Faloutsos

. CMUSCS

Carnegie Mellon Univ.
Dept. of Computer Science
15-415 - Database Applications

Lecture#9: Indexing (R&G ch. 10)

. CMUSCS

Introduction

* How to support range searches?
* equality searches?

Faloutsos CMU SCS 15415

. CMUSCS

Range Searches

* “Find all students with gpa > 3.0’
* may be slow, even on sorted file
¢ Solution: Create an ‘index’ file.

1 .
/ ‘ ‘ ‘ ‘ \\ H Index File

\
PageN ‘ Data File

Faloutsos CMU SCS 15415 5

‘Page1 H Page 2 H Page3 ‘

CMU

. CMUSCS

Outline
* Motivation
* ISAM
* B-trees (not in book)
¢ B+ trees

¢ duplicates
« B+ trees in practice

Faloutsos CMU SCS 15-415

Range Searches
» “'Find all students with gpa > 3.0’
* may be slow, even on sorted file
* What to do?

‘Page1 H Page 2 H Page 3 ‘

PageN ‘ Data File

4

Faloutsos. CMU SCS 15-415

. CMUSCS

Range Searches

* More details:

« ifindex file is small, do binary search there
* Otherwise??

1 .
/ ‘ ‘ ‘ ‘ \\ H Index File

\
PageN ‘ Data File

Faloutsos CMU SCS 15-415 6

‘Page1 H Page 2 H Page 3 ‘

CMU - 15-415

SCS 15-415

Faloutsos

. CMUSCS

ISAM

* Repeat recursively!

Non-leaf
Pages

T A A e e A A

Pages

Faloutsos CMU SCS 15415 7

B ISAM

* Overflow pages, linked to the primary page

Non-leaf
Pages

Pages

P e e A

Overflow o
page Primary pages

Faloutsos CMU SCS 15415 9

. CMUSCS
ISAM

Details
+ format of an index page?
* how full would a newly created ISAM be?

Faloutsos CMU SCS 15415 11

CMU - 15-415

CMU SCS 15-415

B ISAM

¢ OK - what if there are insertions and
overflows?

Non-leaf
Pages

Pages

Faloutsos CMU SCS 15-415

P A e A e A

= Example ISAM Tree

* 2 entries per page

Root ~—a

4 ¥ v Y

‘10"15“ ‘20" 27" ‘33"37“ ‘40"45" ‘51"55“‘ ‘63“

a7

Faloutsos. CMU SCS 15-415

. CMUSCS
ISAM

Details
+ format of an index page?

* how full would a newly created ISAM be?
—~80-90% (not 100%)

Po | Kq|Py| K2of|P, e . Ko |Pm

T . |
Voo '

Faloutsos CMU SCS 15-415

Faloutsos

5 ISAM is a STATIC Structure

* that is, index pages don’t change

* File creation: Leaf (data) pages
allocated sequentially, sorted by search
key; then index pages allocated, then
overflow pgs.

Faloutsos CMU SCS 15415 13

CMU SCS 15-415

E ISAM is a STATIC Structure

* Search: Start at root; use key
comparisons to go to leaf.

* Cost=logN;
» F =# entries/pg (i.e., fanout),
* N =#leaf pgs

Faloutsos CMU SCS 15-415 14

El ISAM is a STATIC Structure

Insert: Find leaf that data entry belongs
to, and put it there. Overflow page if
necessary.

Delete: Find and remove from leaf; if
empty page, de-allocate.

Faloutsos CMU SCS 15415 15

. MUSCS EXample InSeI't 23*7 48*7 41*9

42%

Index m.l
b

Pages

|

Primary / \ P/ \¥ \
vt [l [z]] [#]] [#]%] [+ 1] o]
Pages \ \

¥ :
Pages

42*

Faloutsos CMU SCS 15-415 16

. CMUSCS
... then delete 42*, 51*, 97*

Root —a

=17
I
Pages
s N
20 33 51 63
Loy T TR

/TN 7

Leaf

‘10“‘15“‘J20" 27““33“37““40"‘45“‘ 55“63‘
Pages

v
Pages

>4 Note that 51* appears in index levels, but not in leaf!

