
Faloutsos 15-415

1

CMU SCS

Faloutsos 15-415 1

Carnegie Mellon Univ.

Dept. of Computer Science

15-415 - Database Applications

Lecture 11: external sorting and

query evaluation

(R&G ch. 13 and 14)

CMU SCS

Faloutsos 15-415 2

Why Sort?

CMU SCS

Faloutsos 15-415 3

Why Sort?

• select ... order by

– e.g., find students in increasing gpa order

• bulk loading B+ tree index.

• duplicate elimination (select distinct)

• select ... group by

• Sort-merge join algorithm involves sorting.

CMU SCS

Faloutsos 15-415 4

Outline

• two-way merge sort

• external merge sort

• fine-tunings

• B+ trees for sorting

CMU SCS

Faloutsos 15-415 5

2-Way Sort: Requires 3 Buffers

• Pass 0: Read a page, sort it, write it.

– only one buffer page is used

• Pass 1, 2, 3, …, etc.: requires 3 buffer pages

– merge pairs of runs into runs twice as long

– three buffer pages used.

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

CMU SCS

Faloutsos 15-415 6

Two-Way External Merge Sort

• Each pass we read +

write each page in file.

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

Faloutsos 15-415

2

CMU SCS

Faloutsos 15-415 7

Two-Way External Merge Sort

• Each pass we read +

write each page in file.

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

CMU SCS

Faloutsos 15-415 8

Two-Way External Merge Sort

• Each pass we read +

write each page in file.

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

CMU SCS

Faloutsos 15-415 9

Two-Way External Merge Sort

• Each pass we read +

write each page in file.

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

CMU SCS

Faloutsos 15-415 10

Two-Way External Merge Sort

• Each pass we read +

write each page in file.

• N pages in the file =>

• So total cost is:

• Idea: Divide and

conquer: sort subfiles

and merge

  log2 1N

  2 12N Nlog 

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

CMU SCS

Faloutsos 15-415 11

Outline

• two-way merge sort

• external merge sort

• fine-tunings

• B+ trees for sorting

CMU SCS

Faloutsos 15-415 12

External merge sort

B > 3 buffers

• Q1: how to sort?

• Q2: cost?

Faloutsos 15-415

3

CMU SCS

Faloutsos 15-415 13

General External Merge Sort

B Main memory buffers
DiskDisk

.

B>3 buffer pages. How to sort a file with N pages?

. . .

CMU SCS

Faloutsos 15-415 14

General External Merge Sort

– Pass 0: use B buffer pages. Produce sorted runs

of B pages each.

– Pass 1, 2, …, etc.: merge B-1 runs.

 N B/

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

CMU SCS

Faloutsos 15-415 15

Sorting

– create sorted runs of size B (how many?)

– merge them (how?)

B

... ...

CMU SCS

Faloutsos 15-415 16

Sorting

– create sorted runs of size B

– merge first B-1 runs into a sorted run of

(B-1) *B, ...

B

... ...
…..

CMU SCS

Faloutsos 15-415 17

Sorting

– How many steps we need to do?

„i‟, where B*(B-1)^i > N

– How many reads/writes per step? N+N

B

... ...
…..

CMU SCS

Faloutsos 15-415 18

Cost of External Merge Sort

• Number of passes:

• Cost = 2N * (# of passes)

  1 1 log /B N B

Faloutsos 15-415

4

CMU SCS

Faloutsos 15-415 19

Cost of External Merge Sort

• E.g., with 5 buffer pages, to sort 108 page

file:

– Pass 0: = 22 sorted runs of 5 pages

each (last run is only 3 pages)

– Pass 1: = 6 sorted runs of 20 pages

each (last run is only 8 pages)

– Pass 2: 2 sorted runs, 80 pages and 28 pages

– Pass 3: Sorted file of 108 pages

 108 5/

 22 4/

Formula check: ┌log4 22┐= 3 … + 1  4 passes √

CMU SCS

Faloutsos 15-415 20

Number of Passes of External

Sort

 N B=3 B=5 B=9 B=17 B=129 B=257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3

10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4

1,000,000,000 30 15 10 8 5 4

(I/O cost is 2N times number of passes)

CMU SCS

Faloutsos 15-415 21

Outline

• two-way merge sort

• external merge sort

• fine-tunings

• B+ trees for sorting

CMU SCS

Faloutsos 15-415 22

Outline

• two-way merge sort

• external merge sort

• fine-tunings

– which internal sort for Phase 0?

– blocked I/O

• B+ trees for sorting

CMU SCS

Faloutsos 15-415 23

• Quicksort is a fast way to sort in memory.

