
Uninformed Search

Day 1 & 2 of Search

Material in part from http://www.cs.cmu.edu/~awm/tutorials

Russel & Norvig Chap. 3

Search

• Examples of Search problems?
• The Oak Tree
• Informed versus Uninformed

– Heuristic versus Blind

A Search Problem

b

a

d

h

e
c

f

START

GOAL

• Find a path from START to GOAL
• Find the minimum number of transitions

p
q

h

r

START

Example

28

31

4

5 2

3

1

4 5

67 86 7

START GOAL

Example

• State: Configuration of puzzle

28
31

6
4

7

5 2

8
3

1

6
4
7

5

START GOAL

• State: Configuration of puzzle
• Transitions: Up to 4 possible moves (up, down,

left, right)
• Solvable in 22 steps (average)
• But: 1.8 105 states (1.3 1012 states for the 15-

puzzle)
� Cannot represent set of states explicitly

Example: Robot Navigation

x GOAL

States =
positions in the map

Transitions =
allowed motions

N

X

START

E

S

W

Navigation: Going from point START to
point GOAL given a (deterministic) map

Example Solution: Brushfire…

x GOAL

X

START

Other Real-Life Examples

Protein design
http://www.blueprint.org/proteinfolding/trades/trades_problem.html

Scheduling/ManufacturingScheduling/Manufacturing
http://www.ozone.ri.cmu.edu/projects/dms/dmsmain.html

Scheduling/Science
http://www.ozone.ri.cmu.edu/projects/hsts/hstsmain.html

Route planning Robot navigation
http://www.frc.ri.cmu.edu/projects/mars/dstar.html

Don’t necessarily know explicitly the
structure of a search problem

Other Real-Life Examples

Protein design
http://www.blueprint.org/proteinfolding/trades/trades_problem.html

Scheduling/ManufacturingScheduling/Manufacturing
http://www.ozone.ri.cmu.edu/projects/dms/dmsmain.html

Scheduling/Science
http://www.ozone.ri.cmu.edu/projects/hsts/hstsmain.html

Route planning Robot navigation
http://www.frc.ri.cmu.edu/projects/mars/dstar.html

Don’t have a clue when you’re doing well
versus poorly!

10cm resolution
4km2 = 4 108 states

What we are not addressing (yet)
• Uncertainty/Chance � State and transitions are known and deterministic
• Game against adversary
• Multiple agents/Cooperation
• Continuous state space � For now, the set of states is discrete

Overview

• Definition and formulation
• Optimality, Completeness, and Complexity
• Uninformed Search

– Breadth First Search
– Search Trees
– Depth First Search
– Iterative Deepening

• Informed Search
– Best First Greedy Search
– Heuristic Search, A*

A Search Problem:
Square World

Formulation
• Q: Finite set of states
• S Q: Non-empty set of start states
• G Q: Non-empty set of goal states
• succs: function Q � �(Q)

succs(s) = Set of states that can be reached from s in one step
• cost: function QxQ � Positive Numbers

cost(s,s’) = Cost of taking a one-step transition from state s to state s’

⊆
⊆

• Problem: Find a sequence {s1,…,sK} such that:

1. s1 S
2. sK G
3. si+1 succs(si)

4. Σ cost(si, si+1) is the smallest among all possible
sequences (desirable but optional)

∈
∈
∈

What about actions?
• Q: Finite set of states
• S Q: Non-empty set of start states
• G Q: Non-empty set of goal states
• succs: function Q � �(Q)

succs(s) = Set of states that can be reached from s in one step
• cost: function QxQ � Positive Numbers

cost(s,s’) = Cost of taking a one-step transition from state s to state s’

⊆
⊆

• Problem: Find a sequence {s1,…,sK} such that:

Actions define transitions from states to states.
Example: Square World

Example

• Q = {AA, AB, AC, AD, AI, BB, BC, BD, BI, …}
• S = {AB} G = {DD}
• succs(AA) = {AI,BA}
• cost(s,s’) = 1 for each action (transition)

Desirable Properties

b

a

d

h

e
c

f

r

START

GOAL

b

a

d

h

e
c

f

START

GOAL

• Completeness: An algorithm is complete if it is
guaranteed to find a path if one exists

• Optimality: The total cost of the path is the lowest
among all possible paths from start to goal