Faloutsos CMU SCS 15415 17

. CMUSCS

ISAM ---- Issues?

¢ Pros
— 2777

* Cons
—277?

Faloutsos CMU SCS 15-415 18

CMU - 15-415

Faloutsos

. CMUSCS

Outline
e Motivation
* ISAM
* B-trees (not in book)
e B+ trees

* duplicates
* B+ trees in practice

Faloutsos CMU SCS 15415 19

. CMUSCS

B-trees

[Rudolf Bayer and McCreight, E. M.
Organization and Maintenance of Large
Ordered Indexes. Acta Informatica 1, 173-
189, 1972.]

i

Faloutsos CMU SCS 15415 21

B - tree properties:

 each node, in a B-tree of order d:
— Key order
— at most n=2d keys

— at least d keys (except root, which may have just 1 key)
— all leaves at the same level

— if number of pointers is &, then node has exactly k-1
keys

— (leaves are empty) pl pn

NN |

Faloutsos CMU SCS 15415 23

CMU SCS 15-415

. CMUSCS
B-trees

* the most successful family of index
schemes (B-trees, B*trees, B*-trees)

* Can be used for primary/secondary,
clustering/non-clustering index.

* balanced “n-way” search trees

Faloutsos CMU SCS 15-415 20

. CMUSCS
B-trees

Eg., B-tree of order d=1:

<6 IBIEN
6/<9 9

>

L | !7! I !wm I

Faloutsos. CMU SCS 15-415

m
3

. CMUSCS

Properties

» “block aware” nodes: each node -> disk
page

O(log (N)) for everything! (ins/del/search)

* typically, if d = 50 - 100, then 2 - 3 levels

* utilization >= 50%, guaranteed; on average
69%

Faloutsos CMU SCS 15-415 24

CMU - 15-415

Faloutsos

. CMUSCS

Queries

 Algo for exact match query? (eg., ssn=8?)

<6 o o |
6/<9 >0

Faloutsos

CMU SCS 15415

. CMUSCS

Queries

* Algo for exact match query? (eg., ssn=87?)

<6 He 49k
6/<9 <

Faloutsos CMU SCS 15415

9

. CMUSCS

Queries

* Algo for exact match query? (eg., ssn=87?)

Faloutsos CMU SCS 15415

CMU SCS 15-415

. CMUSCS
JAVA animation!

http://slady.net/java/bt/

strongly recommended!

Faloutsos CMU SCS 15-415 26

. CMUSCS
Queries

* Algo for exact match query? (eg., ssn=8?)

< de Ho |
>

>6 <9 9
! 1 !3 I I 7 I !13 I
Faloutsos. CMU SCS 15-415 28
. CMUSCS
Queries

* Algo for exact match query? (eg., ssn=8?)

H steps (= disk
accesses)

Faloutsos CMU SCS 15-415 30

CMU - 15-415

http://slady.net/java/bt/
http://slady.net/java/bt/

Faloutsos

. CMUSCS

Queries
+ what about range queries? (eg., 5<salary<§)

 Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

Faloutsos CMU SCS 15415 31

. CMUSCS

Queries
+ what about range queries? (eg., 5<salary<8)

 Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

« AHN
>6 /<9

Faloutsos CMU SCS 15415

. CMUSCS

Queries
» what about range queries? (eg., 5<salary<8)

 Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

<6 s o |
>9
>6 /<9

Faloutsos CMU SCS 15415 35

CMU SCS 15-415

. CMUSCS

Queries
+ what about range queries? (eg., 5<salary<8)
 Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)
<6 o 419 1
>6 /<9 >9
! 13 I I 7 | !13 I
Faloutsos CMU SCS 15-415 32

. CMUSCS

Queries
* what about range queries? (eg., S<salary<§)

* Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

<6 o 4o
>6 /<9 >9

Faloutsos. CMU SCS 15-415 34

. CMUSCS

B-trees: Insertion

* Insert in leaf; on overflow, push middle up
(recursively)
+ split: preserves B - tree properties

