Optimization 2:
Local Search
Stochastic Search
Randomized Search

lllah Nourbakhsh
[much credit to prior teachers]

Local Search
« Given:
— A set of states (or configurations) S = {X;.. Xy}

— A function that evaluates each configuration:
Eval(X)

» Solve:

— Find global extremum: Find X* such that Eval(X™) is
greater than all Eval(X) for all possible values of X;

Eval(X)




What makes this challenging?

» Problems of particular interest:

— Set of configurations too large to be enumerated
explicitly

— Computation of Eval(.) may be expensive

— There is no algorithm for finding the maximum of
Eval(.) efficiently

— Solutions with similar values of Eval(.) are
considered equivalent for the problem at hand

— We do not care how we get to X* (the path), we
care only about the description of the configuration
X* (this is a key difference with the earlier search
problems)

~ Real-World Examples

— N : : ‘n., gt HE 177 5%‘?— 3
= Placement
: Floorplanning

Channel routing

Compaction
» VLSI layout:
— X = placement of components + routing of
interconnections

— Eval = Distance between components + %
unused + routing length + ?




Real-World Examples

Scheduling: Given m machines, n jobs
X = assignment of jobs to machines
Eval = completion time of the n jobs (minimize)

Others: Vehicle routing, design, treatment sequencing,

Example: TSP (Traveling Salesperson Problem)

X,={1253674) X,={125476 3}
EvaI(X1) > EvaI(XQ) (smaller is better)

Configuration X = tour through nodes {1,..,N}
Eval = Length of path

Find X*that realizes the minimum of Eval(X)
Size of search space = order (N-1)1/2

Size: Solutions for N = hundreds of thousands




Example: SAT (SATisfiability)
Av—BvC

—AvCvD
BvDv—E
—ﬂjv—ﬂ)v—ﬂi

_IA\/_IC\/E .........
A B C D E Eval

X, |true |true |false |true |false|5
X, |true |true |true |true |true |4

Example: SAT (SATisfiability)
Av—=BvC

A B C D E Eval
—-AvCvD
X, | true |true |false|true |false|5
BvDv—E 1
X, |true |true |true |true |true |4
ﬂC\/ _ID\/ ﬂE
—Av-—-CVE

Configuration X = Vector of assignments of N Boolean
variables

Eval(X) = Number of clauses that are satisfied given the
assignments in X

Find X*that realizes the maximum of Eval(X)
Size of search space = 2N
Note: Solutions for 1000s of variables and clauses




SATisfiability

» Real world examples of SAT problems?

Example: N-Queens

Eval(X) = 5 Eval(X) = 2

Find a configuration in
which no queen can
attack any other queen

What's Eval() here?

Eval(X) = 0




Eval(X) = 5

columns

» Eval(X) = Nu
each other

Example: N-Queens

Eval(X) = 2 Eval(X) = 0

» Configuration X = Position of the N queens in N

mber of pairs of queens that are attacking

* Find X*that realizes the minimum: Eval(X*) =0
« Size of search space: order NN
» Note: Solutions for N = millions

ocal Search
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Simplest Example

100
90}
80}
70k
60
50
401
30}

20

S={1,..,100}
Neighbors(X) = {X-1,X+1}
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Simplest Example

Local optimum

90

Eval(X™) >=
Eval(X) for all Xs
in Neighbors(X)

T

Global optimum
Eval(X*) >=
Eval(X) for all Xs |

7Neighbors(X) =
{X-1,X+1}

S={1,.,100}

L L L L
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» We are interested in the global maximum, but we
may have to be satisfied with a local maximum

* In fact, at each iteration, we can check only for
local optimality (remember, Eval() is expensive)

» The challenge: Try to achieve global optimality
through a sequence of local moves




Most Basic Algorithm: Hill-Climbing
(Greedy Local Search)
« X < Initial configuration

« lterate:
1. E & EvalX)
2. WA < Neighbors(X)
3. Foreach X in #
E, & Eval(X)
4. If all E/s are lower than E

Return X
Else
i*=argmax, () X& X. E<E;

More Interesting Examples
« How can we define Neighbors(X)?