• But: we get B buffers, and produce 1 run of length
B.

• Can we produce longer runs than that?

Internal Sort Algorithm

CMU SCS

Faloutsos 15-415 24

• Quicksort is a fast way to sort in memory.

• But: we get B buffers, and produce 1 run of length
B.

• Can we produce longer runs than that?

Internal Sort Algorithm

B=3 B=3

Heapsort:

• Pick smallest

• Output

• Read from next

buffer

Faloutsos 15-415

5

CMU SCS

Faloutsos 15-415 25

• Quicksort is a fast way to sort in memory.

• But: we get B buffers, and produce 1 run of length
B.

• Can we produce longer runs than that?

• Alternative: “tournament sort” (a.k.a. “heapsort”,
“replacement selection”)

• Produces runs of length ~ 2*B

• Clever, but not implemented, for subtle reasons:

tricky memory management on variable length

records

Internal Sort Algorithm

CMU SCS

Faloutsos 15-415 26

Reminder: Heapsort

10

14

17

11

15 18 16

pick smallest, write to output buffer:

details

CMU SCS

Faloutsos 15-415 27

Heapsort:

...

14

17

11

15 18 16

10

pick smallest, write to output buffer:

details
CMU SCS

Faloutsos 15-415 28

Heapsort:

22

14

17

11

15 18 16

get next key; put at top and ‘sink’ it

details

CMU SCS

Faloutsos 15-415 29

Heapsort:

11

14

17

22

15 18 16

get next key; put at top and ‘sink’ it

details
CMU SCS

Faloutsos 15-415 30

Heapsort:

11

14

17

16

15 18 22

get next key; put at top and ‘sink’ it

details

Faloutsos 15-415

6

CMU SCS

Faloutsos 15-415 31

Heapsort:

11

14

17

16

15 18 22

When done, pick top (= smallest)
and output it, if ‘legal’ (ie., >=10 in
our example

This way, we can keep on reading
new key values (beyond the B
ones of quicksort)

details
CMU SCS

Faloutsos 15-415 32

Outline

• two-way merge sort

• external merge sort

• fine-tunings

– which internal sort for Phase 0?

– blocked I/O

• B+ trees for sorting

CMU SCS

Faloutsos 15-415 33

Blocked I/O & double-buffering

• So far, we assumed random disk access

• Cost changes, if we consider that runs are

written (and read) sequentially

• What could we do to exploit it?

CMU SCS

Faloutsos 15-415 34

Blocked I/O & double-buffering

• So far, we assumed random disk access

• Cost changes, if we consider that runs are

written (and read) sequentially

• What could we do to exploit it?

• A1: Blocked I/O (exchange a few r.d.a for

several sequential ones)

• A2: double-buffering

CMU SCS

Faloutsos 15-415 35

Double Buffering

• To reduce wait time for I/O request to

complete, can prefetch into `shadow block‟.

– Potentially, more passes; in practice, most files

still sorted in 2-3 passes.

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge

CMU SCS

Faloutsos 15-415 36

Outline

• two-way merge sort

• external merge sort

• fine-tunings

• B+ trees for sorting

Faloutsos 15-415

7

CMU SCS

Faloutsos 15-415 37

Using B+ Trees for Sorting

• Scenario: Table to be sorted has B+ tree index on

sorting column(s).

• Idea: Can retrieve records in order by traversing

leaf pages.

• Is this a good idea?

• Cases to consider:

– B+ tree is clustered

– B+ tree is not clustered

CMU SCS

Faloutsos 15-415 38

Using B+ Trees for Sorting

• Scenario: Table to be sorted has B+ tree index on

sorting column(s).

• Idea: Can retrieve records in order by traversing

leaf pages.

• Is this a good idea?

• Cases to consider:

– B+ tree is clustered Good idea!

– B+ tree is not clustered Could be a very bad idea!

CMU SCS

Faloutsos 15-415 39

Clustered B+ Tree Used for

Sorting

• Cost: root to the left-

most leaf, then retrieve

all leaf pages

(Alternative 1)

Always better than external sorting!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

CMU SCS

Faloutsos 15-415 40

Unclustered B+ Tree Used for

Sorting

• Alternative (2) for data entries; each data

entry contains rid of a data record. In

general, one I/O per data record!

(Directs search)

Data Records

Index

Data Entries

("Sequence set")

CMU SCS

Faloutsos 15-415 41

External Sorting vs. Unclustered

Index

p: # of records per page
B=1,000 and block size=32 for sorting
p=100 is the more realistic value.

