
1

Optimization 2:
Local Search

Stochastic Search
Randomized Search

Illah Nourbakhsh
[much credit to prior teachers]

Local Search
• Given:

– A set of states (or configurations) S = {X1..XM}
– A function that evaluates each configuration:

Eval(X)

• Solve:
– Find global extremum: Find X* such that Eval(X*) is

greater than all Eval(Xi) for all possible values of Xi

Eval(X)

X*

2

What makes this challenging?
• Problems of particular interest:

– Set of configurations too large to be enumerated
explicitly

– Computation of Eval(.) may be expensive
– There is no algorithm for finding the maximum of

Eval(.) efficiently
– Solutions with similar values of Eval(.) are

considered equivalent for the problem at hand
– We do not care how we get to X* (the path), we

care only about the description of the configuration
X* (this is a key difference with the earlier search
problems)

Real-World Examples

• VLSI layout:
– X = placement of components + routing of

interconnections
– Eval = Distance between components + %

unused + routing length + ?

Placement
Floorplanning
Channel routing
Compaction

3

Real-World Examples

• Scheduling: Given m machines, n jobs
• X = assignment of jobs to machines
• Eval = completion time of the n jobs (minimize)

• Others: Vehicle routing, design, treatment sequencing,
………

3
6

7
5

2

1

Example: TSP (Traveling Salesperson Problem)

• Configuration X = tour through nodes {1,..,N}
• Eval = Length of path
• Find X* that realizes the minimum of Eval(X)
• Size of search space = order (N-1)!/2
• Size: Solutions for N = hundreds of thousands

4

3
6

7
5

2

1

4

X1 = {1 2 5 3 6 7 4} X2 = {1 2 5 4 7 6 3}
Eval(X1) > Eval(X2) (smaller is better)

4

Example: SAT (SATisfiability)

���ECA
EDC

EDB
DCA
CBA

∨¬∨¬
¬∨¬∨¬

¬∨∨
∨∨¬
∨¬∨

A B C D E Eval

X1 true true false true false 5
X2 true true true true true 4

Example: SAT (SATisfiability)

• Configuration X = Vector of assignments of N Boolean
variables

• Eval(X) = Number of clauses that are satisfied given the
assignments in X

• Find X* that realizes the maximum of Eval(X)
• Size of search space = 2N

• Note: Solutions for 1000s of variables and clauses

���

ECA
EDC

EDB
DCA
CBA

∨¬∨¬
¬∨¬∨¬

¬∨∨
∨∨¬
∨¬∨

A B C D E Eval

X1 true true false true false 5

X2 true true true true true 4

5

SATisfiability

• Real world examples of SAT problems?

Eval(X) = 0

Eval(X) = 2Eval(X) = 5

Find a configuration in
which no queen can
attack any other queen

What’s Eval() here?

Example: N-Queens

6

Example: N-Queens

• Configuration X = Position of the N queens in N
columns

• Eval(X) = Number of pairs of queens that are attacking
each other

• Find X* that realizes the minimum: Eval(X*) = 0
• Size of search space: order NN

• Note: Solutions for N = millions

Eval(X) = 0Eval(X) = 2Eval(X) = 5

Local Search

1. Xo ,� Initial candidate solution
2. Repeat until we are “satisfied” with the

current configuration:
3. Evaluate some of the neighbors in

Neighbors(Xi)
4. Select one of the neighbors Xi+1

5. Move to Xi+1

The definition of the
neighborhoods is not
obvious or unique in

general. The performance
of the search algorithm
depends critically on the

definition of the
neihborhood which is not
straightforward in general.

Ingredient 1. Selection
strategy: How to decide

which neighbor to accept

Ingredient 2. Stopping
condition

7

Simplest Example

S = {1,..,100}
Neighbors(X) = {X-1,X+1}

Simplest Example

• We are interested in the global maximum, but we
may have to be satisfied with a local maximum

• In fact, at each iteration, we can check only for
local optimality (remember, Eval() is expensive)

• The challenge: Try to achieve global optimality
through a sequence of local moves

S = {1,..,100}

Neighbors(X) =
{X-1,X+1}

Global optimum
Eval(X*) >=

Eval(X) for all Xs

Local optimum
Eval(X*) >=

Eval(X) for all Xs
in Neighbors(X)

8

Most Basic Algorithm: Hill-Climbing
(Greedy Local Search)

• X � Initial configuration
• Iterate:

1. E � Eval(X)
2. �� Neighbors(X)
3. For each Xi in �

Ei � Eval(Xi)
4. If all Ei’s are lower than E

Return X
Else

i* = argmaxi (Ei) X � Xi* E � Ei*

More Interesting Examples
• How can we define Neighbors(X)?

