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Optimization 2:
Local Search

Stochastic Search 
Randomized Search

Illah Nourbakhsh
[much credit to prior teachers]

Local Search
• Given:

– A set of states (or configurations) S = {X1..XM}
– A function that evaluates each configuration: 

Eval(X)

• Solve:
– Find global extremum: Find X* such that Eval(X*) is 

greater than all Eval(Xi) for all possible values of Xi

Eval(X)

X*
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What makes this challenging?
• Problems of particular interest:

– Set of configurations too large to be enumerated 
explicitly

– Computation of Eval(.) may be expensive
– There is no algorithm for finding the maximum of 

Eval(.) efficiently
– Solutions with similar values of Eval(.) are 

considered equivalent for the problem at hand
– We do not care how we get to X* (the path), we 

care only about the description of the configuration 
X* (this is a key difference with the earlier search 
problems)

Real-World Examples

• VLSI layout: 
– X = placement of components + routing of 

interconnections
– Eval = Distance between components + % 

unused + routing length + ?

Placement
Floorplanning
Channel routing
Compaction



3

Real-World Examples

• Scheduling: Given m machines, n jobs
• X = assignment of jobs to machines
• Eval = completion time of the n jobs (minimize)

• Others: Vehicle routing, design, treatment sequencing, 
………  
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Example: TSP (Traveling Salesperson Problem)

• Configuration X = tour through nodes {1,..,N}
• Eval = Length of path
• Find X* that realizes the minimum of Eval(X)
• Size of search space = order (N-1)!/2 
• Size: Solutions for N = hundreds of thousands
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X1 = {1 2 5 3 6 7 4} X2 = {1 2 5 4 7 6 3}
Eval(X1) > Eval(X2)  (smaller is better)
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Example: SAT (SATisfiability) 

���ECA
EDC

EDB
DCA
CBA

∨¬∨¬
¬∨¬∨¬

¬∨∨
∨∨¬
∨¬∨

A B C D E Eval

X1 true true false true false 5
X2 true true true true true 4

Example: SAT (SATisfiability) 

• Configuration X = Vector of assignments of N Boolean 
variables

• Eval(X) = Number of clauses that are satisfied given the 
assignments in X

• Find X* that realizes the maximum of Eval(X)
• Size of search space = 2N

• Note: Solutions for 1000s of variables and clauses

���

ECA
EDC

EDB
DCA
CBA

∨¬∨¬
¬∨¬∨¬

¬∨∨
∨∨¬
∨¬∨

A B C D E Eval

X1 true true false true false 5

X2 true true true true true 4
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SATisfiability

• Real world examples of SAT problems?

Eval(X) = 0

Eval(X) = 2Eval(X) = 5

Find a configuration in 
which no queen can 
attack any other queen

What’s Eval() here?

Example: N-Queens
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Example: N-Queens

• Configuration X = Position of the N queens in N
columns

• Eval(X) = Number of pairs of queens that are attacking 
each other

• Find X* that realizes the minimum: Eval(X*) = 0
• Size of search space: order NN

• Note: Solutions for N = millions

Eval(X) = 0Eval(X) = 2Eval(X) = 5

Local Search

1. Xo ,� Initial candidate solution
2. Repeat until we are “satisfied” with the 

current configuration:
3. Evaluate some of the neighbors in 

Neighbors(Xi)
4. Select one of the neighbors Xi+1

5. Move to Xi+1

The definition of the 
neighborhoods is not 
obvious or unique in 

general. The performance 
of the search algorithm 
depends critically on the 

definition of the 
neihborhood which is not 
straightforward in general.

