

Outline

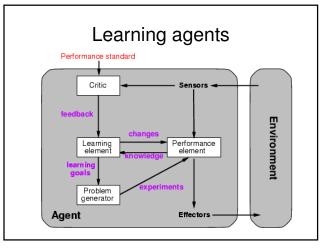
- · Learning and philosophy
- Induction versus Deduction
- Decision trees: introduction

Learning

- How do we define learning?
- Gathering more knowledge
 "Knowing more than was known before learning"
- Learning "substitutes" the need to model a priori
- Experience, feedback, refinement
- Learning modifies the agent's decision mechanisms to improve performance

Learning

- Declarative versus Procedural Knowledge
- Explicit versus Implicit Knowledge
- Induction versus Deduction



Learning "Element"

- A bit of "magic":
 - Which components of the performance element are to be learned
 - What feedback is available to learn these components
 - What representation is used for the components
- · Type of feedback:
 - Supervised learning: correct labels/answers
 - Unsupervised learning: {correct labels/answers} missing
 - Reinforcement learning: occasional rewards

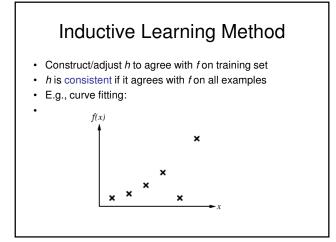
Inductive Learning

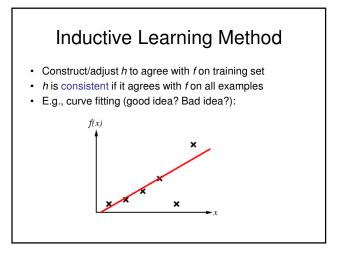
• Simplest form: learn a function from examples

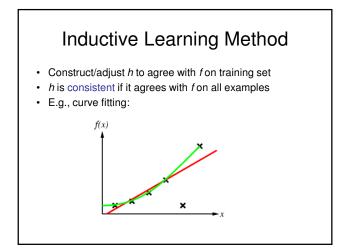
f is the target function

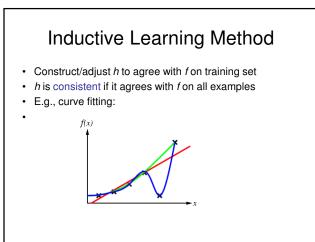
An example is a pair (x, f(x)) – supervised learning

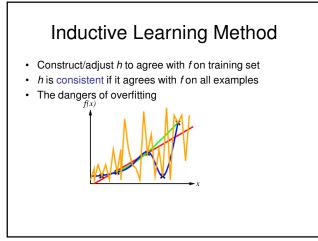
Problem: find a hypothesis hsuch that $h \approx f$ given a training set of examples

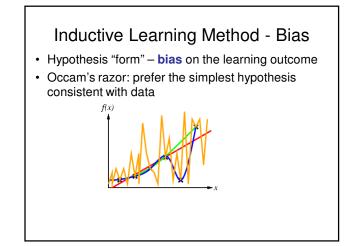












Attribute-Based Data Sets

- · Examples described by attribute values (Boolean, discrete, continuous)
- · Function is class, wait/not wait for table at restaurant

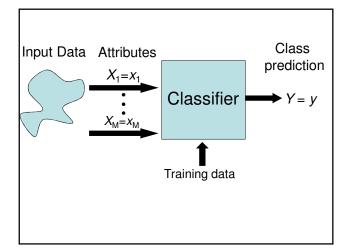
Example					At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т

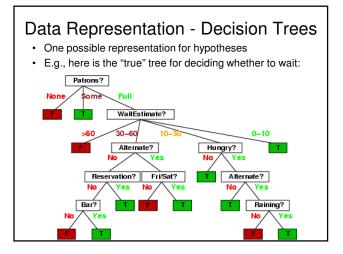
· Classification of examples is positive (T) or negative (F)

Attribute-Based Data Set

- .
- •
- Type: drama, comedy, thriller Company: MGM, Columbia Director: Bergman, Spielberg, Hitchcock Mood: stressed, relaxed, normal :