3
6

7
5

2

1

4

���

ECA
EDC

EDB
DCA
CBA

∨¬∨¬
¬∨¬∨¬

¬∨∨
∨∨¬
∨¬∨

TSP
SAT

N-Queens

9

Issues

• Trade-off on size of neighborhood
� larger neighborhood = better chance of

finding a good maximum but may require
evaluating an enormous number of moves

� smaller neighborhood = smaller number
of evaluations but may get stuck in poor
local maxima

Multiple “poor” local maxima

10

Plateau = constant region of Eval(.)

Xstart

X*
Eval(X)

11

Issues

Multiple “poor” local maxima Plateau = constant region of Eval(.)

Xstart

X*
Eval(X)

Ridge = Impossible to
reach X* from Xstart
using uphill moves only

Issues
• Constant memory usage
• All we can hope is to find the local

maximum “closest” to the initial
configuration � Can we do better than
that?

• Ridges and plateaus will plague all local
search algorithms

12

Stochastic Search: Randomized
Hill-Climbing

• X � Initial configuration
• Iterate:
1. E � Eval(X)
2. X’ � one configuration

randomly selected in
Neighbors (X)

3. E’ � Eval(X’)
4. If E’ > E

X � X’
E � E’

Critical change: We no
longer select the best

move in the entire
neighborhood

Until when?

TSP Moves

3
6

7
5

2

1

4

3
6

7
5

2

1

4

3
6

7
5

2

1

4
Select 2
edges

Invert the order of
the corresponding

vertices

“2-change” �
O(N2) neighborhood

13

3
6

7
2

1

4

Select 3 edges

“3-change” � O(N3)
neighborhood
…….. k-change

8
5

3
6

7
2

1

4

8
5

6

7
2

1

4

85
3

1

6

7
2

1

4

85

3

6

7
2

1

4

85

3

6

7
2 4

5

3

8

Hill-Climbing: TSP Example
• k-opt = Hill-climbing with k-change neighborhood
• Some results:

– 3-opt better than 2-opt
– 4-opt not substantially better given increase in computation

time
– Use random restart to increase probability of success
– Better measure: % away from (estimated) minimum cost

% error from
min cost
(N=100)

% error from
min cost
(N=1000)

Running time
(N=100)

Running time
(N=1000)

2-Opt 4.5% 4.9% 1 11

2-Opt (Best of
1000)

1.9% 3.6%

3-Opt 2.5% 3.1% 1.2 13.7

3-Opt (Best of
1000)

1.0% 2.1% Data from: Aarts & Lenstra, “Local Search
in Combinatorial Optimization”, Wiley
Interscience Publisher

14

Hill-Climbing: SAT

• State X = assignment of N boolean
variables

• Initialize the variables (x1,..,xN) randomly to
true/false

ECA
EDC

DCA
CBA

∨¬∨¬
¬∨¬∨¬

∨∨¬
∨¬∨

���

• Iterate until all clauses are satisfied or max
iterations:
1.Select an unsatisfied clause
2.With probability p:

Select a variable xi at random

3.With probability 1-p:
Select the variable xi such that changing xi will

unsatisfy the least number of clauses (Max of
Eval(X))

4.Change the assignment of the selected
variable xi

Random
walk part

Greedy part

15

Hill-Climbing: SAT

• WALKSAT algorithm still one of the most
effective for SAT

• Combines the two ingredients: random
walk and greedy hill-climbing

• Incomplete search: Can never find out if
the clauses are not satisfiable

For more details and useful examples/code: http://www.cs.washington.edu/homes/kautz/walksat/

Simulated Annealing
1. E � Eval(X)
2. X’ � one configuration randomly selected

in Neighbors (X)
3. E’ � Eval(X’)
4. If E’ >= E

X � X’
E � E’

Else accept the move to X’ with some
probability p:

X � X’
E � E’

Critical change: We no longer
move always uphill. Next

question: How to choose p?