Ingredient 1. Selection 
strategy: How to decide 

which neighbor to accept

Ingredient 2. Stopping 
condition
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Simplest Example

S = {1,..,100}
Neighbors(X) = {X-1,X+1}

Simplest Example

• We are interested in the global maximum, but we 
may have to be satisfied with a local maximum

• In fact, at each iteration, we can check only for 
local optimality (remember, Eval() is expensive)

• The challenge: Try to achieve global optimality 
through a sequence of local moves

S = {1,..,100}

Neighbors(X) = 
{X-1,X+1}

Global optimum 
Eval(X*) >= 

Eval(X) for all Xs

Local optimum 
Eval(X*) >= 

Eval(X) for all Xs 
in Neighbors(X)
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Most Basic Algorithm: Hill-Climbing 
(Greedy Local Search)

• X � Initial configuration
• Iterate:

1. E � Eval(X)
2. �� Neighbors(X)
3. For each Xi in �

Ei � Eval(Xi)
4. If all Ei’s are lower than E

Return X
Else

i* = argmaxi (Ei)     X � Xi*       E � Ei*

More Interesting Examples
• How can we define Neighbors(X)?
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ECA
EDC

EDB
DCA
CBA

∨¬∨¬
¬∨¬∨¬

¬∨∨
∨∨¬
∨¬∨

TSP
SAT

N-Queens
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Issues

• Trade-off on size of neighborhood 
� larger neighborhood = better chance of 

finding a good maximum but may require 
evaluating an enormous number of moves

� smaller neighborhood = smaller number 
of evaluations but may get stuck in poor 
local maxima

Multiple “poor” local maxima
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Plateau = constant region of Eval(.)

Xstart

X*
Eval(X)
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Issues

Multiple “poor” local maxima Plateau = constant region of Eval(.)

Xstart

X*
Eval(X)

Ridge = Impossible to 
reach X* from Xstart
using uphill moves only

Issues
• Constant memory usage
• All we can hope is to find the local 

maximum “closest” to the initial 
configuration � Can we do better than 
that?

• Ridges and plateaus will plague all local 
search algorithms
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Stochastic Search: Randomized 
Hill-Climbing

• X � Initial configuration
• Iterate:
1. E � Eval(X)
2. X’ � one configuration 

randomly selected in 
Neighbors (X)

3. E’ � Eval(X’)
4. If E’ > E

X � X’
E � E’

Critical change: We no 
longer select the best 

move in the entire 
neighborhood

Until when?

TSP Moves
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Select 2 
edges

Invert the order of
the corresponding 

vertices

“2-change” �
O(N2) neighborhood
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Select 3 edges

“3-change” � O(N3) 
neighborhood
…….. k-change
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Hill-Climbing: TSP Example
• k-opt = Hill-climbing with k-change neighborhood
• Some results:

– 3-opt better than 2-opt
– 4-opt not substantially better given increase in computation 

time
– Use random restart to increase probability of success
– Better measure: % away from (estimated) minimum cost

% error from 
min cost
(N=100)

% error from 
min cost
(N=1000)

Running time 
(N=100)

Running time 
(N=1000)

2-Opt 4.5% 4.9% 1 11

2-Opt (Best of 
1000)

1.9% 3.6%

3-Opt 2.5% 3.1% 1.2 13.7

3-Opt (Best of 
1000)

1.0% 2.1% Data from: Aarts & Lenstra, “Local Search 
in Combinatorial Optimization”, Wiley 
Interscience Publisher
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Hill-Climbing: SAT

• State X = assignment of N boolean 
variables

• Initialize the variables (x1,..,xN) randomly to 
true/false

ECA
EDC

DCA
CBA

∨¬∨¬
¬∨¬∨¬

∨∨¬
∨¬∨

���

• Iterate until all clauses are satisfied or max 
iterations:
1.Select an unsatisfied clause
2.With probability p:

Select a variable xi at random

3.With probability 1-p:
Select the variable xi such that changing xi will 

unsatisfy the least number of clauses (Max of 
Eval(X))

4.Change the assignment of the selected 
variable xi

Random 
walk part

Greedy part
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Hill-Climbing: SAT

• WALKSAT algorithm still one of the most 
effective for SAT

• Combines the two ingredients: random 
walk and greedy hill-climbing

• Incomplete search: Can never find out if 
the clauses are not satisfiable

For more details and useful examples/code: http://www.cs.washington.edu/homes/kautz/walksat/

Simulated Annealing
1. E � Eval(X)
2. X’ � one configuration randomly selected 

in Neighbors (X) 
3. E’ � Eval(X’)
4. If E’ >= E

X � X’
E � E’

Else accept the move to X’ with some 
probability p:

X � X’
E � E’

