

 Hill-Climbing: TSP Example k-opt = Hill-climbing with k-change neighborhood 					
Some results:					
 3-opt better than 2-opt 					
 4-opt not substantially better given increase in computation time 					
 Use random restart to increase probability of success 					
 Better measure: % away from (estimated) minimum cost 					
	% error from min cost (N=100)	% error from min cost (N=1000)	Running time (N=100)	Running time (N=1000)	
2-Opt	4.5%	4.9%	1	11	
2-Opt (Best of 1000)	1.9%	3.6%			
3-Opt	2.5%	3.1%	1.2	13.7	
3-Opt (Best of 1000)	1.0%	2.1%	Data from: Aarts & Lenstra, "Local Search in Combinatorial Optimization", Wiley Interscience Publisher		

SA Discussion

- Design of neighborhood is critical
- How to choose K? Typically related to size of neighborhood
- How to choose α? Critical to avoid large number of useless evaluations. Especially a problem close to convergence (empirically, most of the time spent close to the optimum)

SA Discussion

- Often better than hill-climbing. Successful algorithm in many applications
- Many parameters to tweak. If not careful, may require very large number of evaluations
- Semi-infinite number of variations for improving performance depending on applications

Small Group challenge

Walking Machine control algorithm

- Inputs
 - 8 force sensors on the feet
 - Joint angle sensors
 - Accelerometer in the hip
- Output
 - Torque commands to all joints

What is your GA representation for the genes?

Summary				
 Hill Climbing Stochastic Search Simulated Annealing Genetic Algorithms 				
 Class of algorithms applicable to many practical problems Not useful if more direct search methods can be used The algorithms are general black-boxes. What makes them work is the correct engineering of the problem representation State representation Neighborhoods Evaluation function Additional knowledge and heuristics 				

(Some) References

- Russell & Norvig, Chap. 4
- Aarts & Lenstra. Local Search in Combinatorial Optimization. Wiley-InterScience. 1997.
- Spall. Introduction to Stochastic Search and Optimization. Wiley-InterScience. 2003.
- Numerical Recipes (http://www.nr.com/).
- Haupt&Haupt. Practical Genetic Algorithms. Wiley-InterScience. 2004.
- Mitchell. An Introduction to Genetic Algorithms (Complex Adaptive Systems). MIT Press. 2003.
- http://www.cs.washington.edu/homes/kautz/walksat/_