16

How to set p?
• X � Initial configuration
• Iterate:
1. E � Eval(X)
2. X’ � one configuration

randomly selected in
Neighbors (X)

3. E’ � Eval(X’)
4. If E’ >= E

X � X’
E � E’

Else accept the move to
X’ with some probability p:

X � X’
E � E’

If p constant: We don’t know
how to set p � should depend
on the shape of the Eval
function

Decrease p as the iterations
progress � We accept
fewer downhill moves as we
approach the global
maximum

Decrease p as E-E’ increases
� Lower probability to move
downhill if slope is high

How to set p? Intuition
E = E(X)

E’ = E(X’)

E = E(X)

E’ = E(X’)

E – E’ is large: It is
more likely that we are
moving toward a
(promising) sharp
maximum so we don’t
want to move downhill
too much

E – E’ is small: It is likely that we
are moving toward a shallow
maximum that is likely to be a
(uninteresting) local maximum,
so we like to move downhill to
explore other parts of the
landscape

17

Choosing p: Simulated Annealing
• If E’ >= E accept the move
• Else accept the move with probability:

p = e -(E – E’)/T

• Start with high temperature T and decrease T
gradually as iterations increase (“cooling schedule”)

Increasing |∆E|

Increasing T

p

Simulated Annealing
• X � Initial configuration
• T � Initial high temperature
• Iterate:
1. Do K times:

1.1 E � Eval(X)
1.2 X’ � one configuration randomly selected in
Neighbors (X)
1.3 E’ � Eval(X’)
1.4 If E’ >= E

X � X’; E � E’;
Else accept the move with probability p = e -(E – E’)/T :

X � X’; E � E’;
2. T � α T

Iterate a number of times keeping
the temperature fixed

Use the previous definition of
the probability

Progressively decrease the
temperature using an exponential

cooling schedule: T(n) = αn T with α < 1

T = 0 � Greedy hill climbing
T = � Random walk∞

18

Basic Example

Starting point: We move
most of the time uphill

T = T =

Iteration 150: Random
downhill moves allow
us to escape the local
extremum

Basic Example

T =

Iteration 180: Random
downhill moves have
pushed us past the
local extremum

Iteration 800: As T decreases,
fewer downhill moves are
allowed and we stay at the
maximum

T =

19

Basic Example

E

Temperature

Note that larger
deviations from uphill
search are allowed at
high temperature

Iterations

Where does this come from?
• If the temperature of a solid is T, the probability of moving

between two states of energy is:

e –∆Energy/kT

• If the temperature T of a solid is decreased slowly, it will
reach an equilibrium at which the probability of the solid being
in a particular state is:

• Probability (State) proportional to e –Energy(State)/kT

• Boltzmann distribution � States of low energy relative to T
are more likely

• Analogy:
– State of solid �� Configurations X
– Energy �� Evaluation function Eval(.)

• N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth. A.H. Teller
and E. Teller, Journal Chem. Phys. 21 (1953) 1087-1092

20

A TSP Example

N = 13 nodes (in a circle)

K = 100N
E = 25

Note: Boring but it has an
obvious solution

Starting configuration
E(X) = 55

E

Temperature

Iterations

A TSP Example
Note that larger deviations from downhill
search are allowed at high temperature

21

Iterations

Another Example

N = 13 nodes

K = 100N

Initial state

22

Another Example

E

Temperature

Iterations

Iterations

Initial
Configuration

Final configuration after
convergence

23

What can we say about convergence?
• In theory:

• In practice:
– Perform a large enough number of iterations (K

“large enough”)
– Decrease temperature slowly enough (α “close

enough” to 1)
– But, if not careful, we may have to perform an

enormous number of evaluations

1)),(Pr(limlim *

0
=∈

∞→→
SKTX

KT

In words: Probability that the state reached after K
iterations at temperature T is a global optimum

Simulated Annealing
• X � Initial configuration
• T � Initial high temperature
• Iterate:
1. Do K times:

1.1 E � Eval(X)
1.2 X’ � one configuration randomly selected in
Neighbors (X)
1.3 E’ � Eval(X’)
1.4 If E’ >= E

X � X’; E � E’;
Else accept the move with probability p = e -(E – E’)/T :

X � X’; E � E’;
2. T � α T

Many parameters
need to be tweaked!!

