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Carnegie Mellon Univ.

Dept. of Computer Science

15-415 - Database Applications

Lecture 11: external sorting and 

query evaluation

(R&G ch. 13 and 14)
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Why Sort?
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Why Sort?

• select ... order by

– e.g., find students in increasing gpa order

• bulk loading B+ tree index.

• duplicate elimination (select distinct)

• select ... group by

• Sort-merge join algorithm involves sorting.
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Outline

• two-way merge sort

• external merge sort

• fine-tunings

• B+ trees for sorting
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2-Way Sort: Requires 3 Buffers

• Pass 0: Read a page, sort it, write it.

– only one buffer page is used

• Pass 1, 2, 3, …, etc.: requires 3 buffer pages

– merge pairs of runs into runs twice as long

– three buffer pages used.

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk
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Two-Way External Merge Sort

• Each pass we read + 

write each page in file.

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8
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Two-Way External Merge Sort

• Each pass we read + 

write each page in file.

Input file

1-page runs
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Two-Way External Merge Sort

• Each pass we read + 

write each page in file.
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Two-Way External Merge Sort

• Each pass we read + 

write each page in file.

Input file

1-page runs
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4-page runs

8-page runs
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Two-Way External Merge Sort

• Each pass we read + 

write each page in file.

• N pages in the file =>

• So total cost is:

• Idea: Divide and 

conquer: sort subfiles 

and merge

  log2 1N

  2 12N Nlog 

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8
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Outline

• two-way merge sort

• external merge sort

• fine-tunings

• B+ trees for sorting
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External merge sort

B > 3 buffers

• Q1: how to sort?

• Q2: cost?
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General External Merge Sort

B Main memory buffers
DiskDisk

. . .. . .

B>3 buffer pages.  How to sort a file with N pages?

. . .
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General External Merge Sort

– Pass 0: use B buffer pages. Produce              sorted runs 

of B pages each.

– Pass 1, 2, …,  etc.: merge B-1 runs. 

 N B/

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

. . . . . .. . .
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Sorting

– create sorted runs of size B (how many?)

– merge  them (how?)

B

... ...
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Sorting

– create sorted runs of size B

– merge first B-1 runs into a sorted run of

(B-1) *B, ...

B

... ...
…..
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Sorting

– How many steps we need to do? 

„i‟, where   B*(B-1)^i > N 

– How many reads/writes per step? N+N

B

... ...
…..
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Cost of External Merge Sort

• Number of passes:

• Cost = 2N * (# of passes)

  1 1 log /B N B
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Cost of External Merge Sort

• E.g., with 5 buffer pages, to sort 108 page 

file:

– Pass 0:                   = 22 sorted runs of 5 pages 

each (last run is only 3 pages) 

– Pass 1:                 = 6 sorted runs of 20 pages 

each (last run is only 8 pages)

– Pass 2:  2 sorted runs, 80 pages and 28 pages

– Pass 3:  Sorted file of 108 pages

 108 5/

 22 4/

Formula check: ┌log4 22┐= 3 … + 1  4 passes √
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Number of Passes of External 

Sort

          N B=3 B=5 B=9 B=17 B=129 B=257 

100 7 4 3 2 1 1 

1,000 10 5 4 3 2 2 

10,000 13 7 5 4 2 2 

100,000 17 9 6 5 3 3 

1,000,000 20 10 7 5 3 3 

10,000,000 23 12 8 6 4 3 

100,000,000 26 14 9 7 4 4 

1,000,000,000 30 15 10 8 5 4 
 

 

( I/O cost is 2N times number of passes)
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Outline

• two-way merge sort

• external merge sort

• fine-tunings

• B+ trees for sorting
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Outline

• two-way merge sort

• external merge sort

• fine-tunings

– which internal sort for Phase 0?

– blocked I/O

• B+ trees for sorting
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• Quicksort is a fast way to sort in memory.

• But: we get B buffers, and produce 1 run of length 
B.

• Can we produce longer runs than that?

Internal Sort Algorithm
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• Quicksort is a fast way to sort in memory.

• But: we get B buffers, and produce 1 run of length 
B.

• Can we produce longer runs than that?

Internal Sort Algorithm

B=3 B=3

Heapsort:

• Pick smallest

• Output

• Read from next

buffer
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• Quicksort is a fast way to sort in memory.

• But: we get B buffers, and produce 1 run of length 
B.

• Can we produce longer runs than that?

• Alternative: “tournament sort” (a.k.a. “heapsort”, 
“replacement selection”)

• Produces runs of length ~ 2*B 

• Clever, but not implemented, for subtle reasons: 

tricky memory management on variable length 

records

Internal Sort Algorithm
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Reminder: Heapsort

10

14

17

11

15 18 16

pick smallest, write to output buffer:

details
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Heapsort:

...

