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WHERE DOES A PIXEL COME FROM!?

2048 x 3072 x 3

red 178
green 172 . radiometry
last lecture
blue — 158 cleet
* 245 - geometry
i Y | i 1540 |- this lecture




SHAPE AND MOTION FROM IMAGE STREAMS ~ Froemst o Yor s
UNDER ORTHOGRAPHY (1992)

CARLO TOMASI AND TAKEO KANADE

INPUT: Points tracked across a video captured by a camera moving about an object

OUTPUT: 3D structure of the object and the camera motion

METHOD:

Core idea: Under orthographic projection, camera motion and

object structure are “separable” from image measurements

* Despite having many measurements (|100s of points in 100s
of frames) the measurements were actually highly

correlated.
e A rank 3 (or rank 4) condition derived on the

measurements
* Singular Value Decomposition (SVD) was used to recover
the camera motion and the 3D structure

WHY IS THIS PAPER INTERESTING? HOW WOULD | IMPROVE THIS PAPER?

* 3D reconstruction allows 3D navigation for robots, * The paper assumes an orthographic camera. Can we
match-moving for the movie industry, photogrammetry, | | derive it for a perspective camera!?

visualization, etc. * The paper assumes a stationary object. Can we derive a
* First stable algorithm to recover 3D structure from similar algorithm for when the object moves during

video. Spurred two decade of reconstruction research capture!




WHY RECOVER 3D?

Photo Tourism
Exploring photo collections in 3D

Noah Snavely Steven M. Seitz  Richard Szeliski

University of Washington Microsoft Research

SIGGRAPH 2006

Snavely et al., SIGGRAPH, 2006






Barnum et al., ISMAR, 2009



Hoeim et al., SIGGRAPH, 2005



WHY RECOVER 3D?

“17Y

Jain et al., SCA, 2010



Sheikh et al., TPAMI, 2008



PANORAMAS




LINEAR ALGEBRA PRIMER

MATRICES

ai1r ai12 ais
Asyz = | a1 a2 a3 3 rows

431 432 433 |

3 columns

D
As3=| a1 ax as

ANxM: A1 A2 ... dMM




LINEAR ALGEBRA PRIMER

VECTOR TRANSFORMATIONS
e _ae——bf__ a
- f ce+df | _c__l_f
T e \ \
ang . = | viay + v2a + ---
| : | |

UM AM




LINEAR ALGEBRA PRIMER

Rank: Number of linearly independent rows or columns

‘_
A2 A3z

A3><3 —

a]

as = bja; + bsas

cia; + cgag + czaz = (

Asyg =

a]

as biaj -

- boas

9 values

define
A

8 values
define



LINEAR ALGEBRA PRIMER

A1000x1000 =

a]

Ao

A1000

1000 columns

1 9
a1000 = biggo@1 + biggoa

a; — b%al -+ b?ag,\v/i - {1, Ceey 1000}

A1000%x1000 =

b

1
1000441

1,000,000 values
IOOO FoOws deﬁne A
5 4000 values
blOOO a2 deﬁne A if A is

rank 2




LINEAR ALGEBRA PRIMER

]
Aiooox1000 = | a1 @z ... biggoa1 + biggoas
]
R
Ai1000x1000 = | a1 ag
B e

= A1000x2B2x1000



LINEAR ALGEBRA PRIMER

SINGULAR VALUE DECOMPOSITION

Any m x n matrix A can be written as a product of
three matrices:

A =UDV?!

Rank 2 means the diagonal has only two non-zero elements




LINEAR ALGEBRA PRIMER

U117 U2 U13 si; 0 O V11 V12 V13
U] U22 U3 0 s 0 Va1 V22 V23
ugyr ugz uzz | | O 0 s3 | | vs1 U3z W33

if A is rank | then

U117 U2 U13 si 0 O V11 Vi V13
U1 U22 U3 0 0 0O Va1 V22 V23
ugr ugz ugz | | O 0 0 | | vs1 w32 ws3
Uil
A= | uxn || s || vi1 var vz |




LINEAR ALGEBRA PRIMER

SINGULAR VALUE DECOMPOSITION

Any m x n matrix A can be written as a product of
three matrices:

A =UDV?!

Note:SVD is widely used for many purposes.We'’re only
interested in it for these property for now




LINEAR ALGEBRA PRIMER




LINEAR ALGEBRA PRIMER

Two vectors a; and a3 are orthogonal if

T

a;jas =0
alTal =1
T

asaz =1







2D GEOMETRY

__y1_




2D TRANSLATION

X1 =
/ _fl_
tCU B 1_
’ i | |1 0 t,
vi | | 0 1 ¢,
] [ 10 ¢t
T 1l=10 1 ¢,
1 0 0 1
< A/




2D ROTATION

X L1
1 JE—
Y1

}Acll — Tx4
i ! | B ) cos(f) —sin(0) 11 T ]
_ Yy _ o _ sin(f)  cos(#) || ] _
] - cos(0) —sin(0) O | [ 2} |

y! | = | sin(d) cos(fd) O Y1

I 1 ] I 0 0 1 1L 1 ]

< — R¥,

X7 = RTx;

s
|

Rotations have to occur with respect to the origin. This example is a rotation about the origin. If you wish to rotate
about an arbitrary point, you need three transformations: apply a translation taking the arbitrary point to the
origin, apply the desired rotation, and finally apply a translation taking the point back to its original position.