Faloutsos CMU SCS 15-415 36

CMU - 15-415

Faloutsos

B-trees

Easy case: Tree TO; insert ‘8’

>6

L !7“ I !w! I

Faloutsos CMU SCS 15415

. CMUSCS

B-trees

Hardest case: Tree TO; insert 2’

e 410 |
<9 >9

L) !7@ I !wm I

2

Faloutsos CMU SCS 15415

. CMUSCS

B-trees

Hardest case: Tree TO; insert ‘2’

/ [T

wH I

[] 7H I

CMU SCS 15415

CMU - 15-415

CMU SCS 15-415

B-trees

Tree TO; insert ‘8’

e 419 |
<9 >9
1!3! !7 8 !13!

Faloutsos CMU SCS 15-415 38

. CMUSCS

B-trees

Hardest case: Tree TO; insert 2’

push middle up

Faloutsos. CMU SCS 15-415 40

. CMUSCS

B-trees

Hardest case: Tree TO; insert 2’

Final state

Faloutsos CMU SCS 15-415 42

Faloutsos

B-trees: Insertion
(recursively — ‘propagate split’)
* split: preserves all B - tree properties (!!)
root overflows & splits

* Automatic, incremental re-organization
(contrast with ISAM!)

Faloutsos CMU SCS 15415

* Insert in leaf; on overflow, push middle up

* notice how it grows: height increases when

. CMUSCS
Overview

* B —trees

— Dfn, Search, insertion, deletion

Faloutsos CMU SCS 15415

. CMUSCS

B-trees — Deletion

Easiest case: Tree TO; delete ‘3’

< e 3o |
>9

1!3! >6!7<9|é,! 1] !nlé,! |

CMU - 15-415

CMU SCS 15-415

Pseudo-code

INSERTION OF KEY 'K’

find the correct leaf node 'L’;

if ('L’ overflows ¥
split 'L, and push middle key to parent node 'P’;
if P’ overflows){

repeat the split recursively; }

else{

add the key 'K’ in node 'L’;

/* maintaining the key order in 'L’ */ }

Faloutsos CMU SCS 15-415

. CMUSCS

Deletion
Rough outline of algo:
* Delete key;

* on underflow, may need to merge

In practice, some implementors just allow
underflows to happen...

Faloutsos. CMU SCS 15-415

. CMUSCS

B-trees — Deletion

Easiest case: Tree TO; delete ‘3’

<6 o 4o |
~ >6 9 >9

aaloa

Faloutsos CMU SCS 15-415

Faloutsos

. CMUSCS

B-trees — Deletion

* Casel: delete a key at a leaf — no underflow

» Case2: delete non-leaf key — no underflow

* Case3: delete leaf-key; underflow, and ‘rich
sibling’

 Cased: delete leaf-key; underflow, and ‘poor
sibling’

Faloutsos CMU SCS 15415 49

. CMUSCS

B-trees — Deletion

» Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

Delete &

Faloutsos CMU SCS 15415 51

<6 Iﬂin! promote, ie:
6/<9 9

. CMUSCS

B-trees — Deletion

+ Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

N Delete &

Faloutsos CMU SCS 15415 53

<6 349 promote, ie:

CMU - 15-415

CMU SCS 15-415

. CMUSCS

B-trees — Deletion

* Casel: delete a key at a leaf — no underflow
(delete 3 from TO)

< KR!
>9

>6 /<9
!1!3! |7| !13!

Faloutsos CMU SCS 15-415 50

. CMUSCS

B-trees — Deletion

» Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

Delete &

N
<6 I-!n! promote, ie:
>6 /<9 >9

Faloutsos. CMU SCS 15-415 52

. CMUSCS

B-trees — Deletion

» Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

FINALTREE
340 1
<9 >9

Faloutsos CMU SCS 15-415 54

Faloutsos

B-trees — Deletion

» Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

* Q: How to promote?

