Faloutsos

. CMUSCS

Carnegie Mellon Univ.
Dept. of Computer Science
15-415 - Database Applications

Lecture 11: external sorting and
query evaluation

(R&G ch. 13 and 14)

Faloutsos 15-415 1

. CMUSCS
Why Sort?

* select ... order by
- e.g., find students in increasing gpa order

* bulk loading B+ tree index.
* duplicate elimination (select distinct)
* select ... group by

Faloutsos 15-415

* Sort-merge join algorithm involves sorting.

CMUSCS

2-Way Sort: Requires 3 Buffers

» Pass 0: Read a page, sort it, write it.
- only one buffer page is used

* Pass 1, 2,3, ..., etc.: requires 3 buffer pages
— merge pairs of runs into runs twice as long
— three buffer pages used.

INPUT 1
—]
 E—
 —1 { INPUT 2
Disk Main memory buffers Disk

Faloutsos 15415 5

. Why Sort?

Faloutsos 15415 2

. CMUSCS
Outline

=« two-way merge sort
« external merge sort

* fine-tunings

* B+ trees for sorting

Faloutsos. 15415 4

CMUSCS

Two-Way External Merge Sort

54 58 3 7 53 5 e
v— PASS 0

» Each pass we read + e e
4 28] (o [(s8] [15] (2] B t-ageruns

write each page in file.

Faloutsos

15-415

Faloutsos

CMUSCS

Two-Way External Merge Sort

54 5 0 9 69 59 2 e
~— PASS 0

e e e e e
(34 [26] [9] [7.d] [56] [13] [2] I@ 1-pageruns

PASS 1
E 2-pageruns

» Each pass we read +
write each page in file.

Faloutsos

CMUSCS

Two-Way External Merge Sort

54 59 3 0 5 e
PASS 0

v v v v a2 -
(13] (2] Il 1-pageruns

PASS 1
E Zpageruns

PASS 2
%/Awm
ls.g] Le]

PASS 3

» Each pass we read +
write each page in file.

EEEY

8-page runsj

=
3

Faloutsos 15-415

. CMUSCS

Outline

* two-way merge sort
= . external merge sort

* fine-tunings

* B+ trees for sorting

Faloutsos 15415 11

CMUSCS

Two-Way External Merge Sort

Fach a+ @@@_Inputfils
» Each pass we rea T T T T 1 passo

. . 4 1,3] 1)
write each page in file. (2] B tpageruns

PASS 1
E Zrpageruns

PASS 2
1.2 .
-page runs
[s.9] Le]

EER]
g

Faloutsos

CMUSCS

Two-Way External Merge Sort

54 9 3 0 5 e
PASS 0

v v v v a2 -
(13 (2] Il 1-pageruns

o [[
4,7

3 2-page runs
E

PASS 2
%/4wm
Le]

PASS 3

» Each pass we read +
write each page in file.

* N pages in the file =>
=[log, N]+1

* So total cost is:
2N ([log, N]+1)

EEEEY)

* Idea: Divide and
congquer: sort subfiles

and merge
Faloutsos. 15415

8-page runs

. CMUSCS

External merge sort

B > 3 buffers
* QI: how to sort?
* Q2: cost?

Faloutsos 15415 12

15-415

Faloutsos

. CMUSCS

General External Merge Sort

B>3 buffer pages. How to sort a file with N pages?

<
| E—
| — | E—]
| — | E—
Disk Disk
Faloutsos 15-415 13

. CMUSCS
Sorting

— create sorted runs of size B (how many?)
—merge them (how?)

S5 L
L1 [

miliin

Faloutsos 15-415 15

. CMUSCS
Sorting

— How many steps we need to do?
‘1I’, where B*(B-1)"i>N
— How many reads/writes per step? N+N

S5 L
L1 [

milin

Faloutsos 15415 17

. CMUSCS
General External Merge Sort

of B pages each.

Pass 1, 2, ..., etc.: merge B-/ runs.