24

SA Discussion

• Design of neighborhood is critical
• How to choose K? Typically related to size of

neighborhood
• How to choose α? Critical to avoid large number

of useless evaluations. Especially a problem
close to convergence (empirically, most of the
time spent close to the optimum)

SA Discussion
• How to choose starting temperature? Typically

related to the distribution of anticipated values of
∆E (e.g., Tstart = max{∆E over a large sample of
pairs of neighbors})

• What if we choose a really bad starting X?
Multiple random restart.

• How to avoid repeated evaluation? Use a bit
more memory by remembering the previous
moves that were tried (“Tabu search”)

• Use (faster) approximate evaluation if possible
(How?)

25

SA Discussion

• Often better than hill-climbing. Successful
algorithm in many applications

• Many parameters to tweak. If not careful,
may require very large number of
evaluations

• Semi-infinite number of variations for
improving performance depending on
applications

Genetic/Evolutionary
Algorithms

26

Genetic Algorithms
• View optimization by analogy with evolutionary

theory � Simulation of natural selection
• View configurations as individuals in a

population
• View Eval as a measure of fitness
• Let the least-fit individuals die off without

reproducing
• Allow individuals to reproduce with the best-fit

ones selected more often
• Each generation should be overall better fit

(higher value of Eval) than the previous one
• If we wait long enough the population should

evolve so toward individuals with high fitness
(i.e., maximum of Eval)

Genetic Algorithms: Implementation
• Configurations represented by strings:

X =
• Analogy:

– The string is the chromosome representing the individual
– String made up of genes
– Configuration of genes are passed on to offsprings
– Configurations of genes that contribute to high fitness tend to

survive in the population

• Start with a random population of P configurations and
apply two operations

– Reproduction: Choose 2 “parents” and produce 2 “offsprings”
– Mutation: Choose a random entry in one (randomly selected)

configuration and change it

1 0 0 1 1 0 0 1

27

Genetic Algorithms: Reproduction
1 0 0 1 1 0 0 1

1 0 1 1 0 0 0 1
Parents:

Genetic Algorithms: Reproduction
1 0 0 1 1 0 0 1

1 0 1 1 0 0 0 1

1 0 0 1 1 0 0 1

1 0 1 1 0 0 0 1

Parents:

Select random
crossover point:

28

Genetic Algorithms: Reproduction

• Each offspring receives part of the genes
from each of the parents

• Implemented by crossover operation

1 0 0 1 1 0 0 1

1 0 1 1 0 0 0 1

1 0 0 1 1 0 0 1

1 0 1 1 0 0 0 1

1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1

Parents:

Select random
crossover point:

Offspring:

Genetic Algorithms: Mutation
• Random change of one element in one

configuration
�Implements random deviations from inherited

traits
�Corresponds loosely to “random walk”: Introduce

random moves to avoid small local extrema

1 0 0 1 1 0 0 1

1 0 0 1 0 0 0 1

1 1 1 1 1 0 0 1

1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1

Select a random
individual

Select a random entry Change that entry

29

Basic GA Outline
• Create initial population X = {X1,..,XP}
• Iterate:

1. Select K random pairs of parents (X,X’)
2. For each pair of parents (X,X’):

1.1 Generate offsprings (Y1,Y2) using crossover
operation

1.2 For each offspring Yi:
Replace randomly selected element of the
population by Yi

With probability µ:
Apply a random mutation to Yi

• Return the best individual in the population

Stopping condition is not obvious?

Possible strategy:
Select the best rP

individuals (r < 1) for
reproduction and

discard the rest �
Implements selection of

the fittest

Variation:
Generate only
one offspring

Genetic Algorithms: Selection
• Discard the least-fit individuals through threshold on

Eval or fixed percentage of population
• Select best-fit (larger Eval) parents in priority
• Example: Random selection of individual based on

the probability distribution

• Example (tournament): Select a random small subset
of the population and select the best-fit individual as
a parent

• Implements “survival of the fittest”
• Corresponds loosely to the greedy part of hill–

climbing (we try to move uphill)

�
∈

=

populationY

YEval
XEval

X
)(

)(
)selectedindividualPr(

30

GA and Hill Climbing
• Create initial population X = {X1,..,XP}
• Iterate:

1. Select K random pairs of parents (X,X’)
2. For each pair of parents (X,X’):

1.1 Generate offsprings (Y1,Y2) using crossover
operation

1.2 For each offspring Yi:
Replace randomly selected element of the
population by Yi

With probability µ:
Apply a random mutation to Yi

• Return the best individual in the population

Hill-climbing component: Try to
move uphill as much as possible

Random walk
component: Move

randomly to escape
shallow local maxima

How would you set up these
problems to use GA search?