* A: pick the largest key from the left sub-tree
(or the smallest from the right sub-tree)

* Observation: every deletion eventually
becomes a deletion of a leaf key

Faloutsos CMU SCS 15415 55

. CMUSCS

B-trees — Deletion
» Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO)

Delete &
<6 Iﬂin! borrow, ie:
6/<9 9

Faloutsos CMU SCS 15415 57

. CMUSCS

B-trees — Deletion

* Case3: underflow & ‘rich sibling’

* ‘rich’ = can give a key, without
underflowing

* ‘borrowing’ a key: THROUGH the
PARENT!

Faloutsos CMU SCS 15415 59

CMU SCS 15-415

. CMUSCS

B-trees — Deletion

* Casel: delete a key at a leaf — no underflow
» Case2: delete non-leaf key — no underflow
* Case3: delete leaf-key; underflow, and ‘rich

sibling’

= « Case4: delete leaf-key; underflow, and ‘poor
sibling’

Faloutsos CMU SCS 15-415 56

B-trees — Deletion

* Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO)

Delete &

b ie:
Rich sibling <6 Iln! o orrow, ie
. >6 o

Faloutsos. CMU SCS 15-415 58

. CMUSCS

B-trees — Deletion

* Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO)

Delete &

b ie:
Rich sibling <6 llnl " 0rrow, ie
~. >6,/ <9

Faloutsos CMU SCS 15-415 60

CMU - 15-415

10

Faloutsos

. CMUSCS

B-trees — Deletion

* Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO)

Delete &
<6 lﬂlnl borrow, ie:
>6 /\<9 >9
! 1 |3 I | | I 13 |
Faloutsos CMU SCS 15415 61

. CMUSCS

B-trees — Deletion

» Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO)

FINALTREE Delete &

<3 I!n! borrow,
>3 /<9 >9

through the
parent

Faloutsos CMU SCS 15415 63

. CMUSCS

B-trees — Deletion

 Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

< e 4o
>6 /<9 >9

Faloutsos CMU SCS 15415 65

CMU - 15-415

CMU SCS 15-415

. CMUSCS

B-trees — Deletion

 Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO)

Delete &
<6 llnl borrow, ie:
>6 /\<9 >9
! 1 | I | 6 | !13 |
Faloutsos CMU SCS 15-415 62

. CMUSCS

B-trees — Deletion

* Casel: delete a key at a leaf — no underflow
» Case2: delete non-leaf key — no underflow
* Case3: delete leaf-key; underflow, and ‘rich

sibling’
* Case4: delete leaf-key; underflow, and “poor
sibling’
=
Faloutsos. CMU SCS 15-415 64

. CMUSCS

B-trees — Deletion

* Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

<6 e 419 1
<9 >9

Faloutsos CMU SCS 15-415 66

11

Faloutsos CMU SCS 15-415

. CMUSCS . CMUSCS

B-trees — Deletion B-trees — Deletion
* Case4: underflow & ‘poor sibling’ (eg., Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO) delete 13 from TO)

A: merge w/
‘poor’ sibling

* Merge, by pulling a key from the parent

+ exact reversal from insertion: ‘split and push
up’, vs. ‘merge and pull down’

1 |43
HH! e Je.

Faloutsos CMU SCS 15415 67 Faloutsos CMU SCS 15-415

. CMUSCS . CMUSCS

B-trees — Deletion B-trees — Deletion
» Case4: underflow & “poor sibling’ (eg., » Case4: underflow & “poor sibling’ (eg.,
delete 13 from TO) delete 13 from TO)

. FINAL TREE
< “poor siing «w ol I

L] u] L] u] L] o]
Faloutsos CMU SCS 15415 69 Faloutsos. CMU SCS 15-415 70

. CMUSCS . CMUSCS

B-trees — Deletion B-tree deletion - pseudocode
* Case4: underflow & ‘poor sibling’ DELETION OF KEY 'K
locate key 'K’, in node 'N’
+ -> ‘pull key from parent, and merge’ if(°N’ is a non-leaf node) {
A . delete 'K’ from 'N’;
: Q What if the parent underflows? find the immediately largest key 'K1’;
o« A repeat recursively /* which is guaranteed to be on a leaf node 'L’ */

copy ‘K1’ in the old position of 'K’;
invoke this DELETION routine on K1’ from the leaf node 'L’;
else {
/*’N’ is a leaf node */
... (next slide..)

