CMU SCS

Faloutsos CMU SCS 15-415 1

Carnegie Mellon Univ.
Dept. of Computer Science

15-415 - Database Applications

Lecture #20: Overview of
Transaction Management

 (R&G ch. 16)

CMU SCS

Faloutsos CMU SCS 15-415 2

Query Compiler

query

Execution Engine Logging/Recovery

LOCK TABLE

Concurrency Control

Storage Manager
BUFFER POOL

BUFFERS

Buffer Manager

Schema Manager

Data Definition

DBMS: a set of cooperating software modules

Transaction Manager

transaction

Components of a DBMS

CMU SCS

Faloutsos CMU SCS 15-415 3

Concurrency Control & Recovery

• Very valuable properties of DBMSs
•  Based on concept of transactions with ACID

properties
• Next lectures discuss these issues

Faloutsos, CMU SCS 15-415

2

CMU SCS

Faloutsos CMU SCS 15-415 4

Overview

•  Problem definition & ‘ACID’
• Atomicity
• Consistency
•  Isolation
• Durability

CMU SCS

Faloutsos CMU SCS 15-415 5

Transactions - dfn

= unit of work, eg.
move $10 from savings to checking

CMU SCS

Faloutsos CMU SCS 15-415 6

•  Concurrent execution of independent
transactions (why do we want that?)

Statement of Problem

Faloutsos, CMU SCS 15-415

3

CMU SCS

Faloutsos CMU SCS 15-415 7

•  Concurrent execution of independent
transactions
– utilization/throughput (“hide” waiting for I/Os.)
– response time

Statement of Problem

CMU SCS

Faloutsos CMU SCS 15-415 8

•  Concurrent execution of independent
transactions
– utilization/throughput (“hide” waiting for I/Os.)
– response time

• would also like:
– correctness &
– fairness

•  Example: Book an airplane seat

Statement of Problem

CMU SCS

Faloutsos CMU SCS 15-415 9

Example: ‘Lost-update’ problem

time

Faloutsos, CMU SCS 15-415

4

CMU SCS

Faloutsos CMU SCS 15-415 10

Statement of problem (cont.)

• Arbitrary interleaving can lead to
– Temporary inconsistency (ok, unavoidable)
– “Permanent” inconsistency (bad!)

• Need formal correctness criteria.

CMU SCS

Faloutsos CMU SCS 15-415 11

Definitions

• A program may carry out many
operations on the data retrieved from
the database

• However, the DBMS is only concerned
about what data is read/written from/to
the database.

CMU SCS

Faloutsos CMU SCS 15-415 12

Definitions

•  database - a fixed set of named data
objects (A, B, C, …)

•  transaction - a sequence of read and write
operations (read(A), write(B), …)
– DBMS’s abstract view of a user program

Faloutsos, CMU SCS 15-415

5

CMU SCS

Faloutsos CMU SCS 15-415 13

Correctness criteria: The ACID
properties

CMU SCS

Faloutsos CMU SCS 15-415 14

Correctness criteria: The ACID
properties

CMU SCS

Faloutsos CMU SCS 15-415 15

Overview

•  Problem definition & ‘ACID’
• Atomicity
• Consistency
•  Isolation
• Durability

Faloutsos, CMU SCS 15-415

6

CMU SCS

Faloutsos CMU SCS 15-415 16

Atomicity of Transactions
•  Two possible outcomes of executing a

transaction:
– Xact might commit after completing all its actions
– or it could abort (or be aborted by the DBMS) after

executing some actions.
• DBMS guarantees that Xacts are atomic.

– From user’s point of view: Xact always either
executes all its actions, or executes no actions at all.

CMU SCS

Faloutsos CMU SCS 15-415 17

Transaction states

active
partially

 committed commited

failed aborted

CMU SCS

Faloutsos CMU SCS 15-415 18

Mechanisms for Ensuring
Atomicity

•  What would you do?