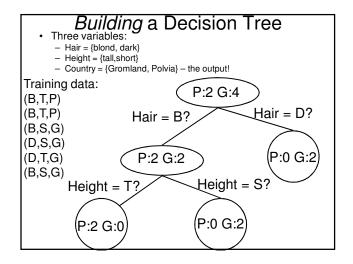
Movie	Туре	Company	Director	Mood	Likes-movie?	
<i>m</i> ₁	thriller	MGM	Bergman	normal	No	
<i>m</i> ₂	comedy	Columbia	Spielberg	stressed	Yes	
<i>m</i> ₃	comedy	MGM	Spielberg	relaxed	No	
m_4	thriller	MGM	Bergman	relaxed	No	
<i>m</i> ₅	comedy	MGM	Hitchcock	normal	Yes	
m ₆	drama	Columbia	Bergman	relaxed	Yes	
m7	drama	Columbia	Bergman	normal	No	
m ₈	drama	MGM	Spielberg	stressed	No	
m ₉	drama	MGM	Hitchcock	normal	Yes	
m ₁₀	comedy	Columbia	Spielberg	relaxed	No	
<i>m</i> ₁₁	thriller	MGM	Spielberg	normal	No	
m12	thriller	Columbia	Hitchcock	relaxed	No	

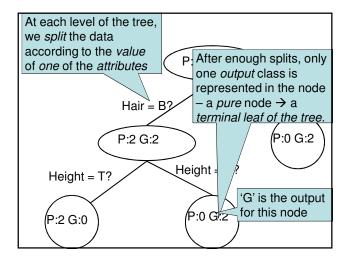


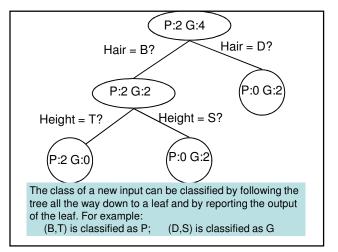


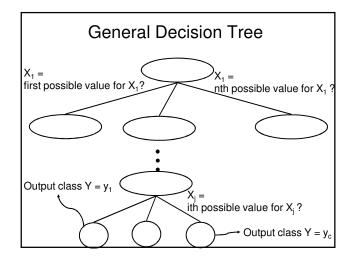
Expressiveness

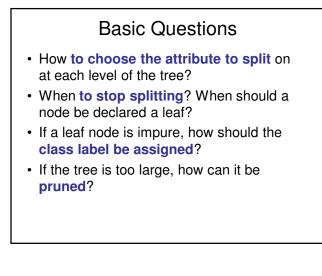
- Decision trees can express any function of the input attributes
 - E.g., for Boolean functions, truth table row \rightarrow path to leaf
- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless *f* nondeterministic in *x*)
 - But... it probably won't generalize to new examples goal of learning...
- · Goal: Find more "compact" decision trees









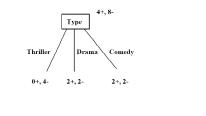


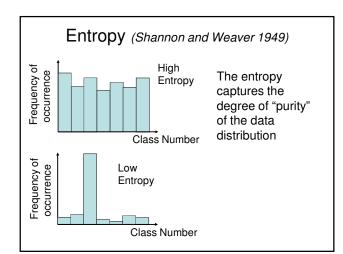
Company Director: E	ma, comedy, thri : MGM, Columbi Bergman, Spielb essed, relaxed, r	a erg, Hitchcock			
Movie	Туре	Company	Director	Mood	Likes-movie?
<i>m</i> ₁	thriller	MGM	Bergman	normal	No
m ₂	comedy	Columbia	Spielberg	stressed	Yes
m ₃	comedy	MGM	Spielberg	relaxed	No
m_4	thriller	MGM	Bergman	relaxed	No
m ₅	comedy	MGM	Hitchcock	normal	Yes
m ₆	drama	Columbia	Bergman	relaxed	Yes
<i>m</i> ₇	drama	Columbia	Bergman	normal	No
m _B	drama	MGM	Spielberg	stressed	No
m ₉	drama	MGM	Hitchcock	normal	Yes
m ₁₀	comedy	Columbia	Spielberg	relaxed	No
m ₁₁	thriller	MGM	Spielberg	normal	No
m ₁₂	thriller	Columbia	Hitchcock	relaxed	No