Faloutsos CMU SCS 15415 71 Faloutsos CMU SCS 15-415

CMU - 15-415 12

Faloutsos

. CMUSCS

B-tree deletion - pseudocode

/*’N' is a leaf node */
if('N” underflows }{
let 'N1’ be the sibling of 'N’;
if('N1"is "rich"){ /*ie., N1 can lend us a key */
borrow a key from 'N1’ THROUGH the parent node;
telse{ /*N1is 1 key away from underflowing */
MERGE: pull the key from the parent 'P’,

and merge it with the keys of 'N’ and ‘N1’ into a new
node;

if('P’ underflows){ repeat recursively }
}
}

Faloutsos CMU SCS 15415 73

. CMUSCS

Variations

* How could we do even better than the B-
trees above?

Faloutsos CMU SCS 15415 75

. CMUSCS

B-trees and B*-trees

Eg., Tree TO; insert ‘2’

< e 3o |
>9

>6 /<9
L !7M | EBM I
& &
2
Faloutsos CMU SCS 15415 77

CMU SCS 15-415

. CMUSCS

Outline

* Motivation
+ ISAM
* B-trees (not in book)

— algorithms

— extensions
* B+ trees
¢ duplicates
* B+ trees in practice
Faloutsos CMU SCS 15-415 74

. CMUSCS
B*-tree

 In B-trees, worst case util. = 50%, if we
have just split all the pages

e how to increase the utilization of B - trees?

e ..with B* - trees!

Faloutsos. CMU SCS 15-415 76

. CMUSCS

B*-trees: deferred split!

* Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

<6 IIEN
9 >9

1!31! >6!7<|é,! 1] HIC&IEIE |
2

CMU - 15-415

Faloutsos

. CMUSCS

B*-trees: deferred split!

+ Instead of splitting, LEND keys to sibling!

(through PARENT, of course!)
FINAL TREE

Faloutsos CMU SCS 15415 79

. CMUSCS

B*-trees: deferred split!

* A: 2-to-3 split: get the keys from the
sibling, pool them with ours (and a key
from the parent), and split in 3.

* Could we extend the idea to 3-to-4 split, 4-
to-5 etc?

Faloutsos CMU SCS 15415 81

. CMUSCS

Outline
* Motivation
« ISAM
» B-trees (not in book)
¢ B+ trees

¢ duplicates
* B+ trees in practice

Faloutsos CMU SCS 15415 83

CMU - 15-415

CMU SCS 15-415

. CMUSCS
B*-trees: deferred split!

* Notice: shorter, more packed, faster tree

* It’s a rare case, where space utilization and
speed improve together

« BUT: What if the sibling has no room for
our ‘lending’?

Faloutsos CMU SCS 15-415 80

. CMUSCS

B*-trees: deferred split!

o A: 2-to-3 split: get the keys from the
sibling, pool them with ours (and a key
from the parent), and split in 3.

* Could we extend the idea to 3-to-4 split, 4-
to-5 etc?

* Yes, but: diminishing returns

Faloutsos. CMU SCS 15-415 82

. CMUSCS

B+ trees - Motivation

B-tree — print keys in sorted order:

« MIBR
1!3! !”él! | HBIEIE |

Faloutsos CMU SCS 15-415 84

14

Faloutsos

. CMUSCS

B+ trees - Motivation

B-tree needs back-tracking — how to avoid it?

Faloutsos CMU SCS 15415 85

. CMUSCS

Solution: B* - trees
+ facilitate sequential ops
¢ They string all leaf nodes together
* AND

» replicate keys from non-leaf nodes, to make
sure every key appears at the leaf level

* (vital, for clustering index!)