Faloutsos, CMU SCS 15-415

7

CMU SCS

Faloutsos CMU SCS 15-415 19

Mechanisms for Ensuring
Atomicity

•  One approach: LOGGING
–  DBMS logs all actions so that it can undo the

actions of aborted transactions.
•  ~ like black box in airplanes …

CMU SCS

Faloutsos CMU SCS 15-415 20

Mechanisms for Ensuring
Atomicity

•  Logging used by all modern systems.
•  Q: why?

CMU SCS

Faloutsos CMU SCS 15-415 21

Mechanisms for Ensuring
Atomicity

Logging used by all modern systems.
•  Q: why?
•  A:

–  audit trail &
–  efficiency reasons

What other mechanism can you think of?

Faloutsos, CMU SCS 15-415

8

CMU SCS

Faloutsos CMU SCS 15-415 22

Mechanisms for Ensuring
Atomicity

•  Another approach: SHADOW PAGES
–  (not as popular)

CMU SCS

Faloutsos CMU SCS 15-415 23

Overview

•  Problem definition & ‘ACID’
• Atomicity
• Consistency
•  Isolation
• Durability

CMU SCS

Faloutsos CMU SCS 15-415 24

Transaction Consistency

•  “Database consistency” - data in DBMS is
accurate in modeling real world and follows
integrity constraints

Faloutsos, CMU SCS 15-415

9

CMU SCS

Faloutsos CMU SCS 15-415 25

Transaction Consistency

•  “Transaction Consistency”: if DBMS consistent
before Xact (running alone), it will be after also

•  Transaction consistency: User’s responsibility
– DBMS just checks IC

consistent
database

S1

consistent
database

S2

transaction T

CMU SCS

Faloutsos CMU SCS 15-415 26

Transaction Consistency (cont.)

•  Recall: Integrity constraints
– must be true for DB to be considered consistent
– Examples:
 1. FOREIGN KEY R.sid REFERENCES S
 2. ACCT-BAL >= 0

CMU SCS

Faloutsos CMU SCS 15-415 27

Transaction Consistency (cont.)

•  System checks ICs and if they fail, the
transaction rolls back (i.e., is aborted).
– Beyond this, DBMS does not understand the

semantics of the data.
– e.g., it does not understand how interest on a

bank account is computed

•  Since it is the user’s responsibility, we
don’t discuss it further

Faloutsos, CMU SCS 15-415

10

CMU SCS

Faloutsos CMU SCS 15-415 28

Overview

•  Problem definition & ‘ACID’
• Atomicity
• Consistency
•  Isolation (‘as if alone’)
• Durability

CMU SCS

Faloutsos CMU SCS 15-415 29

Isolation of Transactions
• Users submit transactions, and
•  Each transaction executes as if it was

running by itself.
–  Concurrency is achieved by DBMS, which

interleaves actions (reads/writes of DB
objects) of various transactions.

•  Q: How would you achieve that?

CMU SCS

Faloutsos CMU SCS 15-415 30

Isolation of Transactions
A: Many methods - two main categories:
•  Pessimistic – don’t let problems arise in

the first place
•  Optimistic – assume conflicts are rare,

deal with them after they happen.

Faloutsos, CMU SCS 15-415

11

CMU SCS

Faloutsos CMU SCS 15-415 31

Example
•  Consider two transactions (Xacts):

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

•  1st xact transfers $100 from B’s account to A’s
•  2nd credits both accounts with 6% interest.
•  Assume at first A and B each have $1000. What

are the legal outcomes of running T1 and T2?

CMU SCS

Faloutsos CMU SCS 15-415 32

Example
T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

•  many - but A+B should be: $2000 *1.06 = $2120
•  There is no guarantee that T1 will execute before

T2 or vice-versa, if both are submitted together.
But, the net effect must be equivalent to these two
transactions running serially in some order.