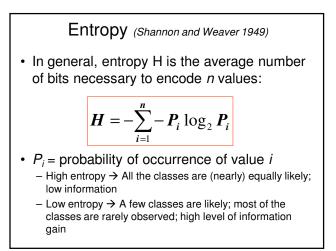
Choosing the "Best" Attribute

- Ideal attribute partitions examples into all positive or all negative (or from the same class in each partition).
- Attribute that results in higher "discrimination."

How good is the attribute "Type" of movie?







7

Entropy for Attribute Choice

- Measure of information provided by the attribute
- Entropy of a set of examples *S* as the information content of *S*.

Entropy(S) =
$$\sum_{i=1}^{c} -p_i \log_2 p_i$$

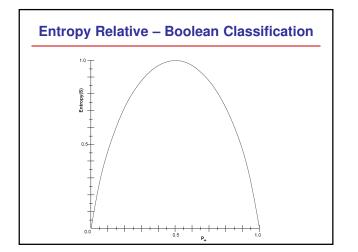
where $p_i = \frac{|S_i|}{|S|}$

• c classes, Si size of the data set for class i

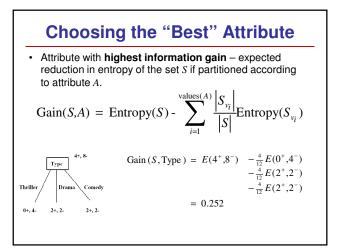
Entropy

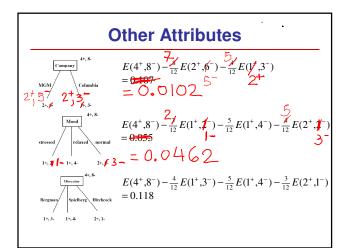
- Unit: 1 bit of information =
 - the information content of the actual answer when there are two possible answers equally probable.

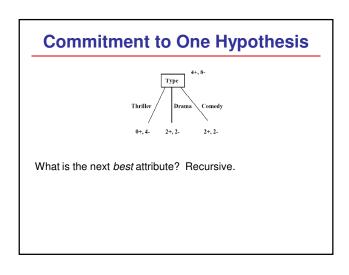
$$E(S) = -\frac{1}{2}\log_2 \frac{1}{2} - \frac{1}{2}\log_2 \frac{1}{2} = 1$$

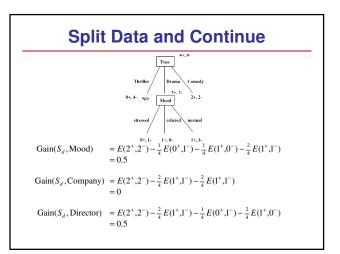


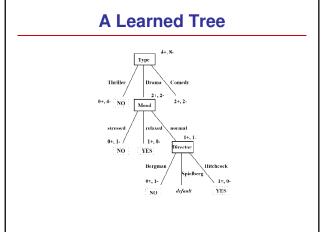
Entropy – Example
• <i>S</i> = 12, <i>c</i> = 2(+,-), <i>S</i> ₊ =4, <i>S</i> ₋ =8
$E(S) = -\frac{4}{12}\log_2\frac{4}{12} - \frac{8}{12}\log_2\frac{8}{12}$ = 0.918