Faloutsos CMU SCS 15415 87

. CMUSCS

B+ trees
<6 s 49
>=6 /<9 =9
1|3 6 |i|7 9 |13
Faloutsos CMU SCS 15415 89

CMU - 15-415

CMU SCS 15-415

. CMUSCS

B+ trees - Motivation

Stronger reason: for clustering index, data
records are scattered:

lnl 9
1!3! !”él! (| HBLI! (]

Faloutsos CMU SCS 15-415 86

i

. CMUSCS

B+ trees
<6 IBIEN
>=6 /<9 X9
1|3 6 |7 9 |13
. CMUSCS
B+trees

* More details: next (and textbook)

* In short: on split
— at leaf level: COPY middle key upstairs

— at non-leaf level: push middle key upstairs (as
in plain B-tree)

Faloutsos CMU SCS 15-415 90

15

Faloutsos CMU SCS 15-415

. CMUSCS . CMUSCS

Example B+ Tree B+ Trees in Practice

* Search begins at root, and key comparisons) ’é";/g/ncal order: 100. Typical fill-factor:
direct it to a leaf (as in ISAM). o ot — 2%100%0.67 — 134
« Search for 5%, 15%*, all data entries >= 24* — average fanowt = o

 Typical capacities:
— Height 4: 133*=312,900,721 entries
— Height 3: 1333 = 2,406,104 entries

& TN TN TN S TN “,
‘z-‘s"s“r‘ ‘14"15" ‘ ‘ ‘19"20' zz" ‘ ‘w‘zr‘zs-‘ ‘ ‘33"34"35"39"

Based on the search for 15%, we know it is not in the tree!

Faloutsos CMU SCS 15415 91

Faloutsos CMU SCS 15-415 92
- , . B " Inserting a Data Entry into a B+
B+ Trees 1n Practice 8 Y
Tree
 Can often keep top levels in buffer pool: « Find correct leaf L.
- Eeve: ; i 1341 page i 81 1;4?3 * Put data entry onto L.
- Level 3 : 17 956pages i 140 MB — If L has enough space, done!
Cevee = A pages = — Else, must split L (into L and a new node L2)
« Redistribute entries evenly, copy up middle
key.
* parent node may overflow
— but then: push up middle key. Splits “grow” tree;
root split increases height.
Faloutsos CMU SCS 15415 93 Faloutsos. CMU SCS 15-415 94

CMUSCS

CMUSCS

Example B+ Tree - Inserting 8* Example B+ Tree - Inserting 8*
o1 [l 1 (o] (e
CMU - 15-415

16

Faloutsos CMU SCS 15-415

CMUSCS CMUSCS

Example B+ Tree - Inserting 21* Example B+ Tree - Inserting 21*

Root\\ Rom\\
[= =] =] [= el =]

X L L L X L L L
5 I 5 5 I s s s S S 5 I 5 5 I s S i S

O I O I

— — — — — —
CELLETT=L el T]e==]=] =]] CEL L= el T 0T [(#{2f=]] =]]

Faloutsos CMU SCS 15415 97 Faloutsos CMU SCS 15-415 98

Example B+ Tree Example: Da;?:) ;if Index Page

ROON Data nnﬂn
. s
[111 " leaf: “copy iy

* non-leaf: ‘push’

TN
Lel=L T ==L T FETT Il e o e

VPN < — — P . wh ¢
8 I 5 23 5 M G A why not “copy

@ronleave? 19 [e =]

Split I
* Notice that root was split, increasing height.
* Could use defer-split here. (Pros/Cons?) =TT LD
' s

Faloutsos CMU SCS 15415 99 Faloutsos. CMU SCS 15-415 100

. CMUSCS . CMUSCS

Now you try... Answer...

After inserting 28*, 6*
Root

— I\ 5 7 13 || 20 e

[{ell=]L] . (ot shown)

7 N L X
I 3 8 5 S S S S

— = == —~
8 G I I R S

After inserting 25*

Insert the following data entries (in order): 28*, 6*, 25*

Faloutsos CMU SCS 15415 101 Faloutsos CMU SCS 15-415 102

CMU - 15-415 17

Faloutsos CMU SCS 15-415

. CMUSCS . CMUSCS

Answer... Deleting a Data Entry from a B+
After inserting 25* Tree

Start at root, find leaf L where entry belongs.