CMU SCS

Faloutsos CMU SCS 15-415 33

Example (Contd.)
•  Legal outcomes: A=1166,B=954 or A=1160,B=960
•  Consider a possible interleaved schedule:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

• This is OK (same as T1;T2). But what about:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

Faloutsos, CMU SCS 15-415

12

CMU SCS

Faloutsos CMU SCS 15-415 34

Example (Contd.)
•  Legal outcomes: A=1166,B=954 or A=1160,B=960
•  Consider a possible interleaved schedule:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

• This is OK (same as T1;T2). But what about:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

•  Result: A=1166, B=960; A+B = 2126, bank loses $6
•  The DBMS’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

CMU SCS

Faloutsos CMU SCS 15-415 35

‘Correctness’?

• Q: How would you judge that a schedule is
‘correct’?

•  (‘schedule’ = ‘interleaved execution’)

CMU SCS

Faloutsos CMU SCS 15-415 36

‘Correctness’?

• Q: How would you judge that a schedule is
‘correct’?

• A: if it is equivalent to some serial
execution

Faloutsos, CMU SCS 15-415

13

CMU SCS

Faloutsos CMU SCS 15-415 37

Formal Properties of Schedules
•  Serial schedule: Schedule that does not interleave

the actions of different transactions.
•  Equivalent schedules: For any database state, the

effect of executing the first schedule is identical to
the effect of executing the second schedule. (*)

(*) no matter what the arithmetic e.t.c. operations are!

CMU SCS

Faloutsos CMU SCS 15-415 38

Formal Properties of Schedules
•  Serializable schedule: A schedule that is equivalent

to some serial execution of the transactions.
 (Note: If each transaction preserves consistency,

every serializable schedule preserves consistency.)

CMU SCS

Faloutsos CMU SCS 15-415 39

Anomalies with interleaved
execution:

•  R-W conflicts
• W-R conflicts
• W-W conflicts
•  (why not R-R conflicts?)

Faloutsos, CMU SCS 15-415

14

CMU SCS

Faloutsos CMU SCS 15-415 40

Anomalies with Interleaved
Execution

•  Reading Uncommitted Data (WR Conflicts, “dirty
reads”):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

CMU SCS

Faloutsos CMU SCS 15-415 41

Anomalies with Interleaved
Execution

•  Reading Uncommitted Data (WR Conflicts, “dirty
reads”):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

CMU SCS

Faloutsos CMU SCS 15-415 42

Anomalies with Interleaved
Execution

• Unrepeatable Reads (RW Conflicts):

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

Faloutsos, CMU SCS 15-415

15

CMU SCS

Faloutsos CMU SCS 15-415 43

Anomalies with Interleaved
Execution

• Unrepeatable Reads (RW Conflicts):

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

CMU SCS

Faloutsos CMU SCS 15-415 44

Anomalies (Continued)

• Overwriting Uncommitted Data (WW
Conflicts):

T1: W(A), W(B), C
T2: W(A), W(B), C

CMU SCS

Faloutsos CMU SCS 15-415 45

Anomalies (Continued)

• Overwriting Uncommitted Data (WW
Conflicts):

T1: W(A), W(B), C
T2: W(A), W(B), C

Faloutsos, CMU SCS 15-415

16

CMU SCS

Faloutsos CMU SCS 15-415 46

Solution?

• Q: How could you guarantee that all
resulting schedules are correct (=
serializable)?

CMU SCS

Faloutsos CMU SCS 15-415 47

Answer

•  (Part of the answer:) use locks!

CMU SCS

Faloutsos CMU SCS 15-415 48

Answer

•  (Full answer:) use locks; keep them until
commit (‘strict 2 phase locking’)

•  Let’s see the details

Faloutsos, CMU SCS 15-415

17

CMU SCS

Faloutsos CMU SCS 15-415 49

Lost update problem - no locks

T1
Read(N)

N = N -1

Write(N)

T2

Read(N)

N = N -1

Write(N)

CMU SCS

Faloutsos CMU SCS 15-415 50

Solution – part 1

• with locks:
•  lock manager: grants/denies lock requests

CMU SCS

Faloutsos CMU SCS 15-415 51

Lost update problem – with locks

time

T1

lock(N)

Read(N)

N=N-1

Write(N)

Unlock(N)

T2

lock(N)

lock manager

grants lock

denies lock

T2: waits

grants lock to T2
Read(N) ...