Critical change: We no longer 
move always uphill. Next 

question: How to choose p?
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How to set p?
• X � Initial configuration
• Iterate:
1. E � Eval(X)
2. X’ � one configuration 

randomly selected in 
Neighbors (X) 

3. E’ � Eval(X’)
4. If E’ >= E

X � X’
E � E’

Else accept the move to 
X’ with some probability p:

X � X’
E � E’

If p constant: We don’t know 
how to set p � should depend 
on the shape of the Eval 
function

Decrease p as the iterations 
progress � We accept 
fewer downhill moves as we 
approach the global 
maximum

Decrease p as E-E’ increases 
� Lower probability to move 
downhill if slope is high

How to set p? Intuition
E = E(X)

E’ = E(X’)

E = E(X)

E’ = E(X’)

E – E’ is large: It is 
more likely that we are 
moving toward a 
(promising) sharp 
maximum so we don’t 
want to move downhill 
too much 

E – E’ is small: It is likely that we 
are moving toward a shallow 
maximum that is likely to be a 
(uninteresting) local maximum, 
so we like to move downhill to 
explore other parts of the 
landscape
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Choosing p: Simulated Annealing
• If E’ >= E accept the move
• Else accept the move with probability:

p = e -(E – E’)/T

• Start with high temperature T and decrease T 
gradually as iterations increase (“cooling schedule”)

Increasing |∆E|

Increasing T

p

Simulated Annealing
• X � Initial configuration
• T � Initial high temperature
• Iterate:
1. Do K times:

1.1 E � Eval(X)
1.2 X’ � one configuration randomly selected in 
Neighbors (X) 
1.3 E’ � Eval(X’)
1.4 If E’ >= E

X � X’; E � E’; 
Else accept the move with probability p = e -(E – E’)/T :

X � X’; E � E’; 
2. T � α T

Iterate a number of times keeping 
the temperature fixed

Use the previous definition of 
the probability

Progressively decrease the 
temperature using an exponential 

cooling schedule: T(n) = αn T with α < 1

T = 0 � Greedy hill climbing
T =   � Random walk∞



18

Basic Example

Starting point: We move 
most of the time uphill

T = T =

Iteration 150: Random 
downhill moves allow 
us to escape the local 
extremum 

Basic Example

T =

Iteration 180: Random 
downhill moves have 
pushed us past the 
local extremum 

Iteration 800: As T decreases, 
fewer downhill moves are 
allowed and we stay at the 
maximum 

T =
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Basic Example

E

Temperature

Note that larger 
deviations from uphill 
search are allowed at 
high temperature

Iterations

Where does this come from?
• If the temperature of a solid is T, the probability of moving 

between two states of energy is:

e –∆Energy/kT

• If the temperature T of a solid is decreased slowly, it will 
reach an equilibrium at which the probability of the solid being 
in a particular state is:

• Probability (State) proportional to e –Energy(State)/kT

• Boltzmann distribution � States of low energy relative to T
are more likely

• Analogy:
– State of solid �� Configurations X
– Energy �� Evaluation function Eval(.)

• N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth. A.H. Teller 
and E. Teller, Journal Chem. Phys. 21 (1953) 1087-1092 
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A TSP Example

N = 13 nodes (in a circle)

K = 100N
E = 25 

Note: Boring but it has an 
obvious solution

Starting configuration
E(X) = 55

E

Temperature

Iterations

A TSP Example
Note that larger deviations from downhill 
search are allowed at high temperature
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Iterations

Another Example

N = 13 nodes

K = 100N

Initial state
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Another Example

E

Temperature

Iterations

Iterations

Initial 
Configuration

Final configuration after 
convergence
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What can we say about convergence?
• In theory:

• In practice:
– Perform a large enough number of iterations (K

“large enough”)
– Decrease temperature slowly enough (α “close 

enough” to 1)
– But, if not careful, we may have to perform an 

enormous number of evaluations

1)),(Pr(limlim *

0
=∈

∞→→
SKTX

KT

In words: Probability that the state reached after K
iterations at temperature T is a global optimum

Simulated Annealing
• X � Initial configuration
• T � Initial high temperature
• Iterate:
1. Do K times:

1.1 E � Eval(X)
1.2 X’ � one configuration randomly selected in 
Neighbors (X) 
1.3 E’ � Eval(X’)
1.4 If E’ >= E

X � X’; E � E’; 
Else accept the move with probability p = e -(E – E’)/T :

X � X’; E � E’; 
2. T � α T

Many parameters 
need to be tweaked!!
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SA Discussion

• Design of neighborhood is critical
• How to choose K? Typically related to size of 

neighborhood
• How to choose α? Critical to avoid large number 

of useless evaluations. Especially a problem 
close to convergence (empirically, most of the 
time spent close to the optimum)

SA Discussion
• How to choose starting temperature? Typically 

related to the distribution of anticipated values of 
∆E (e.g., Tstart = max{∆E over a large sample of 
pairs of neighbors})

• What if we choose a really bad starting X?
Multiple random restart.

• How to avoid repeated evaluation? Use a bit 
more memory by remembering the previous 
moves that were tried (“Tabu search”)

• Use (faster) approximate evaluation if possible 
(How?)
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SA Discussion

• Often better than hill-climbing. Successful 
algorithm in many applications

• Many parameters to tweak. If not careful, 
may require very large number of 
evaluations

• Semi-infinite number of variations for 
improving performance depending on 
applications

Genetic/Evolutionary 
Algorithms
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Genetic Algorithms
• View optimization by analogy with evolutionary 

theory � Simulation of natural selection
• View configurations as individuals in a 

population
• View Eval as a measure of fitness
• Let the least-fit individuals die off without 

reproducing
• Allow individuals to reproduce with the best-fit 

ones selected more often
• Each generation should be overall better fit 

(higher value of Eval) than the previous one
• If we wait long enough the population should 

evolve so toward individuals with high fitness 
(i.e., maximum of Eval) 

Genetic Algorithms: Implementation
• Configurations represented by strings:

X =
• Analogy: 

– The string is the chromosome representing the individual
– String made up of genes
– Configuration of genes are passed on to offsprings
– Configurations of genes that contribute to high fitness tend to 

survive in the population

• Start with a random population of P configurations and 
apply two operations

– Reproduction: Choose 2 “parents” and produce 2 “offsprings”
– Mutation: Choose a random entry in one (randomly selected) 

configuration and change it

1 0 0 1 1 0 0 1
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Genetic Algorithms: Reproduction
1 0 0 1 1 0 0 1

1 0 1 1 0 0 0 1
Parents:

Genetic Algorithms: Reproduction
1 0 0 1 1 0 0 1

1 0 1 1 0 0 0 1

1 0 0 1 1 0 0 1

1 0 1 1 0 0 0 1

Parents:

Select random 
crossover point:
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Genetic Algorithms: Reproduction

• Each offspring receives part of the genes 
from each of the parents

• Implemented by crossover operation

1 0 0 1 1 0 0 1

1 0 1 1 0 0 0 1

1 0 0 1 1 0 0 1

1 0 1 1 0 0 0 1

1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1

Parents:

Select random 
crossover point:

Offspring:

Genetic Algorithms: Mutation
• Random change of one element in one 

configuration
�Implements random deviations from inherited 

traits
�Corresponds loosely to “random walk”: Introduce 

random moves to avoid small local extrema 

1 0 0 1 1 0 0 1

1 0 0 1 0 0 0 1

1 1 1 1 1 0 0 1

1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1

Select a random 
individual

Select a random entry Change that entry
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Basic GA Outline
• Create initial population X = {X1,..,XP}
• Iterate:

1. Select K random pairs of parents (X,X’)
2. For each pair of parents (X,X’):

1.1 Generate offsprings (Y1,Y2) using crossover 
operation

1.2 For each offspring Yi:
Replace randomly selected element of the 
population  by Yi

With probability µ:
Apply a random mutation to Yi

• Return the best individual in the population

Stopping condition is not obvious?