:},7*_{ INPUT 2
/

Pass 0: use B buffer pages. Produce [N/ B] sorted runs

Disk B Main memo: Disk
Faloutsos 15415 14
. CMUSCS
Sorting
— create sorted runs of size B
— merge first B-1 runs into a sorted run of
(B-1) *B, ...
e
Faloutsos 15415 16

. CMUSCS
Cost of External Merge Sort

+ Number of passes: 1+][log, [N/B]]
* Cost=2N * (# of passes)

Faloutsos 15415 18

15-415

Faloutsos

. CMUSCS
Cost of External Merge Sort

» E.g., with 5 buffer pages, to sort 108 page

file:

~ Pass 0: [108/57=22 sorted runs of 5 pages
each (last run is only 3 pages)

- Pass 1: [22/4] =6 sorted runs of 20 pages
each (last run is only 8 pages)

- Pass 2: 2 sorted runs, 80 pages and 28 pages

- Pass 3: Sorted file of 108 pages

Formula check: Mog, 221=3 ... +1 > 4 passes

Faloutsos 15-415 19

. CMUSCS
Outline

* two-way merge sort

* external merge sort
= + fine-tunings

* B+ trees for sorting

Faloutsos 15-415 21

. CMUSCS
Internal Sort Algorithm

* Quicksort is a fast way to sort in memory.

» But: we get B buffers, and produce 1 run of length
B.

» Can we produce longer runs than that?

Faloutsos 15415 23

B "™ Number of Passes of External

Sort
(I/O cost is 2N times number of passes)
N B=3 |B=5 |B=9 |B=17 |B=129|B=257

100 7 4 3 2 1 1
1,000 10 |5 4 3 2 2
10,000 13 |7 5 4 2 2
100,000 17 |9 6 5 3 3
1,000,000 20 |10 7 5 3 3
10,000,000 23 |12 8 6 4 3
100,000,000 | 26 | 14 9 7 4 4
1,000,000,000| 30 | 15 10 8 5 4
Faloutsos 15415 20

. CMUSCS
Outline

* two-way merge sort
« external merge sort
* fine-tunings
™ _ which internal sort for Phase 0?
— blocked I/0

* B+ trees for sorting

m
3

Faloutsos. 15415

. CMUSCS
Internal Sort Algorithm

* Quicksort is a fast way to sort in memory.

» But: we get B buffers, and produce 1 run of length
B.

» Can we produce longer runs than that?

Heapsort:
B=3 B=3 * Pick smallest
* Output
* Read from next

buffer

Faloutsos 15415 24

15-415

Faloutsos

. CMUSCS
Internal Sort Algorithm

* Quicksort is a fast way to sort in memory.

+ But: we get B buffers, and produce 1 run of length
B.

+ Can we produce longer runs than that?

+ Alternative: “tournament sort” (a.k.a. “heapsort”,
“replacement selection”)

* Produces runs of length ~ 2*B

* Clever, but not implemented, for subtle reasons:
tricky memory management on variable length
records

Faloutsos 15-415 25

. CMUSCS
Heapsort:

pick smallest, write to output buffer:

Faloutsos 15-415 27

. CMUSCS
Heapsort:

get next key; put at top and “sink” it

Faloutsos 15415 29

. CMUSCS

Faloutsos

T

Reminder: Heapsort

pick smallest, write to output buffer:

15415 26

. CMUSCS

Faloutsos.

Heapsort:

get next key; put at top and “sink” it

15415 28

. CMUSCS

Faloutsos

Heapsort:

get next key; put at top and “sink’ it

15415 30

15-415

Faloutsos

. CMUSCS

Faloutsos

Heapsort:

our example

15-415

T

When done, pick top (= smallest)
and output it, if ‘legal” (ie., >=10 in

This way, we can keep on reading
new key values (beyond the B
ones of quicksort)

-

CMUSCS

Outline

¢ two-way merge sort

* external merge sort

* fine-tunings
— which internal sort for Phase 0?
— blocked I/O

* B+ trees for sorting

Faloutsos 15415 32

. CMUSCS

Faloutsos

* What could we do to exploit it?

15-415

Blocked I/0 & double-buffering

* So far, we assumed random disk access

» Cost changes, if we consider that runs are
written (and read) sequentially

CMUSCS

Blocked I/0 & double-buffering

* So far, we assumed random disk access

 Cost changes, if we consider that runs are
written (and read) sequentially

* What could we do to exploit it?