LT ==l 11

* Remove the entry.
FEf TIEFL T IFF R sl = =]] — If L is at least half-full, done!
— If L underflows

* Try to re-distribute, borrowing from sibling
(adjacent node with same parent as L).
* If re-distribution fails, merge L and sibling.
— update parent

— and possibly merge, recursively
Faloutsos CMUSCS 15415 103 Faloutsos CMU SCS 15415 104

B Example: Delete 19* & 20* < ... And Then Deleting 24*
Root Il.l.l.l ~

@ In!!.l.l Deleting 19* @

is easy:
VN TN A N N
8 A 2 2 A S ES ES

© o I3 |
e I3 |
p [

— 3 — Py
8 I 5 2 = S RS E

s =l T

W AP = [T
3 s o i S i < S
N

A Vg -
* Deleting 20* -> re-distribution (notice: B e
s 27 copied up) 105 F e Must merge leaves ... but are we done??

B Merge Non-Leaf Nodes, Shrink B Example of Non-leaf Re-
Tree distribution

@ ML T
* Tree is shown below during deletion of 24*.
2 N PR
. ~ . X * Now, we can re-distribute keys
=L T[T el T][z] EEIEE
Rool\{

1= =L
= l - P e N

X g X X 4 R £
‘2“3" ‘ “5"7“8" Hw‘w‘ ‘ HZT‘U"ZQ" “33"34“35"39" ‘2"3*[‘ Hs"r‘s“ “14"16"‘ ‘ H17T15" ‘ “20*‘211 ‘ “221271291 “33134135"39'1

Faloutsos CMU SCS 15415 107 Faloutsos CMU SCS 15-415 108

CMU - 15-415 18

Faloutsos

After Re-distribution

* need only re-distribute 20’; did ‘17’, too
» why would we want to re-distributed more

keys?
Root
5 13 20| 22| 30
Fw TN TN F ¥ X
(2l LTl el T Jferfef T Jaoferd T Jfeeferfse] Jfeofoefoofo]
Faloutsos CMU SCS 15415 109

CMU SCS 15-415

CMUSCS

Main observations for deletion

* If a key value appears twice (leaf +
nonleaf), the above algorithms delete it
from the leaf, only

* why not non-leaf, too?

Faloutsos CMU SCS 15-415 110

. CMUSCS

Main observations for deletion

« Ifa key value appears twice (leaf +
nonleaf), the above algorithms delete it
from the leaf, only

* why not non-leaf, too?

* ‘lazy deletions’ - in fact, some vendors just
mark entries as deleted (~ underflow),
— and reorganize/compact later

Faloutsos CMU SCS 15415 11

CMUSCS

Recap: main ideas

* on overflow, split (and ‘push’, or ‘copy’)
— or consider deferred split

« on underflow, borrow keys; or merge
— or let it underflow...

Faloutsos. CMU SCS 15-415 112

. CMUSCS

Outline
* Motivation
« ISAM
» B-trees (not in book)
e B+ trees

* duplicates
* B+ trees in practice
— prefix compression; bulk-loading; ‘order’

Faloutsos CMU SCS 15415 113

CMU - 15-415

CMUSCS

B+ trees with duplicates

+ Everything so far: assumed unique key
values

* How to extend B+-trees for duplicates?
— Alt. 2: <key, rid>
— Alt. 3: <key, {rid list}>

* 2 approaches, roughly equivalent

Faloutsos CMU SCS 15-415 114

Faloutsos

. CMUSCS

B+ trees with duplicates

* approach#1: repeat the key values, and
extend B+ tree algo’s appropriately - eg.
many ‘14’s

‘2' ‘ 3 ‘ 5 ‘ 7 ‘ ‘13*‘14"“.‘“,‘ ‘ 14" I zz"za" ‘24"17*‘29" ‘

Faloutsos CMU SCS 15415 115

. CMUSCS

B+ trees with duplicates

* approach#2: store each key value: once

* but store the {rid list} as variable-length
field (and use overflow pages, if needed)

AN F TN TN b
([]I] [l wdid [ezla] [] []or]=]]

{rid list, cont'd}

Faloutsos CMU SCS 15415 17

. CMUSCS

Prefix Key Compression

+ Important to increase fan-out. (Why?)