• Time Complexity
• Space Complexity

p
q

r
p

q

r

Breadth-First Search

b

a

d

h

e
c

f

START

GOAL

• Label all states that are 0 steps from S �

Call that set Vo

p
q

h

r

Breadth-First Search

b

a

d

h

e
c

f

START

GOAL
0 steps

1 step

• Label the successors of the states in Vo
that are not yet labelled �Set V1 of states
that are 1 step away from the start

p
q

h

r

Breadth-First Search

b

a

d

h

e
c

f

START

GOAL
0 steps
1 step
2 steps

• Label the successors of the states in V1
that are not yet labelled �Set V2 of states
that are 1 step away from the start

p
q

h

r

Breadth-First Search

b

a

d

h

e
c

f

START

GOAL
0 steps
1 step
2 steps
3 steps

• Label the successors of the states in V2
that are not yet labelled �Set V3 of states
that are 1 step away from the start

p
q

h

r

Breadth-First Search

b

a

d

h

e
c

f

START

GOAL

0 steps
1 step
2 steps
3 steps
4 steps

• Stop when goal is reached in the current
expansion set � goal can be reached in 4
steps

p
q

h

r

Recovering the Path

b

a

d

h

e
c

f

r

START

GOAL

• Record the predecessor state when labeling a new state
• When I labeled GOAL, I was expanding the neighbors of

f so therefore f is the predecessor of GOAL
• When I labeled f, I was expanding the neighbors of r so

therefore r is the predecessor of f
• Final solution: {START, e, r, f, GOAL}

p
q

r

Using Backpointers

b

a

d

h

e
c

f

START

GOAL

• A backpointer previous(s) points to the node that
stored the state that was expanded to label s

• The path is recovered by following the
backpointers starting at the goal state

p
q

r

Example: Robot Navigation

x GOAL

States =
positions in the map

Transitions =
allowed motions

N

X

START

E

S

W

Navigation: Going from point START to
point GOAL given a (deterministic) map

Breadth First Search
V0 � S (the set of start states)
previous(START) := NULL
k � 0

while (Vk is not a subset of the goal set and
Vk is not empty) do

Vk+1 � empty set
For each state s in VFor each state s in Vk

For each state s’ in succs(s)
If s’ has not already been labeled

Set previous(s’) � s
Add s’ into Vk+1

k � k+1

if Vk is empty signal FAILURE
else build the solution path thus:

Define Sk = GOAL, and forall i <= k, define Si-1 = previous(Si)
Return path = {S1,.., Sk}

Properties

• BFS can handle multiple start and goal
states *what does multiple start mean?*

• Can work either by searching forward from
the start or backward for the goal the start or backward for the goal
(forward/backward chaining)

• (Which way is better?)
• Guaranteed to find the lowest-cost path in

terms of number of transitions??

See maze example

Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length from start to goal with smallest number of steps

Algorithm Complete Optimal Time Space

BFS Breadth First
Search

Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length from start to goal with smallest number of steps

Algorithm Complete Optimal Time Space

BFS Breadth First
Search

Y Y, If all
trans. have
same cost

O(min(N,BL)) O(min(N,BL))

Bidirectional Search
• BFS search simultaneously forward from

START and backward from GOAL
• When do the two search meet?
• What stopping criterion should be used?
• Under what condition is it optimal?

V3

V’3

• Under what condition is it optimal?

START GOALV1
V’1V2

V’2

Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps

Algorithm Complete Optimal Time Space

BFS Breadth First
Search

BIBFS Bi-directional BIBFS Bi-directional
Breadth First
Search

B = 10, L = 6 � 22,200 states generated vs. ~107

Major savings when bidirectional search is possible because
2BL/2 << BL

Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps

Algorithm Complete Optimal Time Space

BFS Breadth First
Search

Y Y, if all
trans. have
same cost

O(min(N,BL)) O(min(N,BL))

BIBFS Bi-directional BIBFS Bi-directional
Breadth First
Search

B = 10, L = 6 � 22,200 states generated vs. ~107

Major savings when bidirectional search is possible because
2BL/2 << BL

Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps

Algorithm Complete Optimal Time Space

BFS Breadth First
Search

Y Y, if all
trans. have
same cost

O(min(N,BL)) O(min(N,BL))

BIBFS Bi-directional Y Y, If all O(min(N,2BL/2)) O(min(N,2BL/2))BIBFS Bi-directional
Breadth First
Search

Y Y, If all
trans. have
same cost

O(min(N,2BL/2)) O(min(N,2BL/2))

B = 10, L = 6 � 22,200 states generated vs. ~107

Major savings when bidirectional search is possible because
2BL/2 << BL

Complexity
• A note about island-driven search in general:

– What happens to complexity if you have L islands enroute to the
goal?