* Al: Blocked I/O (exchange a few r.d.a for
several sequential ones)

* A2: double-buffering

Faloutsos. 15415 34

. CMUSCS

INPUT 1

- [eorr]

Faloutsos

—
eyt | Br
e e b
\ block size
veurc |

B main memory buffers, k-way merge

Double Buffering

* To reduce wait time for I/O request to
complete, can prefetch into “shadow block’.

- Potentially, more passes; in practice, most files
still sorted in 2-3 passes.

-

CMUSCS

Outline

* two-way merge sort
* external merge sort
* fine-tunings

* B+ trees for sorting

Faloutsos 15415 36

15-415

Faloutsos

. CMUSCS

Using B+ Trees for Sorting

Scenario: Table to be sorted has B+ tree index on
sorting column(s).

Idea: Can retrieve records in order by traversing
leaf pages.

Is this a good idea?

Cases to consider:
- B+tree is clustered
- B+ tree is not clustered

Faloutsos 15-415 37

. CMUSCS

Clustered B+ Tree Used for
Sorting

Index
(Directs search)

Data Entries
("Sequence set")

AN,
DOo00

Data Records

Cost: root to the left-
most leaf, then retrieve
all leaf pages
(Alternative 1)

Always better than external sorting!

Faloutsos 15-415 39

B " External Sorting vs. Unclustered

Index
N Sorting p=1 p=10 p=100
100 200 100 1,000 10,000
1,000 2,000 1,000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 {100,000 |1,000,000 |10,000,000

1,000,000 {8,000,000 (1,000,000 |10,000,000 |100,000,000
10,000,000 {80,000,000 (10,000,000 | 100,000,000 |1,000,000,000

p: # of records per page
B=1,000 and block size=32 for sorting
Faloutsos p=100 is the more realistic value. *'

Using B+ Trees for Sorting

Scenario: Table to be sorted has B+ tree index on
sorting column(s).

.

Idea: Can retrieve records in order by traversing
leaf pages.

.

Is this a good idea?

.

Cases to consider:
- B+ tree is clustered Good idea!

— B+ tree is not clustered ~ Could be a very bad idea!

Faloutsos 15415 38

B "™ Unclustered B+ Tree Used for
Sorting
* Alternative (2) for data entries; each data

entry contains rid of a data record. In
general, one /O per data record!

Index
(Directs search)

Data Entries

% ("Sequence set")
I
Faloutsos Data Records 40
. CMUSCS
Summary

 External sorting is important
 External merge sort minimizes disk I/O cost:
— Pass 0: Produces sorted runs of size B (# buffer
pages).
— Later passes: merge runs.
« Clustered B+ tree is good for sorting; unclustered
tree is usually very bad.

Faloutsos 15415 42

15-415

Faloutsos

. CMUSCS
Outline

(12.1) Catalog

* (12.2) Intro to Operator Evaluation
(12.3) Algo’s for Relational Operations
(12.6) Typical Q-optimizer

(14.3.2) Hashing

15415

Faloutsos 43

. CMUSCS
Schema

* What would you store?

 How?

15415 Faloutsos 45

B ™™ Cost-based Query Sub-System

Iselect *
Queries | From Blah B
Where B.blah = blah

Query Optil'nizer \

Plan Plan Cost

Catalog Manager
Generator| | Estimator ‘
‘ Query Plan Evaluator S
15-415 Faloutsos. 44

. CMUSCS
Schema

* What would you store?

« A: info about tables, attributes, indices,
users

* How?
* A:intables! eg.,

— Attribute_Cat (attr_name: string, rel name:
string; type: string; position: integer)

15-415 Faloutsos. 46

. CMUSCS

Statistics
* Why do we need them?

* What would you store?

15415 Faloutsos 47

. CMUSCS

Statistics

* Why do we need them?
* A: To estimate cost of query plans
* What would you store?