Faloutsos, CMU SCS 15-415

18

CMU SCS

Faloutsos CMU SCS 15-415 52

Locks

• Q: I just need to read ‘N’ - should I still get
a lock?

CMU SCS

Faloutsos CMU SCS 15-415 53

Solution – part 1

•  Locks and their flavors
– exclusive (or write-) locks
– shared (or read-) locks
– <and more ... >

•  compatibility matrix
X

S

X S T2 wants
T1 has

CMU SCS

Faloutsos CMU SCS 15-415 54

Solution – part 1

•  Locks and their flavors
– exclusive (or write-) locks
– shared (or read-) locks
– <and more ... >

•  compatibility matrix
X

S

X S T2 wants
T1 has

Yes

Faloutsos, CMU SCS 15-415

19

CMU SCS

Faloutsos CMU SCS 15-415 55

Solution – part 1

•  transactions request locks (or upgrades)
•  lock manager grants or blocks requests
•  transactions release locks
•  lock manager updates lock-table

CMU SCS

Faloutsos CMU SCS 15-415 56

Solution – part 2

locks are not enough – eg., ‘inconsistent
analysis’

CMU SCS

Faloutsos CMU SCS 15-415 57

‘Inconsistent analysis’

time

Faloutsos, CMU SCS 15-415

20

CMU SCS

Faloutsos CMU SCS 15-415 58

‘Inconsistent analysis’ – w/ locks

time T1

L(A)

Read(A)

...

U(A)

T2

L(A)

....

L(B)

....

the problem
remains!

Solution??

CMU SCS

Faloutsos CMU SCS 15-415 59

General solution:

•  Protocol(s)
• Most popular protocol: 2 Phase Locking

(2PL)

CMU SCS

Faloutsos CMU SCS 15-415 60

2PL

X-lock version: transactions issue no lock
requests, after the first ‘unlock’

THEOREM: if all transactions obey 2PL ->
all schedules are serializable

Faloutsos, CMU SCS 15-415

21

CMU SCS

Faloutsos CMU SCS 15-415 61

2PL – example

•  ‘inconsistent analysis’ – how does 2PL
help?

•  how would it be under 2PL?
•  (answer: on the chalk-board)

CMU SCS

Faloutsos CMU SCS 15-415 62

2PL – X/S lock version

transactions issue no lock/upgrade request,
after the first unlock/downgrade

In general: ‘growing’ and ‘shrinking’ phase

time

locks

growing phase shrinking phase

CMU SCS

Faloutsos CMU SCS 15-415 63

2PL – X/S lock version

transactions issue no lock/upgrade request,
after the first unlock/downgrade

In general: ‘growing’ and ‘shrinking’ phase

time

locks

violation of 2PL

Faloutsos, CMU SCS 15-415

22

CMU SCS

Faloutsos CMU SCS 15-415 64

2PL – observations

-  limits concurrency
- may lead to deadlocks
-  strict 2PL (a.k.a. 2PLC): keep locks until

‘commit’
-  avoids ‘dirty reads’ etc
-  but limits concurrency even more
-  (and still may lead to deadlocks)

CMU SCS

Faloutsos CMU SCS 15-415 65

•  If an xact Ti aborted, all actions must be undone.
• On ‘dirty reads’: cascading aborts
•  strict 2PL: avoids ‘dirty reads’ (why?)

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

Aborting a Transaction (i.e.,
Rollback)

CMU SCS

Faloutsos CMU SCS 15-415 66

•  To undo actions of an aborted transaction, DBMS
maintains log which records every write.

•  Log also used to recover from system crashes:
All active Xacts at time of crash are aborted when

system comes back up.

Aborting a Transaction (i.e.,
Rollback)

Faloutsos, CMU SCS 15-415

23

CMU SCS

Faloutsos CMU SCS 15-415 67

(Review) Goal: The ACID
properties

CMU SCS

Faloutsos CMU SCS 15-415 68

(Review) Goal: The ACID
properties

What happens if system crashes between
commit and flushing modified data to disk ?