14

17

11

15 18 16

10

pick smallest, write to output buffer:

details
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Heapsort:

22

14

17

11

15 18 16

get next key; put at top and ‘sink’ it

details
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Heapsort:

11

14

17

22

15 18 16

get next key; put at top and ‘sink’ it

details
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Heapsort:

11

14

17

16

15 18 22

get next key; put at top and ‘sink’ it

details
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Heapsort:

11

14

17

16

15 18 22

When done, pick top (= smallest)
and output it, if ‘legal’ (ie., >=10 in 
our example

This way, we can keep on reading
new key values (beyond the B 
ones of quicksort)

details
CMU SCS
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Outline

• two-way merge sort

• external merge sort

• fine-tunings

– which internal sort for Phase 0?

– blocked I/O

• B+ trees for sorting
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Blocked I/O & double-buffering

• So far, we assumed random disk access

• Cost changes, if we consider that runs are 

written (and read) sequentially

• What could we do to exploit it?

CMU SCS

Faloutsos 15-415 34

Blocked I/O & double-buffering

• So far, we assumed random disk access

• Cost changes, if we consider that runs are 

written (and read) sequentially

• What could we do to exploit it?

• A1: Blocked I/O (exchange a few r.d.a for 

several sequential ones)

• A2: double-buffering

CMU SCS
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Double Buffering

• To reduce wait time for I/O request to 

complete, can prefetch into `shadow block‟. 

– Potentially, more passes; in practice, most files 

still sorted in 2-3 passes.

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge
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Outline

• two-way merge sort

• external merge sort

• fine-tunings

• B+ trees for sorting
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Using B+ Trees for Sorting

• Scenario: Table to be sorted has B+ tree index on 

sorting column(s).

• Idea: Can retrieve records in order by traversing 

leaf pages.

• Is this a good idea?

• Cases to consider:

– B+ tree is clustered

– B+ tree is not clustered
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Using B+ Trees for Sorting

• Scenario: Table to be sorted has B+ tree index on 

sorting column(s).

• Idea: Can retrieve records in order by traversing 

leaf pages.

• Is this a good idea?

• Cases to consider:

– B+ tree is clustered Good idea!

– B+ tree is not clustered Could be a very bad idea!
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Clustered B+ Tree Used for 

Sorting

• Cost: root to the left-

most leaf, then retrieve 

all leaf pages 

(Alternative 1)

Always better than external sorting!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")
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Unclustered B+ Tree Used for 

Sorting

• Alternative (2) for data entries; each data 

entry contains rid of a data record.  In 

general, one I/O per data record!

(Directs search)

Data Records

Index

Data Entries

("Sequence set")
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External Sorting vs. Unclustered 

Index

p: # of records per page
B=1,000 and block size=32 for sorting
p=100 is the more realistic value.

N Sorting p=1 p=10 p=100 

100 200 100 1,000 10,000 

1,000 2,000 1,000 10,000 100,000 

10,000 40,000 10,000 100,000 1,000,000 

100,000 600,000 100,000 1,000,000 10,000,000 

1,000,000 8,000,000 1,000,000 10,000,000 100,000,000 

10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000 
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Summary

• External sorting is important

• External merge sort minimizes disk I/O cost:

– Pass 0: Produces sorted runs of size B (# buffer 

pages). 

– Later passes: merge runs.

• Clustered B+ tree is good for sorting; unclustered 

tree is usually very bad.
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Outline

• (12.1) Catalog

• (12.2) Intro to Operator Evaluation

• (12.3) Algo‟s for Relational Operations

• (12.6) Typical Q-optimizer

• (14.3.2) Hashing
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Cost-based Query Sub-System

Query Parser

Query Optimizer

Plan 

Generator

Plan Cost 

Estimator

Query Plan Evaluator

Catalog Manager

Schema Statistics

Select *

From Blah B

Where B.blah = blah
Queries

CMU SCS
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Schema

• What would you store?

• How?
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Schema

• What would you store?

• A: info about tables, attributes, indices, 

users

• How?

• A: in tables! eg.,

– Attribute_Cat (attr_name: string, rel_name: 

string; type: string; position: integer)
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Statistics

• Why do we need them?

• What would you store?
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Statistics

• Why do we need them?

• A: To estimate cost of query plans

• What would you store?