3
6

7
5

2

1

4

���

ECA
EDC

EDB
DCA
CBA

∨¬∨¬
¬∨¬∨¬

¬∨∨
∨∨¬
∨¬∨

TSP
SAT

N-Queens

31

TSP Example

Generation

C
os

t
Minimum cost

Average cost in population

Optimal solution reached at
generation 35

N = 13

P = 100 elements in
population

µ = 4% mutation rate
r = 50% reproduction rate

(K = rP)

Initial population

B
est rN

elem
ents in

population candidate for
reproduction

Best (lowest
cost) element in

population

32

Population at generation 15

Population at generation 35

33

Another TSP Example

C
os

t

Minimum cost

Average cost in population

Stabilizes at
generation 23

Converges and remains stable
after generation 23

0.4% difference:
GA = 11.801
SA = 11.751

But: Number of operations
(number of cost evaluations) much
smaller for GA (approx. 2500)

Population at generation 40

34

Small Group challenge

Walking Machine control algorithm
• Inputs

– 8 force sensors on the feet
– Joint angle sensors
– Accelerometer in the hip

• Output
– Torque commands to all joints

What is your GA representation for the
genes?

GA Programming
Individual = program instance
Configuration X = parse tree representing a program

ifte

>

X Y

X Y (ifte (X > Y) X Y)

35

ifte

>

X Y

X Y

+

X

Y

*

2ifte

>

X Y

X

Y

*

2

Crossover

Parents:

Offsprings:

Use genetic algorithms as before with this definition of crossover
Example applications: robot controller, signal processing, circuit design
Intriguing; but- alternative solutions exist for most of these applications. GA is not
the first approach to consider!!!
Koza. Genetic programming: On the programming of computers by means of natural selection. MIT Press. 1992
http://www.genetic-programming.org/

GA Discussion
• Many parameters to tweak: µ, P, r
• Many variations on basic scheme. Examples:

– Multiple-point crossover
– Dynamic encoding
– Selection based on rank or relative fitness to least fit

individual
– Multiple fitness functions
– Combine with a local optimizer (for example, local hill-

climbing) � Deviates from “pure” evolutionary view
• In many problems, assuming correct choice of

parameters, can be surprisingly effective

36

GA Discussion
• Why does it work at all?
• Limited theoretical results (informally!):

– Suppose that there exists a partial assignment of genes s
such that:

– Then the number of individuals containing s will increase
in the next generation

• Key consequence: The design of the
representation (the chromosomes) is critical to the
performance the GA. It is probably more important
than the choice of parameters of selection strategy,
etc.

Populationcontains
)(ofAverage)(ofAverage

∈
≥

YsX
YEvalXEval

Summary
• Hill Climbing
• Stochastic Search
• Simulated Annealing
• Genetic Algorithms

• Class of algorithms applicable to many practical
problems

• Not useful if more direct search methods can be used
• The algorithms are general black-boxes. What makes

them work is the correct engineering of the problem
representation
– State representation
– Neighborhoods
– Evaluation function
– Additional knowledge and heuristics

37

(Some) References

• Russell & Norvig, Chap. 4
• Aarts & Lenstra. Local Search in Combinatorial

Optimization. Wiley-InterScience. 1997.
• Spall. Introduction to Stochastic Search and

Optimization. Wiley-InterScience. 2003.
• Numerical Recipes (http://www.nr.com/).
• Haupt&Haupt. Practical Genetic Algorithms. Wiley-

InterScience. 2004.
• Mitchell. An Introduction to Genetic Algorithms (Complex

Adaptive Systems). MIT Press. 2003.
• http://www.cs.washington.edu/homes/kautz/walksat/