CMU SCS

Faloutsos CMU SCS 15-415 69

Problem definition

•  Records are on disk
•  for updates, they are copied in memory
•  and flushed back on disk, at the discretion

of the O.S.! (unless forced-output: ‘output
(B)’ = fflush())

Faloutsos, CMU SCS 15-415

24

CMU SCS

Faloutsos CMU SCS 15-415 70

Problem definition - eg.:

read(X)
X=X+1
write(X)

disk
main

memory

5
}page

buffer{
5

CMU SCS

Faloutsos CMU SCS 15-415 71

Problem definition - eg.:

read(X)
X=X+1
write(X)

disk
main

memory

6
5

CMU SCS

Faloutsos CMU SCS 15-415 72

Problem definition - eg.:

read(X)
X=X+1
write(X)

disk

6
5

buffer joins an ouput queue,

but it is NOT flushed immediately!

Q1: why not?

Q2: so what?

Faloutsos, CMU SCS 15-415

25

CMU SCS

Faloutsos CMU SCS 15-415 73

Problem definition - eg.:

read(X)
read(Y)
X=X+1
Y=Y-1
write(X)
write(Y)

disk

6

3

Q2: so what?

X
3

5

Y

CMU SCS

Faloutsos CMU SCS 15-415 74

Problem definition - eg.:

read(X)
read(Y)
X=X+1
Y=Y-1
write(X)
write(Y)

disk

6

3

Q2: so what?

Q3: how to guard against it?

X
3

5

Y

CMU SCS

Faloutsos CMU SCS 15-415 75

Solution: W.A.L.

•  redundancy, namely
• write-ahead log, on ‘stable’ storage
• Q: what to replicate? (not the full page!!)
• A:
• Q: how exactly?

Faloutsos, CMU SCS 15-415

26

CMU SCS

Faloutsos CMU SCS 15-415 76

W.A.L. - intro

•  replicate intentions: eg:
<T1 start>
<T1, X, 5, 6>
<T1, Y, 4, 3>
<T1 commit> (or <T1 abort>)

CMU SCS

Faloutsos CMU SCS 15-415 77

W.A.L. - intro

•  in general: <transaction-id, data-item-id, old-
value, new-value> (or similar)

•  each transaction writes a log record first,
before doing the change

• when done, DBMS
– writes a <commit> record on the log
– makes sure that all log records are flushed, &
–  lets xact exit

CMU SCS

Faloutsos CMU SCS 15-415 78

W.A.L.

• After a failure, DBMS “replays” the log:
– undo uncommited transactions
– redo the committed ones

Faloutsos, CMU SCS 15-415

27

CMU SCS

Faloutsos CMU SCS 15-415 79

W.A.L.
<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

<T1 commit>

before

crash

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

before

REDO T1 UNDO T1

CMU SCS

Faloutsos CMU SCS 15-415 80

Logging (cont.)
• All logging and CC-related activities are

handled transparently by the DBMS.

CMU SCS

Faloutsos CMU SCS 15-415 81

Durability - Recovering From a
Crash

• At the end – all committed updates and
only those updates are reflected in the
database.

•  Some care must be taken to handle the
case of a crash occurring during the
recovery process!

Faloutsos, CMU SCS 15-415

28

CMU SCS

Faloutsos CMU SCS 15-415 82

Summary
•  Concurrency control and recovery are among the

most important functions provided by a DBMS.

•  Concurrency control is automatic
–  System automatically inserts lock/unlock requests

and schedules actions of different Xacts
–  Property ensured: resulting execution is equivalent to

executing the Xacts one after the other in some order.

CMU SCS

Faloutsos CMU SCS 15-415 83

Summary
• Write-ahead logging (WAL) and the recovery

protocol are used to:
1. undo the actions of aborted transactions, and
2. restore the system to a consistent state after a crash.

CMU SCS

Faloutsos CMU SCS 15-415 84

ACID properties:

Atomicity (all or none)
Consistency
Isolation (as if alone)
Durability

recovery

concurrency
control

