
1

Reinforcement Learning
(Model-free RL)

• R&N Chapter 21

• Demos and Data Contributions from
Vivek Mehta (vivekm@cs.cmu.edu)

Rohit Kelkar (ryk@cs.cmu.edu)

Reinforcement Learning

• Same (fully observable) MDP as before except:
– We don’t know the model of the environment
– We don’t know T(.,.,.)
– We don’t know R(.)

• Task is still the same:
– Find an optimal policy

+1

-1

3

2

1

1 2 3 4

0.10.1

0.8
Intended
action a:

T(s,a,s’)

2

General Problem

• All we can do is try to execute actions and
record the resulting rewards
– World: You are in state 102, you have a choice of 4

actions
– Robot: I’ll take action 2
– World: You get a reward of 1 and you are now in state

63, you have a choice of 3 actions
– Robot: I’ll take action 3
– World: You get a reward of -10 and you are now in

state 12, you have a choice of 4 actions
– …………..

Notice we have state-observability!

Classes of Techniques

Model-Based
• Try to learn an

explicit model of
T(.,.,.) and R(.)

Reinforcement Learning

Model-Free
• Recover an optimal

policy without ever
estimating a model

3

Model-Free

• We are not interested in T(.,.,.), we are
only interested in the resulting values and
policies

• Can we compute something without an
explicit model of T(.,.,.) ?

• First, let’s fix a policy and compute the
resulting values

Temporal Differencing

• Upon action a = π(s) , the values satisfy:

U(s) = R(s) + γ γ γ γ Σs’ T(s,a,s’) U(s’)
For any s’ successor of s, U(s) is “in between”:
The new value considering only the actual s’

reached:
R(s) + γγγγ U(s’)

and the old value
U(s)

The γγγγ is the discount of future reward.

4

Temporal Differencing

• Upon moving from s to s’ by using action
a, the new estimate of U(s) is
approximated by:

U(s) = (1-αααα) U(s) + αααα (R(s) + γγγγ U(s’))
• Temporal Differencing: When moving from

any state s to a state s’, update:
U(s) � U(s) + αααα (R(s) + γγγγ U(s’) – U(s))

Temporal Differencing

U(s) � U(s) + αααα (R(s) + γγγγ U(s’) – U(s))

Discrepancy between current
value and new guess at a
value after moving to s’Current value

The transition probabilities do not appear anywhere!!!

5

Temporal Differencing

U(s) � U(s) + αααα (R(s) + γγγγ U(s’) – U(s))

How to choose 0 < αααα < 1?

• Too small: Converges slowly; tends to always trust
the current estimate of U
• Too large: Changes very quickly; tends to always
replace the current estimate by the new guess

Learning rate

Temporal Differencing
How to choose 0 < αααα < 1?
• Start with large αααα
� Not confident in our current estimate so we can

change it a lot
• Decrease αααα as we explore more
� We are more and more confident in our

estimate so we don’t want to change it a lot

Iterations

αααα

6

Summary
• Learning exploring environment and recording

received rewards
• Model-Based techniques

– Evaluate transition probabilities and apply previous
MDP techniques to find values and policies

– More efficient: Single value update at each state
– Selection of “interesting” states to update: Prioritized

sweeping
• Exploration strategies
• Model-Free Techniques (so far)
• Temporal update to estimate values without ever

estimating the transition model
• Parameter: Learning rate must decay over

iterations

Temporal Differencing

U(s) � U(s) + αααα (R(s) + γγγγ U(s’) – U(s))

Discrepancy between current
value and new guess at a
value after moving to s’Current value

The transition probabilities do not appear anywhere!!!

But how to find the optimal policy?