Possible strategy: 
Select the best rP

individuals (r < 1) for 
reproduction and 

discard the rest �
Implements selection of 

the fittest

Variation: 
Generate only 
one offspring

Genetic Algorithms: Selection
• Discard the least-fit individuals through threshold on 

Eval or fixed percentage of population
• Select best-fit (larger Eval) parents in priority
• Example: Random selection of individual based on 

the probability distribution

• Example (tournament): Select a random small subset 
of the population and select the best-fit individual as 
a parent

• Implements “survival of the fittest”
• Corresponds loosely to the greedy part of hill–

climbing (we try to move uphill)

�
∈

=

populationY

YEval
XEval

X
)(

)(
)selectedindividualPr(
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GA and Hill Climbing
• Create initial population X = {X1,..,XP}
• Iterate:

1. Select K random pairs of parents (X,X’)
2. For each pair of parents (X,X’):

1.1 Generate offsprings (Y1,Y2) using crossover 
operation

1.2 For each offspring Yi:
Replace randomly selected element of the 
population  by Yi

With probability µ:
Apply a random mutation to Yi

• Return the best individual in the population

Hill-climbing component: Try to 
move uphill as much as possible

Random walk 
component: Move 

randomly to escape 
shallow local maxima

How would you set up these 
problems to use GA search?
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ECA
EDC

EDB
DCA
CBA

∨¬∨¬
¬∨¬∨¬

¬∨∨
∨∨¬
∨¬∨

TSP
SAT

N-Queens
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TSP Example

Generation

C
os

t
Minimum cost

Average cost in population

Optimal solution reached at 
generation 35

N = 13

P = 100 elements in 
population

µ = 4% mutation rate
r = 50% reproduction rate 

(K = rP)

Initial population

B
est rN

elem
ents in 

population candidate for 
reproduction

Best (lowest 
cost) element in 

population
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Population at generation 15

Population at generation 35
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Another TSP Example

C
os

t

Minimum cost

Average cost in population

Stabilizes at 
generation 23 

Converges and remains stable 
after generation 23

0.4% difference:
GA = 11.801
SA = 11.751

But: Number of operations 
(number of cost evaluations) much 
smaller for GA (approx. 2500)

Population at generation 40
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Small Group challenge

Walking Machine control algorithm
• Inputs

– 8 force sensors on the feet
– Joint angle sensors
– Accelerometer in the hip

• Output
– Torque commands to all joints

What is your GA representation for the 
genes?

GA Programming
Individual = program instance
Configuration X = parse tree representing a program 

ifte

>

X Y

X Y (ifte (X > Y) X Y)



35

ifte

>

X Y

X Y

+

X

Y

*

2ifte

>

X Y

X

Y

*

2

Crossover

Parents:

Offsprings:

Use genetic algorithms as before with this definition of crossover
Example applications: robot controller, signal processing, circuit design
Intriguing; but- alternative solutions exist for most of these applications. GA is not 
the first approach to consider!!!
Koza. Genetic programming: On the programming of computers by means of natural selection. MIT Press. 1992
http://www.genetic-programming.org/

GA Discussion
• Many parameters to tweak: µ, P, r
• Many variations on basic scheme. Examples:

– Multiple-point crossover
– Dynamic encoding
– Selection based on rank or relative fitness to least fit 

individual
– Multiple fitness functions
– Combine with a local optimizer (for example, local hill-

climbing) � Deviates from “pure” evolutionary view
• In many problems, assuming correct choice of 

parameters, can be surprisingly effective
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GA Discussion
• Why does it work at all?
• Limited theoretical results (informally!):

– Suppose that there exists a partial assignment of genes s 
such that:

– Then the number of individuals containing s will increase 
in the next generation

• Key consequence: The design of the 
representation (the chromosomes) is critical to the 
performance the GA. It is probably more important 
than the choice of parameters of selection strategy, 
etc.

Populationcontains
)(ofAverage)(ofAverage

∈
≥

YsX
YEvalXEval

Summary
• Hill Climbing
• Stochastic Search
• Simulated Annealing
• Genetic Algorithms

• Class of algorithms applicable to many practical 
problems

• Not useful if more direct search methods can be used
• The algorithms are general black-boxes. What makes 

them work is the correct engineering of the problem 
representation
– State representation
– Neighborhoods
– Evaluation function
– Additional knowledge and heuristics
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