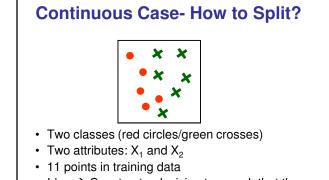




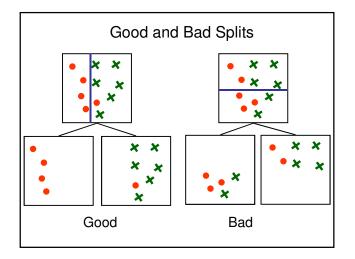


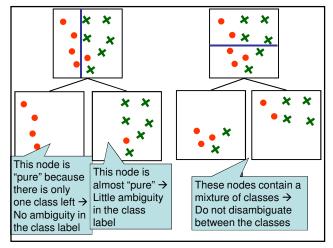


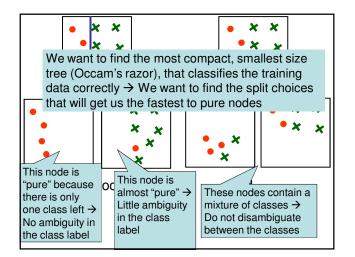


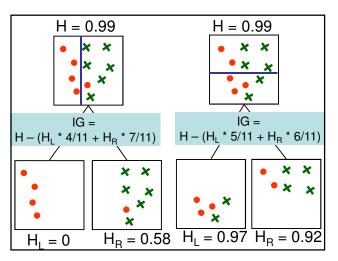


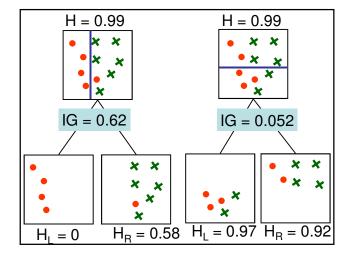
 Idea → Construct a decision tree such that the leaf nodes predict correctly the class for all the training examples