- cos(0)
- sin(0)

ROTATION MATRICES ARE

ORTHOGONAL

— sin(0)

cos(f) |

- cos(0)
 sin(0)

=T r

cos(6)

- sin(0)

—sin(6)
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2D SCALE
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Y1

2D TRANSFORMATIONS

X/1// — SRTX1

S: 0 0] [ cos() —sin(f) 0 1 0 t,
= 0 S, O sin(f) cos(f) O 0 1 ¢,
0O 0 1 0 0 1 0 0 1
Y - Spcos(0)  —sin(0) tp | [ a1
vy | = sin(f) S, cos(0) t, U1
1 I 0 0 L[ 1 ]

X" = Ax,

Y1
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FORWARD WARPING ALGORITHM

e FOR EACH SOURCE PIXEL [R, G, B, X, Y]
e APPLY TRANSFORM ATO X, Y TO GET X, Y
e FORTHETARGET ARRAY X', Y COPY R,G,B



BACKWARD WARPING ALGORITHM

e FOR EACHTARGET PIXEL [??2,2, X, Y]
e APPLY TRANSFORM A-' TO X, Y’ TO GET X, Y
e FORTHETARGET ARRAY XY’ COPY R, G, B



AFFINE TRANSFORMS
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PROJECTION
3D to 2D



PROJECTION: 2D TOID

2 dimensional to 1 dimensional projection

_gpl_
ul—[l 0 O} U1
1

ulszcl




PROJECTION: 2D TOID

How do we project to an arbitrary 1d ‘camera’?



PROJECTION: 2D TOID

A u'=[1 0 0] g

11/ ~ 11

u’l” — KSRT}/\Cl




PROJECTION: 3D TO 2D

b

— N < X

"o 5 /11 %
uy = K1x393x3R3x3T3x3X1 | X" = KoysSaxaRuaxaTaxa X4




PROJECTION: 3D TO 2D

11/ 3
X1 = KoxaSaxaRaxaTaxaXq

pi1 P12 P13 D4 X
P21 P22 P23 P24

X =

A

Y D21 P22 P23 P24

_ _ X
x P11 P12 P13 P4 Y
/

1




ORTHOGRAPHICYVS PERSPECTIVE

parallel projection central projection



ORTHOGRAPHIC PROJECTION




REAL IMAGES




REAL IMAGES




FORCED PERSPECTIVE




ANOTHER PERSPECTIVE...
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HOW DO WE RECOVER 3D?




EPIPOLAR GEOMETRY

1T

y b
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STEREOPSIS

¢ CORRESPONDENCE: FINDING THE

IMAGE OF A 3D POINT IN BOTH
IMAGES

¢ RECONSTRUCTION: RECOVERING
THE LOCATION OF THE 3D POINT



STEREO VIEWS




STEREO VIEWS
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STEREO VIEWS
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Example |




Example 2




MULTIPLE VIEWS!?

STRUCTURE FROM MOTION




MULTIPLE VIEWS




2xF (F frames)

P (P points)



Lrh WD —

ALGORITHM

Input W matrix of tracks (F frames and P points)

Perform SVD of W: [U,D,V] = SVD(W)

Compute camera motion as R’ = UD’, where D is a submatrix of D
Compute 3D structure as 8’ = V’T where V*T is a submatrix of VT
Compute metric upgrade using orthonormality constraints




STRUCTURE FROM MOTION




STRUCTURE FROM MOTION

R,
R
R, 11 Ti2 T13 T4 R — 2
21 T22 T23 T24 :
Rpr
X1
r1 | | "1 Ti2 Ti3 T14 Y1
Y1 ro1 T22 T23 T24 A
1




STRUCTURE FROM MOTION

one point seen in many cameras

[ X11 X712

xip | =Ri| S1 S

many points seen in one camera

‘R,
R>

RF

S1

Sp |



STRUCTURE FROM MOTION
FACTORIZATION

E—

1



RANK CONSTRAINT

e RANK(W) = 4

¢ INTHE ORIGINAL PAPER,A RANK 3
CONSTRAINT IS DESCRIBED

e HOW DO WE USE THIS PROPERTY TO
ESTIMATE CAMERA MOTION AND
STRUCTURE!?



LINEAR ALGEBRA PRIMER

SINGULAR VALUE DECOMPOSITION

Any m x n matrix A can be written as a product of
three matrices:

A =UDV?!

Rank 4 means the diagonal has only two non-zero elements




Lrh WD —

ALGORITHM

Input W matrix of tracks (F frames and P points)

Perform SVD of W: [U,D,V] = SVD(W)

Compute camera motion as R’ = UD’, where D is a submatrix of D
Compute 3D structure as 8’ = V’T where V*T is a submatrix of VT
Compute metric upgrade using orthonormality constraints



RESULTS

| Ol




RESULTS
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RESULTS




STRUCTURE FROM MOTION
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Agarwal et al., ICCV 2009