– NTuples(R): # records for table R

– NPages(R): # pages for R

– NKeys(I): # distinct key values for index I

– INPages(I): # pages for index I

– IHeight(I): # levels for I

– ILow(I), IHigh(I): range of values for I

– ...
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Outline

• (12.1) Catalog

• (12.2) Intro to Operator Evaluation

• (12.3) Algo‟s for Relational Operations

• (12.6) Typical Q-optimizer

• (14.3.2) Hashing
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Operator evaluation

3 methods we‟ll see often:
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Operator evaluation

3 methods we‟ll see often:

• indexing

• iteration (= seq. scanning)

• partitioning (sorting and hashing)

CMU SCS

15-415 Faloutsos 52

``Access Path‟‟

• Eg., index (tree, or hash), or scanning

• Selectivity of an access path:

– % of pages we retrieve

• eg., selectivity of a hash index, on range 

query: 100% (no reduction!)
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Outline

• (12.1) Catalog

• (12.2) Intro to Operator Evaluation

• (12.3) Algo‟s for Relational Operations

• (12.6) Typical Q-optimizer

• (14.3.2) Hashing
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Algorithms

• selection:

• projection

• join

• group by

• order by
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Algorithms

• selection: scan; index

• projection (dup. elim.):

• join

• group by

• order by
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Algorithms

• selection: scan; index

• projection (dup. elim.): hashing; sorting

• join

• group by

• order by
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Algorithms

• selection: scan; index

• projection (dup. elim.): hashing; sorting

• join: many ways (loops, sort-merge, etc)

• group by

• order by
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Algorithms

• selection: scan; index

• projection (dup. elim.): hashing; sorting

• join: many ways (loops, sort-merge, etc)

• group by: hashing; sorting

• order by: sorting
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Iterator Interface

SELECT DISTINCT name, gpa 

FROM Students

HeapScan

Sort

Distinct

name, gpa

name, gpa

name, gpa

Optimizer

CMU SCS
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iterator

Iterators
• Relational operators: subclasses of iterator:

class iterator {
void init();
tuple next();
void close();
iterator &inputs[];

// additional state goes here
}

• iterators can be cascaded
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Outline

• (12.1) Catalog

• (12.2) Intro to Operator Evaluation

• (12.3) Algo‟s for Relational Operations

• (12.6) Typical Q-optimizer

• (14.3.2) Hashing
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Q-opt steps

• bring query in internal form (eg., parse tree)

• … into „canonical form‟ (syntactic q-opt)

• generate alt. plans

• estimate cost; pick best
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Q-opt - example

select name

from STUDENT, TAKES

where c-id=‘415’ and

STUDENT.ssn=TAKES.ssn

STUDENT TAKES



s

p
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Q-opt - example

STUDENT TAKES



s

p

STUDENT TAKES



s

p Canonical form
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Q-opt - example

STUDENT TAKES



s

p

Index; seq scan

Hash join; 

merge join; 

nested loops;
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Outline

• (12.1) Catalog

• (12.2) Intro to Operator Evaluation

• (12.3) Algo‟s for Relational Operations

• (12.6) Typical Q-optimizer

• (14.3.2) Hashing
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Grouping; Duplicate Elimination

select distinct ssn

from TAKES

• (Q1: what does it do, in English?)

• Q2: how to execute it?
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An Alternative to Sorting: 

Hashing!

• Idea:

– maybe we don‟t need the order of the sorted data

– e.g.: forming groups in GROUP BY

– e.g.: removing duplicates in DISTINCT

• Hashing does this!

– And may be cheaper than sorting!  (why?)

– But what if table doesn‟t fit in memory??
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General Idea

• Two phases:

– Phase1: Partition: use a hash function hp to split 

tuples into partitions on disk.

• We know that all matches live in the same partition.

• Partitions are “spilled” to disk via output buffers

CMU SCS
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Two Phases

• Partition:

B main memory buffers DiskDisk

Original 

Relation OUTPUT

2
INPUT

1

hash
function

hp
B-1

Partitions

1

2

B-1

. . . . . . . . .
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General Idea

• Two phases:

– Phase 2: ReHash: for each partition on disk, 

read it into memory and build a main-memory 

hash table based on a hash function hr

• Then go through each bucket of this hash table to 

bring together matching tuples
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Two Phases

• Rehash:

Partitions
Hash table for partition

Ri (ki <= B  pages)

B main memory buffersDisk

hash

fn
hr

1

B-1

B

Ri
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Analysis

• How big of a table can we hash using this 
approach?

– B-1 “spill partitions” in Phase 1

– Each should be no more than B blocks big
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Analysis

• How big of a table can we hash using this 
approach?

– B-1 “spill partitions” in Phase 1

– Each should be no more than B blocks big

– Answer: B(B-1).

• ie., a table of N blocks needs about sqrt(N) buffers

– What assumption do we make?
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Analysis

• How big of a table can we hash using this 
approach?

– B-1 “spill partitions” in Phase 1

– Each should be no more than B blocks big

– Answer: B(B-1).

• ie., a table of N blocks needs about sqrt(N) buffers

– Note: assumes hash function distributes records evenly!