6 Av—=BvC
9 0 0 —AvCvD
SAT BvDv—E
U—@
o —|C\/—|D\/ﬁE
—Av—=CvVvE

N-Queens




Issues

 Trade-off on size of neighborhood

- larger neighborhood = better chance of
finding a good maximum but may require
evaluating an enormous number of moves

—> smaller neighborhood = smaller number
of evaluations but may get stuck in poor
local maxima

Multiple “poor” local maxima




I
Plateau = constant region of Eval(.)

X*
Eval(X)
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Issues

Multiple “poor” local maxima  Plateau = constant region of Eval(.)

X*

Eval(X)

Ridge = Impossible to
reach X*from X
using uphill moves only

Issues

« Constant memory usage

 All we can hope is to find the local
maximum “closest” to the initial
configuration > Can we do better than
that?

 Ridges and plateaus will plague all local
search algorithms

11



Stochastic Search: Randomized
Hill-Climbing

« X < Initial configuration

* lterate: 4] Until when?

1. E € Eval(X)

2. X’ € one configuration
randomly selected in
Neighbors (X)

S E<CE Va/(X )) Critical change: We no
4. If E'> E longer select the best
move in the entire
X< X neighborhood
E< E
TSP Moves
(5) “2-change” 2

(2 (» (7) O(N?) neighborhood

O (3) G
Select 2
edges o

(5
(2) (4) (7) ﬂ
Invert the order of
the corresponding

0 9 0 vertices
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“3-change” 2 O(NP)
neighborhood

Hill-Climbing: TSP Example

 k-opt = Hill-climbing with k-change neighborhood

« Some results:

— 3-opt better than 2-opt
— 4-opt not substantially better given increase in computation

time

— Use random restart to increase probability of success
— Better measure: % away from (estimated) minimum cost

% error from

% error from

Running time

Running time

min cost min cost (N=100) (N=1000)
(N=100) (N=1000)

2-Opt 4.5% 4.9% 1 11

2-Opt (Bestof |1.9% 3.6%

1000)

3-Opt 2.5% 3.1% 1.2 13.7

3-Opt (Best of 1.0% 2.1% Data from: Aarts & Lenstra, “Local Search

1000)

in Combinatorial Optimization”, Wiley

Interscience Publisher
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Hill-Climbing: SAT
Av—=BvC —Cv-=-Dv-=-E
—AvCvD-----ee. —Av-CVE

« State X = assignment of N boolean
variables

« Initialize the variables (x;,..,Xx\) randomly to
fruel/false

 lterate until all clauses are satisfied or max
iterations:

1.Select an unsatisf% Random
2.With probability p: walk part

Select a variable x; at random
3.With probability 1-p:
Select the variable x, such that cha] Greedy part
unsatisfy the least number of clauses (Max of

Eval(X))

4.Change the assignment of the selected
variable x;

14



Hill-Climbing: SAT

 WALKSAT algorithm still one of the most
effective for SAT

» Combines the two ingredients: random
walk and greedy hill-climbing

» Incomplete search: Can never find out if
the clauses are not satisfiable

For more details and useful examples/code: http://www.cs.washington.edu/homes/kautz/walksat/

Simulated Annealing
1. E € EvallX)

2. X’ < one configuration randomly selected
in Neighbors (X)

) Critical change: We no longer
3. E< EV&/(X’) move always uphill. Next
4. IfE'>= E question: How to choose p?
X< X
E< E

Else accept the move to X’ with some
probability p:

X< X

E< E

15



How to set p?