— NTuples(R): # records for table R

— NPages(R): # pages for R

— NKeys(I): # distinct key values for index I

— INPages(I): # pages for index I

— IHeight(I): # levels for I

— ILow(I), THigh(I): range of values for I

15415 Faloutsos 48

15-415

Faloutsos

. CMUSCS
Outline

* (12.1) Catalog
m) - (12.2) Intro to Operator Evaluation
* (12.3) Algo’s for Relational Operations
* (12.6) Typical Q-optimizer
* (14.3.2) Hashing

15415 Faloutsos

. CMUSCS

Operator evaluation

3 methods we’ll see often:

15415 Faloutsos 50

. CMUSCS

Operator evaluation

3 methods we’ll see often:

* indexing

* iteration (= seq. scanning)

* partitioning (sorting and hashing)

15415 Faloutsos

. CMUSCS

“*Access Path™’

* Eg., index (tree, or hash), or scanning
* Selectivity of an access path:
— % of pages we retrieve

* eg., selectivity of a hash index, on range
query: 100% (no reduction!)

15-415 Faloutsos. 52

. CMUSCS
Outline

* (12.1) Catalog
* (12.2) Intro to Operator Evaluation
= . (12.3) Algo’s for Relational Operations
* (12.6) Typical Q-optimizer
* (14.3.2) Hashing

15415 Faloutsos

CMUSCS

Algorithms

* selection:
* projection
* join

* group by
* order by

15415 Faloutsos 54

15-415

Faloutsos

. CMUSCS
Algorithms

* selection: scan; index
* projection (dup. elim.):
* join

 group by

* order by

15415 Faloutsos 55

. CMUSCS
Algorithms

« selection: scan; index

* projection (dup. elim.): hashing; sorting
* join: many ways (loops, sort-merge, etc)
* group by

* order by

15415 Faloutsos 57

. CMUSCS

Iterator Interface

SELECT DISTINCT name, gpa

FROM Students
name, gpa
Optimizer name, gpa
name, gpa
15415 Faloutsos s

. CMUSCS
Algorithms

* selection: scan; index

* projection (dup. elim.): hashing; sorting
* join

* group by

* order by

15415 Faloutsos 56

. CMUSCS
Algorithms

« selection: scan; index

* projection (dup. elim.): hashing; sorting
* join: many ways (loops, sort-merge, etc)
* group by: hashing; sorting

* order by: sorting

15-415 Faloutsos. 58

. CMUSCS
[terators

» Relational operators: subclasses of iterator:
class iterator {
void init();
tuple next();
void close();
iterator &inputs[];

Il additional state goes here

« iterators can be cascaded

15415 Faloutsos 60

15-415

10

Faloutsos

. CMUSCS
Outline

* (12.1) Catalog

* (12.2) Intro to Operator Evaluation

* (12.3) Algo’s for Relational Operations
=) - (12.6) Typical Q-optimizer

* (14.3.2) Hashing

15415 Faloutsos 61

. CMUSCS

Q-opt - example
n
|
select name c
from STUDENT, TAKES - |
where c-id=‘415" and >
STUDENT.ssn=TAKES.ssn / N
STUDENT TAKES
15415 Faloutsos 63

. CMUSCS
Q-opt - example

T
|
Hash join; _ ... ><

merge join; AN
nested loops; o > Index; seq scan
I

STUDENT TAKES

15415 Faloutsos 65

. CMUSCS
Q-opt steps

* bring query in internal form (eg., parse tree)
* ... into ‘canonical form’ (syntactic q-opt)

* generate alt. plans

* estimate cost; pick best

15415 Faloutsos 62

. CMUSCS

Q-opt - example
T Canonical form 7IT
|
c ><
| — ~
>< / S
SN I
STUDENT TAKES STUDENT TAKES
15-415 Faloutsos 64

. CMUSCS

Outline

* (12.1) Catalog
* (12.2) Intro to Operator Evaluation
* (12.3) Algo’s for Relational Operations
* (12.6) Typical Q-optimizer
m) - (14.3.2) Hashing

15415 Faloutsos 66

15-415

11

Faloutsos

. CMUSCS
Grouping; Duplicate Elimination

select distinct ssn
from TAKES

* (QI: what does it do, in English?)
* Q2: how to execute it?