N Sorting p=1 p=10 p=100

100 200 100 1,000 10,000

1,000 2,000 1,000 10,000 100,000

10,000 40,000 10,000 100,000 1,000,000

100,000 600,000 100,000 1,000,000 10,000,000

1,000,000 8,000,000 1,000,000 10,000,000 100,000,000

10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

CMU SCS

Faloutsos 15-415 42

Summary

• External sorting is important

• External merge sort minimizes disk I/O cost:

– Pass 0: Produces sorted runs of size B (# buffer

pages).

– Later passes: merge runs.

• Clustered B+ tree is good for sorting; unclustered

tree is usually very bad.

Faloutsos 15-415

8

CMU SCS

15-415 Faloutsos 43

Outline

• (12.1) Catalog

• (12.2) Intro to Operator Evaluation

• (12.3) Algo‟s for Relational Operations

• (12.6) Typical Q-optimizer

• (14.3.2) Hashing

CMU SCS

15-415 Faloutsos 44

Cost-based Query Sub-System

Query Parser

Query Optimizer

Plan

Generator

Plan Cost

Estimator

Query Plan Evaluator

Catalog Manager

Schema Statistics

Select *

From Blah B

Where B.blah = blah
Queries

CMU SCS

15-415 Faloutsos 45

Schema

• What would you store?

• How?

CMU SCS

15-415 Faloutsos 46

Schema

• What would you store?

• A: info about tables, attributes, indices,

users

• How?

• A: in tables! eg.,

– Attribute_Cat (attr_name: string, rel_name:

string; type: string; position: integer)

CMU SCS

15-415 Faloutsos 47

Statistics

• Why do we need them?

• What would you store?

CMU SCS

15-415 Faloutsos 48

Statistics

• Why do we need them?

• A: To estimate cost of query plans

• What would you store?

– NTuples(R): # records for table R

– NPages(R): # pages for R

– NKeys(I): # distinct key values for index I

– INPages(I): # pages for index I

– IHeight(I): # levels for I

– ILow(I), IHigh(I): range of values for I

– ...

Faloutsos 15-415

9

CMU SCS

15-415 Faloutsos 49

Outline

• (12.1) Catalog

• (12.2) Intro to Operator Evaluation

• (12.3) Algo‟s for Relational Operations

• (12.6) Typical Q-optimizer

• (14.3.2) Hashing

CMU SCS

15-415 Faloutsos 50

Operator evaluation

3 methods we‟ll see often:

CMU SCS

15-415 Faloutsos 51

Operator evaluation

3 methods we‟ll see often:

• indexing

• iteration (= seq. scanning)

• partitioning (sorting and hashing)

CMU SCS

15-415 Faloutsos 52

``Access Path‟‟

• Eg., index (tree, or hash), or scanning

• Selectivity of an access path:

– % of pages we retrieve

• eg., selectivity of a hash index, on range

query: 100% (no reduction!)

CMU SCS

15-415 Faloutsos 53

Outline

• (12.1) Catalog

• (12.2) Intro to Operator Evaluation

• (12.3) Algo‟s for Relational Operations

• (12.6) Typical Q-optimizer

• (14.3.2) Hashing

CMU SCS

15-415 Faloutsos 54

Algorithms

• selection:

• projection

• join

• group by

• order by

Faloutsos 15-415

10

CMU SCS

15-415 Faloutsos 55

Algorithms

• selection: scan; index

• projection (dup. elim.):

• join

• group by

• order by

CMU SCS

15-415 Faloutsos 56

Algorithms

• selection: scan; index

• projection (dup. elim.): hashing; sorting

• join

• group by

• order by

CMU SCS

15-415 Faloutsos 57

Algorithms

• selection: scan; index

• projection (dup. elim.): hashing; sorting

• join: many ways (loops, sort-merge, etc)

• group by

• order by

CMU SCS

15-415 Faloutsos 58

Algorithms

• selection: scan; index

• projection (dup. elim.): hashing; sorting

• join: many ways (loops, sort-merge, etc)

• group by: hashing; sorting

• order by: sorting

CMU SCS

15-415 Faloutsos 59

Iterator Interface

SELECT DISTINCT name, gpa

FROM Students

HeapScan

Sort

Distinct

name, gpa

name, gpa

name, gpa

Optimizer

CMU SCS

15-415 Faloutsos 60

iterator

Iterators
• Relational operators: subclasses of iterator:

class iterator {
void init();
tuple next();
void close();
iterator &inputs[];