7

Q-Learning

• U(s) = Utility of state s = expected sum
of future discounted rewards

• Q(s,a) = Value of taking action a at
state s = expected sum of future
discounted rewards after taking action a at
state s

Q-Learning

• U(s) = Utility of state s = expected sum
of future discounted rewards

• Q(s,a) = Value of taking action a at
state s = expected sum of future
discounted rewards after taking action a at
state s

(s,a) = “state-action” pair.
Maintain table of Q(s,a)

instead of U(s)

8

Q-Learning

• For the optimal Q*:

Q*(s,a) = R(s) + γ γ γ γ Σs’T (s,a,s’) maxa’Q*(s’,a’)

π*(s) = argmaxa Q*(s,a)

Q-Learning

• For the optimal Q*:

Q*(s,a) = R(s) + γ γ γ γ Σs’T (s,a,s’) maxa’Q*(s’,a’)

π*(s) = argmaxa Q*(s,a)

Best expected
value for state

action (s,a)

Reward at
state s

Best value at the next state =
Maximum over all actions that
could be executed at the next

state s’

Best value averaged over all possible
states s’ that can be reached from s

after executing action a

9

Q-Learning: Updating Q without a
Model

Use temporal differencing; after moving from state s to
state s’ using action a:

Q(s,a)�Q(s,a)+αααα(R(s)+γ maxa’Q(s’,a’)–Q(s,a))

Q-Learning: Updating Q without a
Model

After moving from state s to state s’ using action a:

Q(s,a)�Q(s,a)+αααα(R(s)+γ maxa’Q(s’,a’)–Q(s,a))

New
estimate of

Q(s,a)

Old estimate
of Q(s,a)

Learning rate
0< αααα <1

Difference between old estimate and
new guess after taking action a

10

Q-Learning: Estimating the policy

Q-Update: After moving from state s to state s’ using
action a:

Q(s,a) � Q(s,a) + αααα(R(s) + γγγγ maxa’Q(s’,a’) – Q(s,a))

Policy estimation:

π(s) = argmaxa Q(s,a)

Q-Learning: Estimating the policy

Q-Update: After moving from state s to state s’ using
action a:

Q(s,a) � Q(s,a) + αααα(R(s) + γγγγ maxa’Q(s’,a’) – Q(s,a))

Policy estimation:

π(s) = argmaxa Q(s,a)

Key Point: We do not use T(.,.,.) anywhere � We
can compute optimal values and policies without
ever computing a model of the MDP!

11

Q-Learning: Convergence

• Q-learning guaranteed to converge to an
optimal policy (Watkins)

• Very general procedure (because
completely model-free)

• May be slow (because completely model-
free)

12

π*(S1) = a1
π*(S2) = a1

13

Q-Learning: Exploration Strategies
• How to choose the next action while

we’re learning?
– Random
– Greedy: Always choose the estimated best

action π(s)
– ε-Greedy: Choose the estimated best with

probability 1-ε
– Boltzmann: Choose the estimated best with

probability proportional to e Q(s,a)/T

Evaluation
• How to measure how well the learning

procedure is doing?
• U(s) = Value estimated at s at the current

learning iteration
• U*(s) = Optimal value if we knew

everything about the environment

Error = |U – U*|

14

Constant Learning Rate

αααα = 0.1

αααα = 0.001

Decaying Learning Rate

[Data from Rohit & Vivek, 2005]

α = K/(K+iteration #)

15

Changing Environments

[Data from Rohit & Vivek, 2005]

Adaptive Learning Rate

[Data from Rohit & Vivek, 2005]

16

Example: Pushing Robot
• Task: Learn how to push boxes around.
• States: Sensor readings
• Actions: Move forward, turn

Example from Mahadevan and Connell, “Automatic Programming of Behavior-
based Robots using Reinforcement Learning, Proceedings AAAI 1991

Example: Pushing Robot

• State = 1 bit for each NEAR and FAR gates x 8
sensors + 1 bit for BUMP + 1 bit for STUCK = 18
bits

• Actions = move forward or turn +/- 22o or turn +/-
45o = 5 actions

Example from Mahadevan and Connell, “Automatic Programming of Behavior-
based Robots using Reinforcement Learning, Proceedings AAAI 1991

NEAR
FAR

BUMP

STUCK

17

Learn How to Find the Boxes

• Box is found when the NEAR bits are on
for all the front sonars.