Algorithm Complete Optimal Time Space

BFS Breadth First
Search

Y Y, if all
trans. have
same cost

O(min(N,BL)) O(min(N,BL))
Search

same cost

BIBFS Bi-directional
Breadth First
Search

Y Y, If all
trans. have
same cost

O(min(N,2BL/2)) O(min(N,2BL/2))

Counting Transition Costs Instead of Transitions

b

a

d

e

c

f

GOAL
2

1

3

8

2

2
5

5

d

p
q

h

f

r

START

3

1

9

15

4

9

54

1

3

Counting Transition Costs Instead of Transitions

b

a

d

h

e
c

f

START

GOAL
2

1

3
9

8

2

2

9

5

5

5

4

1

• BFS finds the shortest path in number of steps but
does not take into account transition costs

• Simple modification finds the least cost path
• New field: At iteration k, g(s) = least cost path to s in k

or fewer steps

p
q

r1

15

4
4

3

Uniform Cost Search

• Strategy to select state to expand next
• Use the state with the smallest value of g()

so far
• Use priority queue for efficient access to • Use priority queue for efficient access to

minimum g at every iteration

Priority Queue
• Priority queue = data structure in which data of

the form (item, value) can be inserted and the
item of minimum value can be retrieved
efficiently

• Operations:
– Init (PQ): Initialize empty queue
– Insert (PQ, item, value): Insert a pair in the queue– Insert (PQ, item, value): Insert a pair in the queue
– Pop (PQ): Returns the pair with the minimum value

• In our case:
– item = state value = current cost g()

Complexity: O(log(number of pairs in PQ)) for
insertion and pop operations � very efficient

http://www.leekillough.com/heaps/ Knuth&Sedwick ….

Uniform Cost Search
• PQ = Current set of evaluated states
• Value (priority) of state = g(s) = current cost

of path to s
• Basic iteration:

1. Pop the state s with the lowest path cost from PQ
2. Evaluate the path cost to all the successors of s
3. Add the successors of s to PQ

We add the successors of s that have
not yet been visited and we update the

cost of those currently in the queue

b

a

d

h

e
c

f

r

START

GOAL
2

1

3

1

9

8

2

2

4

9

5

5

5

4

1

p
q

r1

15

4

3

1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of s to
PQ

PQ = {(START,0)}

b

a

d

h

e
c

f

START

GOAL
2

1

3
9

8

2

2

9

5

5

5

4

1

p
q

r1

15

4
4

3

1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of s to
PQ

PQ = {(p,1) (d,3) (e,9)}

b

a

d

h

e
c

f

START

GOAL
2

1

3
9

8

2

2

4

9

5

5

5

4

1

p
q

r1

15

4

3

1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of s to
PQ

PQ = {(d,3) (e,9) (q,16)}

b

a

d

h

e
c

f

START

GOAL
2

1

3
9

8

2

2

9

5

5

5

4

1

p
q

r1

15

4
4

3

1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of s to
PQ

PQ = {(b,4) (e,5) (c,11) (q,16)}

b

a

d

h

e
c

f

START

GOAL
2

1

3
9

8

2

2

9

5

5

5

4

1
Important: We realized that

going to e through d is

p
q

r1

15

4
4

3

1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of s to
PQ

PQ = {(b,4) (e,5) (c,11) (q,16)}

going to e through d is
cheaper than going to e

directly � the value of e is
updated from 9 to 5 and it

moves up in PQ

b

a

d

h

e
c

f

START

GOAL
2

1

3
9

8

2

2

4

9

5

5

5

4

1

p
q

r1

15

4

3

1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of s to
PQ

PQ = {(e,5) (a,6) (c,11) (q,16)}

b

a

d

h

e
c

f

START

GOAL
2

1

3
9

8

2

2

9

5

5

5

4

1

p
q

r1

15

4
4

3

1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of s to
PQ

PQ = {(a,6) (h,6) (c,11) (r,14) (q,16)}

b

a

d

h

e
c

f

START

GOAL
2

1

3
9

8

2

2

9

5

5

5

4

1

p
q

r1

15

4

54

3

1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of s to
PQ

PQ = {(h,6) (c,11) (r,14) (q,16)}

b

a

d

h

e
c

f

START

GOAL
2

1

3
9

8

2

2

9

5

5

5

4

1

p
q

r1

15

4

54

3

1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of s to
PQ

PQ = {(q,10) (c,11) (r,14)}

b

a

d

h

e
c

f

START

GOAL
2

1

3
9

8

2

2

9

5

5

5

4

1

p
q

r1

15

4

54

3

1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of s to
PQ

PQ = {(q,10) (c,11) (r,14)}
Important: We realized that

going to q through h is
cheaper than going through p
� the value of q is updated
from 16 to 10 and it moves