* Key values in index entries only ‘direct
traffic’; can often compress them.

fo A

Faloutsos CMU SCS 15415 119

CMU SCS 15-415

. CMUSCS

B+ trees with duplicates

* approach#1: subtle problem with deletion:

* treat rid as part of the key, thus making it
unique

‘z* ‘ 3 ‘ 5 ‘ 7 ‘ ‘13*‘14"1”‘“.‘ ‘ 14" % zz"zz*‘ ‘u"zv"zs" ‘

Faloutsos CMU SCS 15-415 116

. CMUSCS

Outline
* Motivation
« ISAM
* B-trees (not in book)
e B+ trees

* duplicates
* B+ trees in practice
— prefix compression; bulk-loading; ‘order’

Faloutsos. CMU SCS 15-415 118

. CMUSCS

Prefix Key Compression

Important to increase fan-out. (Why?)

» Key values in index entries only ‘direct
traffic’; can often compress them.

IEHH |<room for more separatorslkeys>|| |

Faloutsos CMU SCS 15-415 120

CMU - 15-415

20

Faloutsos

- Bulk Loading of a B+ Tree

* In an empty tree, insert many keys
* Why not one-at-a-time?

Faloutsos CMU SCS 15415 121

& Bulk Loading (Contd.)

Roo(
*Book’s algo Iﬂlﬂl
Data entry pages
(any prOblemS?) 2 23 3 not yet in B+ tree
Eﬂ (o] o] s EE mm Eﬁ

Data entry pages
not yet in B+ tree

I 2 A | I

/.

Faloutsos
oo (] [6°]9] [0t [12]13] [20fz2] [25]31] [ssae] [ssfar|faar

A Note on 'Order’

Order (d) concept replaced by physical space
criterion in practice (‘at least half-full’).
Why do we need it?

— Index pages can typically hold many more entries
than leaf pages.

— Variable sized records and search keys mean different
nodes will contain different numbers of entries.

— Even with fixed length fields, multiple records with
the same search key value (duplicates) can lead to
variable-sized data entries (if we use Alternative (3)).

Faloutsos CMU SCS 15415 125

CMU - 15-415

CMU SCS 15-415

. Bulk Loading of a B+ Tree

* [nitialization: Sort all data entries

* scan list; whenever enough for a page, pack

» <repeat for upper level - even faster than
book’s algo>

Rooi™

Sorted pages of data entries; not yet in B+ tree

IIE

Faloutsos CMU SCS 15-415 122

. CMUSCS

Outline
* Motivation
« ISAM
* B-trees (not in book)
e B+ trees

* duplicates
* B+ trees in practice
— prefix compression; bulk-loading; ‘order’

Faloutsos. CMU SCS 15-415 124

A Note on 'Order’

they allow underflow, and only reclaim space
when a page is completely empty.
* (what are the benefits of such ‘slopiness’?)

Faloutsos CMU SCS 15-415 126

* Many real systems are even sloppier than this:

21

Faloutsos CMU SCS 15-415

. CMUSCS . CMUSCS

Conclusions

Conclusions
* Btree is the prevailing indexing method) Ce'm be 1/1sed f(zlr any type of ilndex:'
t
* Excellent, O(logN) worst-case performance PrImAry/seconcary, sparse (clustering), or
. . . dense (non-clustering)
for ins/del/search; (~3-4 disk accesses in . .
. + Several fine-extensions on the basic
practice)

algorithm

— deferred split; prefix compression; (underflows)
— bulk-loading

— duplicate handling

+ guaranteed 50% space utilization; avg 69%

Faloutsos CMU SCS 15415 127 Faloutsos CMU SCS 15-415 128

CMU - 15-415 22