• Reward:
R(s) = +3 if NEAR bits are on
R(s) = -1 if NEAR bits are off

NEAR

Learn How to Push the Box

• Try to maintain contact with the box while
moving forward

• Reward:
R(s) = +1 if BUMP while moving forward
R(s) = -3 if robot loses contact

BUMP

18

Learn how to Get Unwedged

• Robot may get wedged against walls, in
which the STUCK bit is raised.

• Reward:
R(s) = +1 if STUCK is 0
R(s) = -3 if STUCK is 1

STUCK

Q-Learning

• Initialize Q(s,a) to 0 for all state-
action pairs

• Repeat:
–Observe the current state s

• 90% of the time, choose the action a
that maximimizes Q(s,a)

• Else choose a random action a

–Update Q(s,a)

19

Q-Learning
• Initialize Q(s,a) to 0 for all state-action

pairs
• Repeat:

– Observe the current state s
• 90% of the time, choose the action a that

maximimizes Q(s,a)
• Else choose a random action a

– Update Q(s,a)
Improvement:
Update also all the states s’ that are “similar” to s.

In this case: Similarity between s and s’ is measured by
the Hamming distance between the bit strings

Performance

Q-Learning
(2 different versions of similarity)

Hand-coded

Random agent

20

Generalization

• In real problems: Too many states (or
state-action pairs) to store in a table

• Example: Backgammon � 1020 states!

• Need to:
– Store U for a subset of states {s1,..,sK}
– Generalize to compute U(s) for any other

states s

Generalization

We have sample
values of U for
some of the
states s1, s2

States s States s

Value U(s) Value U(s)

s1 s2 ………..

f(sn) ~ U(sn)

We interpolate a
function f(.), such
that for any query
state sn, f(sn)
approximates U(sn)

21

Generalization
• Possible function approximators:

– Neural networks
– Memory-based methods

• …… and many others solutions to representing
U over large state spaces:
– Decision trees
– Clustering
– Hierarchical representations

State s Value U(s)

Example: Backgammon

• States: Number of red and white checkers at
each location

� Order 1020 states!!!!
� Branching factor prevents direct search
• Actions: Set of legal moves from any state

Example from: G. Tesauro. Temporal Difference Learning and TD-Gammon.
Communications of the ACM, 1995

22

Example: Backgammon

• Represent mapping from states to expected
outcomes by multilayer neural net

• Run a large number of “training games”
– For each state s in a training game:
– Update using temporal differencing
– At every step of the game � Choose best move

according to current estimate of U
• Initially: Random moves
• After learning: Converges to good selection of

moves

Performance

• Can learn starting with no knowledge at all!
• Example: 200,000 training games with 40

hidden units.
• Enhancements use better encoding and

additional hand-designed features

• Example:
– 1,500,000 training games
– 80 hidden units
– -1 pt/40 games (against world-class opponent)

23

Example: Control and Robotics

• Devil-stick juggling (Schaal and Atkeson): Non-
linear control at 200ms per decision. Program
learns to keep juggling after ~40 trials. A human
requires 10 times more practice.

• Helicopter control (Andrew Ng): Control of a
helicopter for specific flight patterns. Learning
policies from simulator. Learns policies for
control pattern that are difficult even for human
experts (e.g., inverted flight).
http://heli.stanford.edu/

Summary

• Certainty equivalent learning for estimating
future rewards

• Exploration strategies
• One-backup update, prioritized sweeping
• Model free (Temporal Differencing = TD) for

estimating future rewards
• Q-Learning for model-free estimation of future

rewards and optimal policy
• Exploration strategies and selection of actions

24

(Some) References
• S. Sutton and A.G. Barto. Reinforcement

Learning: An Introduction. MIT Press.
• L. Kaelbling, M. Littman and A. Moore.

Reinforcement Learning: A Survey. Journal of
Artificial Intelligence Research. Volume 4, 1996.

• G. Tesauro. TD-Gammon, a self-teaching
backgammon program, achieves master-level
play. Neural Computation 6(2), 1995.

• http://ai.stanford.edu/~ang/
• http://www-all.cs.umass.edu/rlr/