« X € Initial configuration If p constant: We don’t know
* lterate: how to set p = should depend
1. E € Eval(X) on the shape of the Eval
2. X’ € one configuration ~ function
randomly selected in Decrease iterati
) p as the iterations
Ne:/ghbor s (X) progress - We accept
3. E' €& Eval(X) fewer downhill moves as we
4. If E'>= E approach the global
X&EX maximum
E< E

Decrease p as E-E’increases
Else accept the move to ”

Pt L . > Lower probability to move
X"with some probability p: -y oopiy ifpslope s high

X< X
E< E

How to set p? Intuition

E = E(X)

E’= E(X)
E—- E’is large: ltis E— E’is small: It is likely that we
more likely that we are are moving toward a shallow
moving toward a maximum that is likely to be a
(promising) sharp (uninteresting) local maximum,
maximum so we don’t so we like to move downhill to
want to move downbhill explore other parts of the
too much landscape

16



Choosing p: Simulated Annealing

» If E’>= E accept the move
» Else accept the move with probability:
p=e (E-ENT

« Start with high temperature T and decrease T
gradually as iterations increase (“cooling schedule”)

p
Increasing T
Increasing |AE|
Simulated Annealing >
« X < Initial configuration
« T < Initial high temperature
e lterate: | lterate a number of times keeping

the temperature fixed

1. Do Klimes: T
1.1 E € Eval(X)
1.2 X’ < one configuration randomly selected in

Neigfzbors (X) Use the previous definition of
1.3 E’ < Eval(X) the probability

141f E'~— E
Progressively decrease the
temperature using an exponential .
cooling schedule: T(n) = o Twith a < 1 [bility p = e (E-EVT
X, E € E’;
2 T&aoT T=0 - Greedy hill climbing

T =2-> Random walk

17
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Basic Example

120

E

100 -

80

Note that larger
deviations from uphill
search are allowed at
high temperature
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Where does this come from?

If the temperature of a solid is T, the probability of moving
between two states of energy is:

e —AEnergy/kT

If the temperature T of a solid is decreased slowly, it will
reach an equilibrium at which the probability of the solid being
in a particular state is:

Probability (State) proportional to € ~Eneray(State)/kT

Boltzmann distribution - States of low energy relative to T
are more likely

Analogy:
— State of solid <-> Configurations X
— Energy <-> Evaluation function Eval(.)

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth. A.H. Teller
and E. Teller, Journal Chem. Phys. 21 (1953) 1087-1092
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A TSP Example

N = 13 nodes (in a circle)

K=100N Starting configuration
E=25 E(X) =55

Note: Boring but it has an
obvious solution

A TSP Example

Note that larger deviations from downhill
search are allowed at high temperature
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Another Example

i

N = 13 nodes Initial state

K= 100N




Another Example
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What can we say about convergence?
* In theory:

lim lim Pr(X (T, K)e S) =1

T—0 K—o

_\

In words: Probability that the state reached after K
iterations at temperature T is a global optimum

* In practice:

— Perform a large enough number of iterations (K
“large enough”)

— Decrease temperature slowly enough (o “close
enough”to 1)

— But, if not careful, we may have to perform an
enormous number of evaluations

Simulated Annealing
« X & |Initial configuration|
* T < |Initial high temperature|

© lterate: Many parameters
1. Dotimes:
I
11 E < EvallX) need to be tweaked!!

1.2 X’ € one configuration|randomly selected|in

Neighbors| (X)

1.3 E’ € Eval(X)
14I1f E'>=E
X&€ X, E€ E;
Else accept the move with probability p = e (E-E)/T ;
X&€ X, E€ E;
2. T€o|T




SA Discussion

Design of neighborhood is critical

How to choose K? Typically related to size of
neighborhood

How to choose a7 Critical to avoid large number
of useless evaluations. Especially a problem
close to convergence (empirically, most of the
time spent close to the optimum)

SA Discussion

* How to choose starting temperature? Typically
related to the distribution of anticipated values of
AE (e.g., Tg, = max{AE over a large sample of
pairs of nelgahbors

» What if we choose a really bad starting X?
Multiple random restart.