up in PQ

b

a

d

h

e
c

f

START

GOAL
2

1

3
9

8

2

2

9

5

5

5

4

1

p
q

r1

15

4
4

3

PQ = {(c,11) (r,13)} 1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of s to
PQ

b

a

d

h

e
c

f

START

GOAL
2

1

3
9

8

2

2

4

9

5

5

5

4

1

p
q

r1

15

4

3

PQ = {(r,13)} 1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of s to
PQ

PQ = {(f,18)}

b

a

d

h

e
c

f

START

GOAL
2

1

3
9

8

2

2

9

5

5

5

4

1

p
q

r1

15

4
4

3

1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of s to
PQ

PQ = {(GOAL,23)}

b

a

d

h

e
c

f

r

START

GOAL
2

1

3

1

9

8

2

2

4

9

5

5

5

4

1

p
q

r1

15

4

3

Final path: {START, d, e, h, q, r, f, GOAL}

• This path is optimal in total cost even though it has more
transitions than the one found by BFS
• What should be the stopping condition?
• Under what conditions is UCS complete/optimal?

Example: Robot Navigation

x GOAL

States =
positions in the map

Transitions =
allowed motions

X

START

N

E

S

W

Navigation: Going from point START to
point GOAL given a (deterministic) map

Cost = sqrt(2)

Cost = 1

Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• Q = Average size of the priority queue

Algorithm Complete Optimal Time Space

BFS Breadth First
Search

BIBFS Bi-directional
Breadth First
Search

UCS Uniform Cost
Search

Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue

Algorithm Complete Optimal Time SpaceAlgorithm Complete Optimal Time Space

BFS Breadth First
Search

Y Y, If all trans.
have same
cost

O(min(N,BL)) O(min(N,BL))

BIBFS Bi-directional
Breadth First
Search

Y Y, If all trans.
have same
cost

O(min(N,2BL/2)) O(min(N,2BL/2))

UCS Uniform Cost
Search

Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• ε = average cost per link?

Algorithm Complete Optimal Time SpaceAlgorithm Complete Optimal Time Space

BFS Breadth First
Search

Y Y, If all trans.
have same
cost

O(min(N,BL)) O(min(N,BL))

BIBFS Bi-directional
Breadth First
Search

Y Y, If all trans.
have same
cost

O(min(N,2BL/2)) O(min(N,2BL/2))

UCS Uniform Cost
Search

Y, If cost > ε
> 0

Y, If cost > 0 O(log(Q)*min(N,BC/ε)) O(min(N,BC/ε))

Limitations of BFS

• Memory usage is O(BL) in general
• Limitation in many problems in which the

states cannot be enumerated or stored
explicitly, e.g., large branching factorexplicitly, e.g., large branching factor

• Alternative: Find a search strategy that
requires little storage for use in large
problems

Philosophical Limitation

• We cannot shoot for perfection, we want
good enough…

Depth First Search
“left first:”

START
START d
START d b
START d b a
START d c
START d c a
START d e
START d e r
START d e r f

b

a

d

h

e
c

f

r

GOAL

START

• General idea:
– Expand the most recently expanded node if it has

successors
– Otherwise backup to the previous node on the current path

START d e r f
START d e r f c
START d e r f c a
START d e r f GOAL

p
q

r

DFS Implementation
DFS (s)

if s = GOAL
return SUCCESS

else
For all s’ in succs(s)

In a recursive
implementation, the program

stack keeps track of the For all s’ in succs(s)
DFS (s’)

return FAILURE

stack keeps track of the
states in the current path

s is current state being expanded,
starting with START

Depth First Search

START
START d
START d b
START d b a
START d c
START d c a

b

a

d

h

e
c

f

START

GOAL

4

May explore the same
state over again.

