Principles of Human-Robot Interaction

Αl

Illah Nourbakhsh | CMU Robotics Institute

Ancestry of Interaction Studies

Barnlund

p. 7: the Assumptive World

p. 8: context as all-important

Terry Winograd's trajectory an an example

Pitfalls for Interactive Communication

Barnlund, p.12 ..

verbal – nonverbal discrepancy

attitude of infallibility

manipulative purpose

one-way communication

threatening context

evaluative context

The Delight of Radical Surprise

Formalizing Interaction: Burke (xv - xxiii)

Act Scene Agent Agency Purpose

Formalizing Interaction: Burke (xv - xxiii)

Act Scene Agent Agency Purpose

Ambiguity and casuistry: xviii and xx-xxi

Group Challenge: Pentad applied to an interactive robot

Roomba-like home cleaning robot

Museum tour guide robot

AIBO-like robot entertainment dog

Dourish

- Robot interface
 - later in this slide set
- Embodiment/situatedness
 - Hide-and-seek
 - Embodiment deleterious example?
- Brooks and embodiment-architecture
 - "Use the world as its own best model"
 - Philosophy; Descartes vs. Heidegger?

Illah Nourbakhsh | CMU Robotics Institute | HRI Summer Course

Evolving Toward Physical Interaction

- Text-based computer interaction
- narrow; single-threaded & synchronous; symbolic
- Graphical computer interaction
- parallel/peripheral; somewhat asynchronous; visual metaphor
- Animate but sessile robot
- multimodal; more asynchronous/episodic; palpable/continuous

Animate but sessile...

Illah Nourbakhsh | CMU Robotics Institute | HRI Summer Course

Evolving Toward Physical Interaction

- Electrical
- Symbolic
- Textual
- Graphical
- Marble answering machine

Social Mobile Robot

- Invasive: shared physical space
- extended interaction context: the human socialphysical frame
- social communication as a co-habitant
- incidental & opportunistic interaction

•

- Asynchronous; episodic
- demands intentional transparency
- active communication acts
- Illah Nourbakhsh | CMU Robotics Institute | HRI Summer Course

Social mobile robot...

Points of Departure

- Mobile robots are unlike standard computers
- More like independent agents; less human augmentation
- Computers can represent real things; robots are real things
- Robots push back on the world
- Mobile robots differ from standard physical artifacts
- "...uncertainty, randomness, free will or independence so strikingly absent in well-designed machines" Grey Walter
- · Invasive in human social space
- · Need to reflect or externalize their internal states and intentions

Illah Nourbakhsh | CMU Robotics Institute | HRI Summer Course

Challenges in Social Robotics

- Perception & Representation
- Perceptual competency for spatial and social context
- Locomotion & Manipulation
- Physical competency, expressiveness, terrainability
- Behavior & Communication
- Social competency, deliberation and interaction in social spaces using time, intention, perceptual action

The 'Wicked Problem'* in HRC

Problem Identification

Every solution exposes new aspects of the problem.

Satisficing

There is no clear stopping criterion nor right or wrong.

Uniqueness

Each problem is embedded in a distinct physical and social context making its solution totally novel.

*Horst Rittel

Tools for HRC

- 1. The Science & Technology of Interaction
 - modeling, reasoning, execution
 - perception, actuation
- 2. Physical and Interaction Design
 - morphology, behavior
- 3. Evaluation: HCI, Human Factors, Education
 - formative & summative techniques

An Analytical Cross of Interaction Prof. Dick Buchanan, from Burke, Barnlund, etc.

Group Challenge: Cross applied to Korean National Archival Music robot

Social Robots Project

Guiding Question:

How do motion, expression and attention impact human-robot interaction?

Experimental Design

To conduct full factorial experiments based on social science protocols to find statistically significant correlations between motion, expression and attention.

Illah Nourbakhsh | CMU Robotics Institute | HRI Summer Course

Facial expressions on Vikia

- References Delsarte's systematic coding of facial expressions, gestures, postures, etc. for conveying emotion and attitude
- Facial expressions rendered in animated graphic form to allow for iterative design changes and assessment of [non]anthropomorphic

Poll Experiment

 Question: How do expressiveness and attention impact willingness to interact with a robot?

Task: Robot tries to ask people a series of questions

• **Design**: 2x2 factorial (control for day and time)

Independent variables: face, real-time tracking

• Dependent variable: person stops and answers

Illah Nourbakhsh | CMU Robotics Institute | HRI Summer Course

Poll Experiment - Context

Illah Nourbakhsh | CMU Robotics Institute | HRI Summer Course

Poll Experiment - Results

Table 1: F-tests of factors.

Source	P-Value	Confidence
Main effects		
Tracking	0.002	> 99%
Face	0.042	> 95%
Interactions		
Face x Day	0.014	> 95%

Illah Nourbakhsh | CMU Robotics Institute | HRI Summer Course

Poll Experiment - Results

Using face tracking for social inferences

Findings

- Being expressive is significantly better than not being expressive; same with moving; both is even better
- Robots can be threatening or annoying
- Challenge: Actively engage, but selectively!

Illah Nourbakhsh | CMU Robotics Institute | HRI Summer Course

Models for Social Inference

Using human trajectories for social inference