» How to avoid repeated evaluation? Use a bit
more memory by remembering the previous
moves that were tried (“Tabu search”)

» Use (faster) approximate evaluation if possible
(How?)




SA Discussion

 Often better than hill-climbing. Successful
algorithm in many applications

* Many parameters to tweak. If not careful,
may require very large number of
evaluations

« Semi-infinite number of variations for
improving performance depending on
applications

Genetic/Evolutionary
Algorithms

25



Genetic Algorithms

» View optimization by analogy with evolutionary
theory - Simulation of natural selection

« View configurations as individuals in a
population
» View Eval as a measure of fitness

» Let the least-fit individuals die off without
reproducing

 Allow individuals to reproduce with the best-fit
ones selected more often

» Each generation should be overall better fit
(higher value of Eval) than the previous one

+ If we wait long enough the population should
evolve so toward individuals with high fitness
(i.e., maximum of Eval)

Genetic Algorithms: Implementation

» Configurations represented by strings:

X=|1/0/0(1|1(0|0|1

* Analogy:
— The string is the chromosome representing the individual
— String made up of genes
— Configuration of genes are passed on to offsprings

— Configurations of genes that contribute to high fitness tend to
survive in the population

« Start with a random population of P configurations and
apply two operations

— Reproduction: Choose 2 “parents” and produce 2 “offsprings”

— Mutation: Choose a random entry in one (randomly selected)
configuration and change it

26



Genetic Algorithms: Reproduction
1/0/0(1{1/0/0]|1

Parents:

1/0{1{1/0/0(0|1

Genetic Algorithms: Reproduction
1/0/0(1{1/0/0|1

Parents:

1/0/1|/1|/0/0|0|1

Selectrandom |1/0(0(1|1|0|0|1
crossover point:

27



Genetic Algorithms: Reproduction
1/0/0(1{1/0/0]|1

Parents:

1/0{1{1/0/0(0|1

Selectrandom |(1({0|0|1(1|0|0 (1
crossover point:

Offspring: |1/0 (0 1/0(1(1{1|0|0]|1

« Each offspring receives part of the genes
from each of the parents

» Implemented by crossover operation

Genetic Algorithms: Mutation

« Random change of one element in one
configuration

- Implements random deviations from inherited
traits

—>Corresponds loosely to “random walk”: Introduce
random moves to avoid small local extrema

110/0/1|1|0|0|1

110/0/1/0/0|0|1] |1|1|1}{1|1|{0|O0|1] (11|01 ]{1/0]|0O

1/1(1{1{1/0/0(1

Select a random Select arandom entry Change that entry
individual

28



Basic GA QOutline

- Create initial population X = {X,,..,Xp}
 |terate: Stopping condition is not obvious?

Possible strategy:
Select the best rP
individuals (r< 1) for
reproduction and

1. Select K
2. For each pair of pare

1.1 Generate offsprings (Y

Variation: discard the rest >

Implemen lection of
Generate only glemznis selEaen @

Sns oftapring r each offspring Yi;: the fittest

replace randomly selected element of the
population by Y;
With probability u.:
Apply a random mutation to Y;
» Return the best individual in the population

Genetic Algorithms: Selection

 Discard the least-fit individuals through threshold on
Eval or fixed percentage of population
» Select best-fit (larger Eval) parents in priority
« Example: Random selection of individual based on
the probability distribution
Eval(X)

> Eval(Y)

Ye population
« Example (tournament): Select a random small subset

of the population and select the best-fit individual as
a parent

Pr(individual X selected) =

» Implements “survival of the fittest”

» Corresponds loosely to the greedy part of hill-
climbing (we try to move uphill)

29



GA and Hill Climbing
 Create initial population X = {X;,..,Xp}

* lterate: ——
Hill-climbing component: Try to
1. Select Krandom|  move uphill as much as possible

2. For W:
1.1"Generate offsprings (Y;, Y,) using crossover

operation

Random walk
component: Move
randomly to escape
shallow local maxima

offspring Yi:
andomly selected element of the

With probabi
Apply a random™mutation to Y;

» Return the best individual in the population

How would you set up these
problems to use GA search?