• use a „fudge factor‟ f >1 for that: we need

B ~ sqrt( f * N)
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Analysis

• Have a bigger table?  Recursive 
partitioning!

– In the ReHash phase, if a partition b is bigger 
than B, then recurse:

– pretend that b is a table we need to hash, run the 
Partitioning phase on b, and then the ReHash 
phase on each of its (sub)partitions

CMU SCS
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Real story

• Partition + Rehash

• Performance is very slow!

• What could have gone wrong?

break
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Real story

• Partition + Rehash

• Performance is very slow!

• What could have gone wrong?

• Hint: some buckets are empty; some others 

are way over-full.

break
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Hashing vs. Sorting

• Which one needs more buffers?
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Hashing vs. Sorting

• Recall: can hash a table of size N blocks 

in sqrt(N) space

• How big of a table can we sort in 2 passes?

– Get N/B sorted runs after Pass 0

– Can merge all runs in Pass 1 if N/B ≤ B-1

• Thus, we (roughly) require: N ≤ B2

• We can sort a table of size N blocks in about space 

sqrt(N)

– Same as hashing!
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Hashing vs. Sorting

• Choice of sorting vs. hashing is subtle and 
depends on optimizations done in each case …
– Already discussed some optimizations for sorting:
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Hashing vs. Sorting

• Choice of sorting vs. hashing is subtle and 
depends on optimizations done in each case …
– Already discussed some optimizations for sorting:

• Heapsort in Pass 0 for longer runs

• Chunk I/O into large blocks to amortize seek+RD costs

• Double-buffering to overlap CPU and I/O

– Another optimization when using sorting for 
aggregation:
• “Early aggregation” of records in sorted runs

– We will discuss some optimizations for hashing next…
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Hashing: We Can Do Better!

• Combine the summarization into the hashing 
process - How?

HashAgg
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Hashing: We Can Do Better!

• Combine the summarization into the hashing 
process - How?

– During the ReHash phase, don‟t store tuples, store pairs 
of the form <GroupVals, RunningVals>

– When we want to insert a new tuple into the hash table

• If we find a matching GroupVals, just update the RunningVals 
appropriately

• Else insert a new <GroupVals, RunningVals> pair

HashAgg
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Hashing: We Can Do Better!

• Combine the summarization into the hashing 
process 

• What‟s the benefit?

– Q: How many pairs will we have to handle?

– A: Number of distinct values of GroupVals columns
• Not the number of tuples!!

– Also probably “narrower” than the tuples

HashAgg
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Even Better: Hybrid Hashing
• What if  B > sqrt(N)?

• e.g., N=10,000,  B=200

• B=100 (actually, 101) would be enough for 2 

passes

• How could we use the extra 100 buffers?

B main memory buffers DiskDisk

Original 

Relation OUTPUT

2

INPUT

1

hp 100

Partitions

1

2

100

. . .

101 200
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Even Better: Hybrid Hashing
• Idea: hybrid! … keep 1st partition in memory 

during phase 1!

– Output its stuff 

at the end of 

Phase 1.

1

B main memory buffers DiskDisk

Original 

Relation OUTPUT

3

INPUT

2

hp 100

Partitions

2

3

100

. . .
hr

100-buffer hashtable

1 100
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Even Better: Hybrid Hashing
• What if  B=300? (and N=10,000, again)

• i.e., 200 extra buffers?

CMU SCS

15-415 Faloutsos 89

Even Better: Hybrid Hashing
• What if  B=300? (and N=10,000, again)

• i.e., 200 extra buffers?

• A: keep the first 2 partitions in main memory
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Even Better: Hybrid Hashing
• What if  B=150? (and N=10,000, again)

• i.e., 50 extra buffers?
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Even Better: Hybrid Hashing
• What if  B=150? (and N=10,000, again)

• i.e., 50 extra buffers?

• A: keep half of the first bucket in memory
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Hybrid hashing

• can be used together with the 

summarization idea
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Source: G. Graefe. ACM 
Computing Surveys, 25(2).

Hashing vs. Sorting revisited

Notes: (1) based on analytical (not empirical) evaluation 
(2) numbers for sort do not reflect heapsort optimization
(3) assumes even distribution of hash buckets
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So, hashing‟s better … right?

• Any caveats?

CMU SCS

15-415 Faloutsos 95

So, hashing‟s better … right?

• Any caveats?

• A1: sorting is better on non-uniform data

• A2: ... and when sorted output is required 

later.

Hashing vs. sorting:

• Commercial systems use either or both
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Summary

• Query processing architecture:

– Query optimizer translates SQL to a query plan 

= graph of iterators

– Query executor “interprets” the plan

• Hashing is a useful alternative to sorting

– Both are valuable techniques for a DBMS