Potential problem?
START d c a
START d e
START d e r
START d e r f
START d e r f c
START d e r f c a
START d e r f GOAL

Memory usage never
exceeds maximum length of

a path through the graph

p
q

h

r
4Potential problem?

Search Tree Interpretation
START

d e p

r hb c e q

a a r h

f p q

f

e

p q

q

BFS: START

d e p

r hb c e q

a a r h

f p q

f

e

p q

q

DFS:

• Root: START state
• Children of node containing state s: All states in succs(s)
• In the worst case the entire tree is explored � O(BLmax)
• Infinite branches if there are loops in the graph!

f

c GOAL

a

p q

q

GOALe

a

q f

c GOAL

a

p q

q

GOALe

a

q

Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

Algorithm Complete Optimal Time Space

BFS Breadth First
Search

BIBFS Bi-directional
Breadth First
Search

UCS Uniform Cost
Search

DFS Depth First
Search

Complexity

Algorithm Complete Optimal Time Space

• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

BFS Breadth First
Search

Y Y, If all
trans. have
same cost

O(min(N,BL)) O(min(N,BL))

BIBFS Bi-directional
Breadth First
Search

Y Y, If all
trans. have
same cost

O(min(N,2BL/2)) O(min(N,2BL/2))

UCS Uniform Cost
Search

Y (if cost >
0)

Y O(log(Q)*min(N,BC/ε)) O(min(N,BC/ε))

DFS Depth First
Search

Complexity

Algorithm Complete Optimal Time Space

BFS Breadth First Y Y, If all O(min(N,BL)) O(min(N,BL))

• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

BFS Breadth First
Search

Y Y, If all
trans. have
same cost

O(min(N,BL)) O(min(N,BL))

BIBFS Bi-directional
Breadth First
Search

Y Y, If all
trans. have
same cost

O(min(N,2BL/2)) O(min(N,2BL/2))

UCS Uniform Cost
Search

Y, If cost >
0

Y, If cost >
0

O(log(Q)*min(N,BC/ε)) O(min(N,BC/ε))

DFS Depth First
Search

Y N O(BLmax) O(BLmax)

For graphs
without cycles

Complexity

Algorithm Complete Optimal Time Space

BFS Breadth First Y Y, If all O(min(N,BL)) O(min(N,BL))

Is this a problem:

• Lmax = Length of longest path from START to any state

BFS Breadth First
Search

Y Y, If all
trans. have
same cost

O(min(N,BL)) O(min(N,BL))

BIBFS Bi-directional
Breadth First
Search

Y Y, If all
trans. have
same cost

O(min(N,2BL/2)) O(min(N,2BL/2))

UCS Uniform Cost
Search

Y, If cost >
0

Y, If cost >
0

O(log(Q)*min(N,BC/ε)) O(min(N,BC/ε))

DFS Depth First
Search

Y N O(BLmax) O(BLmax)

For graphs
without cycles

DFS Limitation 1
• Need to prevent DFS from looping
• Avoid visiting the same states repeatedly

• PC-DFS (Path Checking DFS):

Because Bd may be much larger
than the number of states d steps

away from the start

• PC-DFS (Path Checking DFS):
– Don’t use a state that is already in the

current path

• MEMDFS (Memorizing DFS):
– Keep track of all the states expanded so

far. Do not expand any state twice

• Comparison PC-DFS vs. MEMDFS?

Complexity

Algorithm Complete Optimal Time Space

• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

Algorithm Complete Optimal Time Space

BFS Breadth First
Search

BIBFS Bi- Direction.
BFS

UCS Uniform Cost
Search

PCDFS Path Check
DFS

MEMD
FS

Memorizing
DFS

Complexity

Algorithm Complete Optimal Time Space

• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

Algorithm Complete Optimal Time Space

BFS Breadth First
Search

Y Y, If all trans.
have same cost

O(Min(N,BL)) O(Min(N,BL))

BIBFS Bi- Direction.
BFS

Y Y, If all trans.
have same cost

O(Min(N,2BL/2)) O(Min(N,2BL/2))

UCS Uniform Cost
Search

Y, If cost >
0

Y, If cost > 0 O(log(Q)*Min(N,BC/ε)
)

O(Min(N,BC/ε))

PCDFS Path Check
DFS

MEMD
FS

Memorizing
DFS

Complexity

Algorithm Complete Optimal Time Space

BFS Breadth First Y Y, If all trans. O(Min(N,BL)) O(Min(N,BL))

• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

BFS Breadth First
Search

Y Y, If all trans.
have same cost

O(Min(N,BL)) O(Min(N,BL))

BIBFS Bi- Direction.
BFS

Y Y, If all trans.
have same cost

O(Min(N,2BL/2)) O(Min(N,2BL/2))

UCS Uniform Cost
Search

Y, If cost >
0

Y, If cost > 0 O(log(Q)*Min(N,BC/ε)
)

O(Min(N,BC/ε))

PCDFS Path Check
DFS

Y N O(BLmax) O(BLmax)

MEMD
FS

Memorizing
DFS

Y N O(Min(N,BLmax)) O(Min(N,BLmax))

DFS Limitation 2
• Need to make DFS optimal

• IDS (Iterative Deepening Search):
– Run DFS by searching only path of length 1

(DFS stops if length of path is greater than 1)
– If that doesn’t find a solution, try again by

“Depth-Limited
Search”

– If that doesn’t find a solution, try again by
running DFS on paths of length 2 or less

– If that doesn’t find a solution, try again by
running DFS on paths of length 3 or less

– ………..
– Continue until a solution is found

Iterative Deepening Search

• Sounds horrible: We need to run DFS
many times

• Actually not a problem:

O(LB1+(L-1)B2+…+BL) = O(BL)

• Compare BL and BLmax

• Optimal if transition costs are equal

O(LB +(L-1)B +…+B) = O(B)

Nodes generated
at depth 1

Nodes generated
at depth 2

Nodes generated at
depth L

Iterative Deepening Search
(DFID)

• Memory usage same as DFS
• Computation cost comparable to BFS

even with repeated searches, especially
for large B.for large B.

• Example:
– B=10, L=5
– BFS: 111,111 expansions
– IDS: 123,456 expansions

Complexity

Algorithm Complete Optimal Time Space

BFS Breadth First

• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

BFS Breadth First
Search

BIBFS Bi- Direction.
BFS

UCS Uniform Cost
Search

PCDFS Path Check
DFS

MEMD
FS

Memorizing
DFS

IDS Iterative
Deepening

Complexity

Algorithm Complete Optimal Time Space

BFS Breadth First Y Y, If all trans. O(Min(N,BL)) O(Min(N,BL))

• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

BFS Breadth First
Search

Y Y, If all trans.
have same cost

O(Min(N,B)) O(Min(N,B))

BIBFS Bi- Direction.
BFS

Y Y, If all trans.
have same cost

O(Min(N,2BL/2)) O(Min(N,2BL/2))

UCS Uniform Cost
Search

Y, If cost >
0

Y, If cost > 0 O(log(Q)*Min(N,BC/ε)
)

O(Min(N,BC/ε))

PCDFS Path Check
DFS

Y N O(BLmax) O(BLmax)

MEMD
FS

Memorizing
DFS

Y N O(Min(N,BLmax)) O(Min(N,BLmax))

IDS Iterative
Deepening

Complexity

Algorithm Complete Optimal Time Space

BFS Breadth First Y Y, If all trans. O(Min(N,BL)) O(Min(N,BL))

• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

BFS Breadth First
Search

Y Y, If all trans.
have same cost

O(Min(N,B)) O(Min(N,B))

BIBFS Bi- Direction.
BFS

Y Y, If all trans.
have same cost

O(Min(N,2BL/2)) O(Min(N,2BL/2))

UCS Uniform Cost
Search

Y, If cost >
0

Y, If cost > 0 O(log(Q)*Min(N,BC/ε)
)

O(Min(N,BC/ε))

PCDFS Path Check
DFS

Y N O(BLmax) O(BLmax)

MEMD
FS

Memorizing
DFS

Y N O(Min(N,BLmax)) O(Min(N,BLmax))

IDS Iterative
Deepening

Y Y, If all trans.
have same cost

O(BL) O(BL)

Summary

• Basic search techniques: BFS, UCS,
PCDFS, MEMDFS, DFID

• Property of search algorithms:
Completeness, optimality, time and space Completeness, optimality, time and space
complexity

• Iterative deepening and bidirectional
search ideas

• Trade-offs between the different
techniques and when they might be used

Some Challenges

• Driving directions
• Robot navigation in Wean Hall
• Adversarial games

– Tic Tac Toe– Tic Tac Toe
– Chess