15415

Faloutsos 67

General Idea

» Two phases:
— Phasel: Partition: use a hash function /, to split
tuples into partitions on disk.
* We know that all matches live in the same partition.
« Partitions are “spilled” to disk via output buffers

15415 Faloutsos 69

General Idea

* Two phases:

— Phase 2: ReHash: for each partition on disk,
read it into memory and build a main-memory
hash table based on a hash function /,

* Then go through each bucket of this hash table to
bring together matching tuples

15415 Faloutsos 71

. CMUSCS
An Alternative to Sorting:
Hashing!
* Idea:

— maybe we don’t need the order of the sorted data

— e.g.: forming groups in GROUP BY

— e.g.: removing duplicates in DISTINCT
 Hashing does this!

— And may be cheaper than sorting! (why?)

— But what if table doesn’t fit in memory??

15415 Faloutsos 68
. CMUSCS
Two Phases
* Partition:
Original
Relation ouTPUT Partitions

b |
0m |2

D B-1
—
Disk B main memory buffers Disk
15415 Faloutsos 70
. CMUSCS
Two Phases
* Rehash:
Partitions
Hash table for partition
[S—— -
hash R; (k;<= B pages)
DD fn D 1
h,
1
~ |DoO)

900 D B-1

[o |-

—
Disk B main memory buffers

15415 Faloutsos 72

15-415

12

Faloutsos

. CMUSCS
Analysis

* How big of a table can we hash using this
approach?

— B-1 “spill partitions™ in Phase 1
— Each should be no more than B blocks big

15415 Faloutsos 73

. CMUSCS
Analysis

» How big of a table can we hash using this
approach?
— B-1 “spill partitions” in Phase 1
— Each should be no more than B blocks big
— Answer: B(B-1).
« ie., a table of N blocks needs about sqrt(N) buffers
— Note: assumes hash function distributes records evenly!
« use a ‘fudge factor’ f>1 for that: we need
B ~ sqrt(f* N)

15415

Faloutsos 75

. CMUSCS
Analysis

* How big of a table can we hash using this
approach?
— B-1 “spill partitions” in Phase 1
— Each should be no more than B blocks big
— Answer: B(B-1).
« ie., a table of N blocks needs about sqrt(N) buffers
— What assumption do we make?

15415 Faloutsos 74

. CMUSCS
Analysis

» Have a bigger table? Recursive
partitioning!
— In the ReHash phase, if a partition b is bigger
than B, then recurse:
— pretend that b is a table we need to hash, run the

Partitioning phase on b, and then the ReHash
phase on each of its (sub)partitions

15-415 Faloutsos. 76

. CMUSCS
break

Real story

* Partition + Rehash
* Performance is very slow!

* What could have gone wrong?

15415 Faloutsos 77

. CMUSCS
break

Real story

e Partition + Rehash

* Performance is very slow!

What could have gone wrong?

* Hint: some buckets are empty; some others
are way over-full.

15415 Faloutsos 78

15-415

13

Faloutsos

. CMUSCS

Hashing vs. Sorting

¢ Which one needs more buffers?

15415 Faloutsos

. CMUSCS
Hashing vs. Sorting

» Choice of sorting vs. hashing is subtle and
depends on optimizations done in each case ...
— Already discussed some optimizations for sorting:

15415 Faloutsos

. CMUSCS

Hashing vs. Sorting

* Recall: can hash a table of size N blocks
in sqrt(N) space
» How big of a table can we sort in 2 passes?
— Get N/B sorted runs after Pass 0
— Can merge all runs in Pass 1 if N/B < B-1
* Thus, we (roughly) require: N < B2

« We can sort a table of size N blocks in about space
sqrt(N)

— Same as hashing!

15415 Faloutsos

. CMUSCS
Hashing: We Can Do Better/(2=

+ Combine the summarization into the hashing
process - How?

15415 Faloutsos

. CMUSCS
Hashing vs. Sorting

» Choice of sorting vs. hashing is subtle and
depends on optimizations done in each case ...