6 Av—=BvC
9 0 0 —AvCvD
SAT BvDv—E
o 0 o —|C\/—|D\/ﬁE
—Av—=CvVvE
N-Queens
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TSP Example

301

N=13 16

P =100 elements in Minimum cost

population

Average cost in population

s 10 5 2 s 2/ %
u = 4% mutation rate

r=50% reproduction rate
(K=rP)

Optimal solution reached at
generation 35
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Another TSP Example

Cpst .

Converges and remains stable
after generation 23
0.4% difference:

GA =11.801
SA =11.751

But: Number of operations

(number of cost evaluations) much 1175

smaller for GA (approx. 2500)

\\ﬂAverage cost in population

Minimum cost

0o s Jo Stabilizes at
generation 23

11,85
11.8L

WYY
YWY PYPYYYPYY
VYV YyYyyyy
YV PPV YY
YW W W W

Population at generation 40

WPy pyrywyy
V2 2 2 28 28 o8 & 25 2 o
Y rEryryrrEryryy
YPrYPEYPrYyErrEry
WyryYyyrrrrpyFrF
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Small Group challenge

Walking Machine control algorithm
* Inputs

— 8 force sensors on the feet

— Joint angle sensors

— Accelerometer in the hip
» Output

— Torque commands to all joints

What is your GA representation for the
genes?

GA Programming

Individual = program instance
Configuration X = parse tree representing a program

oRCRO (ifte (X > Y) X Y)
OO
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Crossover

Use genetic algorithms as before with this definition of crossover
Example applications: robot controller, signal processing, circuit design

Intriguing; but- alternative solutions exist for most of these applications. GA is no

the first approach to consider!!!
Koza. Genetic programming: On the programming of computers by means of natural selection. MIT Press. 1992
http://www.genetic-programming.org/

GA Discussion

« Many parameters to tweak: u, P, r

* Many variations on basic scheme. Examples:
— Multiple-point crossover
— Dynamic encoding
— Selection based on rank or relative fitness to least fit
individual
— Multiple fitness functions
— Combine with a local optimizer (for example, local hill-
climbing) - Deviates from “pure” evolutionary view
* In many problems, assuming correct choice of
parameters, can be surprisingly effective
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GA Discussion

* Why does it work at all?

 Limited theoretical results (informally!):

— Suppose that there exists a partial assignment of genes s
such that:

Averageof Eval(X) = Averageof Eval(Y)

X contains s YePopulation

— Then the number of individuals containing s will increase
in the next generation
» Key consequence: The design of the
representation (the chromosomes) is critical to the
performance the GA. It is probably more important
than the choice of parameters of selection strategy,
etc.

Summary

« Hill Climbing

+ Stochastic Search

» Simulated Annealing
» Genetic Algorithms

» Class of algorithms applicable to many practical
problems

* Not useful if more direct search methods can be used

» The algorithms are general black-boxes. What makes
them work is the correct engineering of the problem
representation

— State representation

— Neighborhoods

— Evaluation function

— Additional knowledge and heuristics

36



(Some) References

Russell & Norvig, Chap. 4

Aarts & Lenstra. Local Search in Combinatorial
Optimization. Wiley-InterScience. 1997.

Spall. Introduction to Stochastic Search and
Optimization. Wiley-InterScience. 2003.

Numerical Recipes (http://www.nr.com/).

Haupt&Haupt. Practical Genetic Algorithms. Wiley-
InterScience. 2004.

Mitchell. An Introduction to Genetic Algorithms (Complex
Adaptive Systems). MIT Press. 2003.

http://www.cs.washington.edu/homes/kautz/walksat/

37