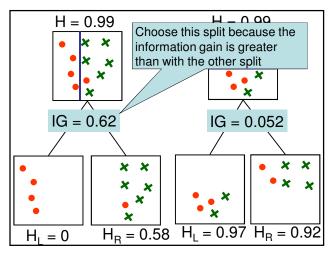


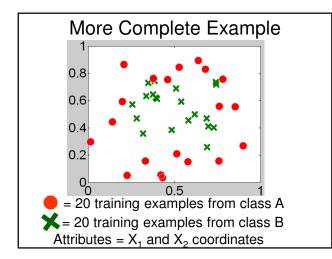


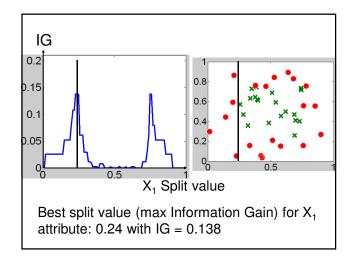


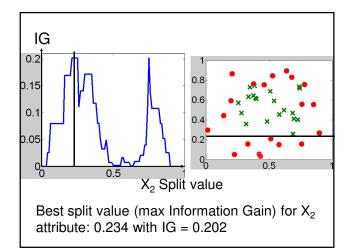


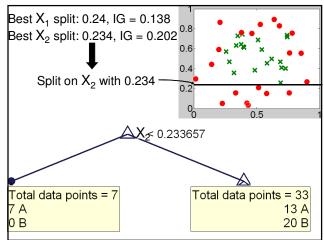


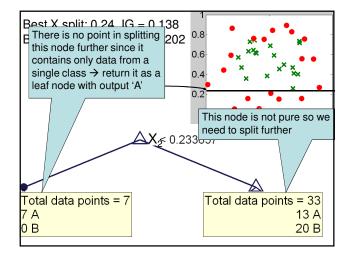


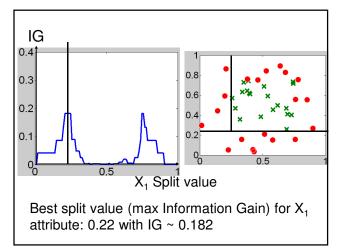


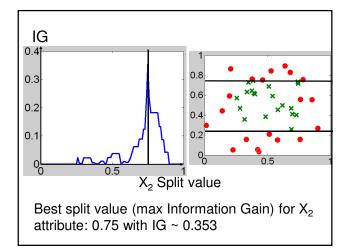


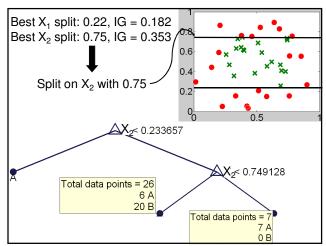


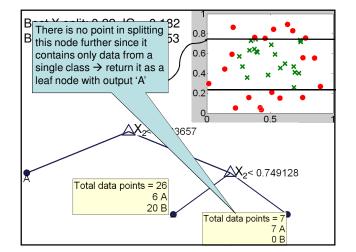


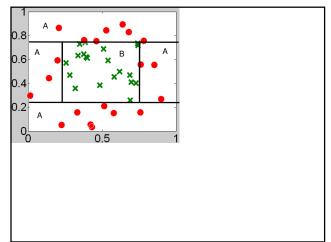


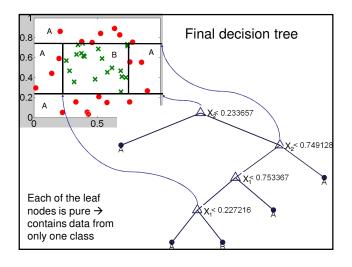


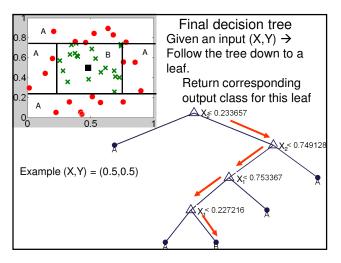












Induction of Decision Trees

ID3 (examples, attributes) if there are no examples then return default else if all examples are members of the same class then return the class else if there are no attributes then return Most Common Class (examples) else best attribute ← Choose Best (examples, attributes) root - Create_Node_Test (best_attribute) for each value v_i of best_attribute examples v_i or bos_attribute examples with best_attribute = v_i subtree \leftarrow **ID3**(examples v_i , attributes - best_attribute) set subtree as a child of root with label v_i return root

Basic Questions

- · How to choose the attribute/value to split on at each level of the tree?
- · When to stop splitting? When should a node be declared a leaf?
- · If a leaf node is impure, how should the class label be assigned?
- · If the tree is too large, how can it be pruned?

Comments on Tree Termination

- Zero entropy in data set, perfect classification
 - Type = thriller, 0+ 4-
 - Type = drama, Mood = stressed, 0+ 1-
 - Type = drama, Mood = relaxed, 1+ 0 Type = drama, Mood = normal, Director = Bergman, 0+ 1-
 - Type = drama, Mood = normal, Director = Hitchcock, 1+ 0-
- No examples availables

- Type = drama, Mood = normal, Director = Spielberg

- Indistinguishable data

 - Type = comedy, attribute Director: m2, Spielberg, Yes, and m3, Spielberg, No
 - * m5, Hitchcock, Yes, and m10, Spielberg, No
 - (Type = comedy, attribute Mood, could have split?).

Errors

Split labeled data D into training and validation sets

- Training set error fraction of training examples for which the decision tree disagrees with the true classification
- Validation set error fraction of testing examples from given labeled examples - for which the decision tree disagrees with the true classification

Overfitting

Tree too specialized - "perfectly" fit the training data.

- A tree ${\it T}$ overfits the training data, if there is an alternate ${\it T'}$ such that
- for training set, error with T < error with T'
- for complete D, error with T > error with T'
- Node Pruning
- Rule Post-pruning
- Cross validation

Reduced-Error Pruning

- Remove subtree, make node a leaf node, assign the most common classification of the examples of that node.
- · Check validation set error
- Continue pruning until error does not increase with respect to the error of the unpruned tree
- Rule post-pruning: represent tree as set of rules; remove rules independently; check validation set error; stop with same criteria

Other Issues

- · Attributes with many values
 - Information gain may select it.
 - Consider splitting value and use the ratio between Gain and the splitting value
- · Attributes with cost
 - Use other metrics
- · Attributes with missing values
 - Infer most common value from examples at node

Summary

- · Inductive learning supervised learning classification
- Decision trees represent hypotheses
- · DT learning driven by information gain heuristic
- Recursive algorithm to build decision tree
- · Next class:
 - More on continuous values
 - Missing, noisy attributes
 - Overfitting, pruning
 - Different attribute selection criteria