// additional state goes here
}

• iterators can be cascaded

Faloutsos 15-415

11

CMU SCS

15-415 Faloutsos 61

Outline

• (12.1) Catalog

• (12.2) Intro to Operator Evaluation

• (12.3) Algo‟s for Relational Operations

• (12.6) Typical Q-optimizer

• (14.3.2) Hashing

CMU SCS

15-415 Faloutsos 62

Q-opt steps

• bring query in internal form (eg., parse tree)

• … into „canonical form‟ (syntactic q-opt)

• generate alt. plans

• estimate cost; pick best

CMU SCS

15-415 Faloutsos 63

Q-opt - example

select name

from STUDENT, TAKES

where c-id=‘415’ and

STUDENT.ssn=TAKES.ssn

STUDENT TAKES



s

p

CMU SCS

15-415 Faloutsos 64

Q-opt - example

STUDENT TAKES



s

p

STUDENT TAKES



s

p Canonical form

CMU SCS

15-415 Faloutsos 65

Q-opt - example

STUDENT TAKES



s

p

Index; seq scan

Hash join;

merge join;

nested loops;

CMU SCS

15-415 Faloutsos 66

Outline

• (12.1) Catalog

• (12.2) Intro to Operator Evaluation

• (12.3) Algo‟s for Relational Operations

• (12.6) Typical Q-optimizer

• (14.3.2) Hashing

Faloutsos 15-415

12

CMU SCS

15-415 Faloutsos 67

Grouping; Duplicate Elimination

select distinct ssn

from TAKES

• (Q1: what does it do, in English?)

• Q2: how to execute it?

CMU SCS

15-415 Faloutsos 68

An Alternative to Sorting:

Hashing!

• Idea:

– maybe we don‟t need the order of the sorted data

– e.g.: forming groups in GROUP BY

– e.g.: removing duplicates in DISTINCT

• Hashing does this!

– And may be cheaper than sorting! (why?)

– But what if table doesn‟t fit in memory??

CMU SCS

15-415 Faloutsos 69

General Idea

• Two phases:

– Phase1: Partition: use a hash function hp to split

tuples into partitions on disk.

• We know that all matches live in the same partition.

• Partitions are “spilled” to disk via output buffers

CMU SCS

15-415 Faloutsos 70

Two Phases

• Partition:

B main memory buffers DiskDisk

Original

Relation OUTPUT

2
INPUT

1

hash
function

hp
B-1

Partitions

1

2

B-1

.

CMU SCS

15-415 Faloutsos 71

General Idea

• Two phases:

– Phase 2: ReHash: for each partition on disk,

read it into memory and build a main-memory

hash table based on a hash function hr

• Then go through each bucket of this hash table to

bring together matching tuples

CMU SCS

15-415 Faloutsos 72

Two Phases

• Rehash:

Partitions
Hash table for partition

Ri (ki <= B pages)

B main memory buffersDisk

hash

fn
hr

1

B-1

B

Ri

Faloutsos 15-415

13

CMU SCS

15-415 Faloutsos 73

Analysis

• How big of a table can we hash using this
approach?

– B-1 “spill partitions” in Phase 1

– Each should be no more than B blocks big

CMU SCS

15-415 Faloutsos 74

Analysis

• How big of a table can we hash using this
approach?

– B-1 “spill partitions” in Phase 1

– Each should be no more than B blocks big

– Answer: B(B-1).

• ie., a table of N blocks needs about sqrt(N) buffers

– What assumption do we make?

CMU SCS

15-415 Faloutsos 75

Analysis

• How big of a table can we hash using this
approach?

– B-1 “spill partitions” in Phase 1

– Each should be no more than B blocks big

– Answer: B(B-1).

• ie., a table of N blocks needs about sqrt(N) buffers

– Note: assumes hash function distributes records evenly!

• use a „fudge factor‟ f >1 for that: we need

B ~ sqrt(f * N)

CMU SCS

15-415 Faloutsos 76

Analysis

• Have a bigger table? Recursive
partitioning!

– In the ReHash phase, if a partition b is bigger
than B, then recurse:

– pretend that b is a table we need to hash, run the
Partitioning phase on b, and then the ReHash
phase on each of its (sub)partitions

CMU SCS

15-415 Faloutsos 77

Real story

• Partition + Rehash

• Performance is very slow!

• What could have gone wrong?

break
CMU SCS

15-415 Faloutsos 78

Real story

• Partition + Rehash

• Performance is very slow!

• What could have gone wrong?

• Hint: some buckets are empty; some others

are way over-full.

break

Faloutsos 15-415

14

CMU SCS

15-415 Faloutsos 79

Hashing vs. Sorting

• Which one needs more buffers?

CMU SCS

15-415 Faloutsos 80

Hashing vs. Sorting

• Recall: can hash a table of size N blocks

in sqrt(N) space

• How big of a table can we sort in 2 passes?