— Already discussed some optimizations for sorting:
« Heapsort in Pass 0 for longer runs
* Chunk I/O into large blocks to amortize seek+RD costs
* Double-buffering to overlap CPU and I/O

— Another optimization when using sorting for

aggregation:

¢ “Early aggregation” of records in sorted runs

— We will discuss some optimizations for hashing next...

15-415 Faloutsos.

. CMUSCS
Hashing: We Can Do Better (2=

+ Combine the summarization into the hashing
process - How?
— During the ReHash phase, don’t store tuples, store pairs
of the form <GroupVals, RunningVals>
— When we want to insert a new tuple into the hash table
« If we find a matching GroupVals, just update the RunningVals
appropriately
« Else insert a new <GroupVals, RunningVals> pair

15415 Faloutsos

15-415

14

Faloutsos

. CMUSCS
Hashing: We Can Do Better X

+ Combine the summarization into the hashing
process

* What’s the benefit?
— Q: How many pairs will we have to handle?

— A: Number of distinct values of GroupVals columns
* Not the number of tuples!!

— Also probably “narrower” than the tuples

15415 Faloutsos 85

. CMUSCS
Even Better: Hybrid Hashing

* Idea: hybrid! ... keep st partition in memory
during phase 1!

— Output its stuff
at the end of
Phase 1 Original _100-buffer hashtable
Relation | ; 100| OUTPUT Partitions
[S—— D D .
O |2
INPUT I NEE
— oo
100
Disk B main memory buffers Disk
15415 Faloutsos 87

. CMUSCS
Even Better: Hybrid Hashing

* What if B=300? (and N=10,000, again)
* i.e., 200 extra buffers?

+ A: keep the first 2 partitions in main memory

15415 Faloutsos 89

. CMUSCS
Even Better: Hybrid Hashing

* Whatif B> sqrt(N)?
+ e.g., N=10,000, B=200

* B=100 (actually, 101) would be enough for 2
passes

* How could we use t_hti extra 100 buffers?
riginal

Relation |;¢; 200 OUTPUT Partitions

og -0 g

O El—pm |

D INPUT B 0o |z

A 00 0
P el N 100
D — 100
15415
Disk B main memory buffers Disk

. CMUSCS

Even Better: Hybrid Hashing
* What if B=300? (and N=10,000, again)
* i.e., 200 extra buffers?

15-415 Faloutsos. 88

. CMUSCS
Even Better: Hybrid Hashing

* What if B=150? (and N=10,000, again)
¢ i.e., 50 extra buffers?

15-415 Faloutsos 90

15-415

15

Faloutsos

. CMUSCS
Even Better: Hybrid Hashing

* What if B=150? (and N=10,000, again)
* i.e., 50 extra buffers?
 A: keep half of the first bucket in memory

15415 Faloutsos 91

CMUSCS

Hashing vs. Sorting revisited

W ey R —— - ——
e
L] L
* L
i — ﬁ—..-u; - -
M o u &
Ll i3 wwimg waifenl ca W 1V LA e B -
M) -
% Sowimg wnlh uly g e g es
P w Himhing withs by ek hasumy "
o = Hlsshung weith iopheicd, b ™y
I |
| - 3 O30 W S I JINFOD S
Earuhidfy St uf Rerdes il Facni

Notes: (1) based on analytical (not empirical) evaluation
(2) numbers for sort do not reflect heapsort optimization
(3) assumes even distribution of hash buckets

Source: G. Graefe. ACM

15415 Faloutsos Computing Surveys, 25(2).

. CMUSCS
So, hashing’s better ... right?

* Any caveats?
» Al: sorting is better on non-uniform data

» A2: ... and when sorted output is required
later.

Hashing vs. sorting:

» Commercial systems use either or both

15415 Faloutsos 95

. CMUSCS
Hybrid hashing

* can be used together with the
summarization idea

15415 Faloutsos 92

. CMUSCS
So, hashing’s better ... right?

* Any caveats?

15-415 Faloutsos. 94

. CMUSCS

Summary

* Query processing architecture:

— Query optimizer translates SQL to a query plan
= graph of iterators

— Query executor “interprets” the plan
» Hashing is a useful alternative to sorting
— Both are valuable techniques for a DBMS

15-415 Faloutsos 96

15-415

16