– Get N/B sorted runs after Pass 0

– Can merge all runs in Pass 1 if N/B ≤ B-1

• Thus, we (roughly) require: N ≤ B2

• We can sort a table of size N blocks in about space

sqrt(N)

– Same as hashing!

CMU SCS

15-415 Faloutsos 81

Hashing vs. Sorting

• Choice of sorting vs. hashing is subtle and
depends on optimizations done in each case …
– Already discussed some optimizations for sorting:

CMU SCS

15-415 Faloutsos 82

Hashing vs. Sorting

• Choice of sorting vs. hashing is subtle and
depends on optimizations done in each case …
– Already discussed some optimizations for sorting:

• Heapsort in Pass 0 for longer runs

• Chunk I/O into large blocks to amortize seek+RD costs

• Double-buffering to overlap CPU and I/O

– Another optimization when using sorting for
aggregation:
• “Early aggregation” of records in sorted runs

– We will discuss some optimizations for hashing next…

CMU SCS

15-415 Faloutsos 83

Hashing: We Can Do Better!

• Combine the summarization into the hashing
process - How?

HashAgg

CMU SCS

15-415 Faloutsos 84

Hashing: We Can Do Better!

• Combine the summarization into the hashing
process - How?

– During the ReHash phase, don‟t store tuples, store pairs
of the form <GroupVals, RunningVals>

– When we want to insert a new tuple into the hash table

• If we find a matching GroupVals, just update the RunningVals
appropriately

• Else insert a new <GroupVals, RunningVals> pair

HashAgg

Faloutsos 15-415

15

CMU SCS

15-415 Faloutsos 85

Hashing: We Can Do Better!

• Combine the summarization into the hashing
process

• What‟s the benefit?

– Q: How many pairs will we have to handle?

– A: Number of distinct values of GroupVals columns
• Not the number of tuples!!

– Also probably “narrower” than the tuples

HashAgg

CMU SCS

15-415 Faloutsos 86

Even Better: Hybrid Hashing
• What if B > sqrt(N)?

• e.g., N=10,000, B=200

• B=100 (actually, 101) would be enough for 2

passes

• How could we use the extra 100 buffers?

B main memory buffers DiskDisk

Original

Relation OUTPUT

2

INPUT

1

hp 100

Partitions

1

2

100

. . .

101 200

CMU SCS

15-415 Faloutsos 87

Even Better: Hybrid Hashing
• Idea: hybrid! … keep 1st partition in memory

during phase 1!

– Output its stuff

at the end of

Phase 1.

1

B main memory buffers DiskDisk

Original

Relation OUTPUT

3

INPUT

2

hp 100

Partitions

2

3

100

. . .
hr

100-buffer hashtable

1 100

CMU SCS

15-415 Faloutsos 88

Even Better: Hybrid Hashing
• What if B=300? (and N=10,000, again)

• i.e., 200 extra buffers?

CMU SCS

15-415 Faloutsos 89

Even Better: Hybrid Hashing
• What if B=300? (and N=10,000, again)

• i.e., 200 extra buffers?

• A: keep the first 2 partitions in main memory

CMU SCS

15-415 Faloutsos 90

Even Better: Hybrid Hashing
• What if B=150? (and N=10,000, again)

• i.e., 50 extra buffers?

Faloutsos 15-415

16

CMU SCS

15-415 Faloutsos 91

Even Better: Hybrid Hashing
• What if B=150? (and N=10,000, again)

• i.e., 50 extra buffers?

• A: keep half of the first bucket in memory

CMU SCS

15-415 Faloutsos 92

Hybrid hashing

• can be used together with the

summarization idea

CMU SCS

15-415 Faloutsos 93
Source: G. Graefe. ACM
Computing Surveys, 25(2).

Hashing vs. Sorting revisited

Notes: (1) based on analytical (not empirical) evaluation
(2) numbers for sort do not reflect heapsort optimization
(3) assumes even distribution of hash buckets

CMU SCS

15-415 Faloutsos 94

So, hashing‟s better … right?

• Any caveats?

CMU SCS

15-415 Faloutsos 95

So, hashing‟s better … right?

• Any caveats?

• A1: sorting is better on non-uniform data

• A2: ... and when sorted output is required

later.

Hashing vs. sorting:

• Commercial systems use either or both

CMU SCS

15-415 Faloutsos 96

Summary

• Query processing architecture:

– Query optimizer translates SQL to a query plan

= graph of iterators

– Query executor “interprets” the plan

• Hashing is a useful alternative to sorting

– Both are valuable techniques for a DBMS

