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WHERE DOES A PIXEL COME FROM?



SHAPE AND MOTION FROM IMAGE STREAMS  
UNDER ORTHOGRAPHY (1992)
CARLO TOMASI AND TAKEO KANADE

INPUT: Points tracked across a video captured by a camera moving about an object

OUTPUT: 3D structure of the object and the camera motion

METHOD:

Core idea: Under orthographic projection, camera motion and 
object structure are “separable” from image measurements
•  Despite having many measurements (100s of points in 100s 
    of frames) the measurements were actually highly 
    correlated. 
•  A rank 3 (or rank 4) condition derived on the 
    measurements
•  Singular Value Decomposition (SVD) was used to recover 
    the camera motion and the 3D structure

Presented by:  Yaser Sheikh

WHY IS THIS PAPER INTERESTING?
•  3D reconstruction allows 3D navigation for robots, 
match-moving for the movie industry, photogrammetry, 
visualization, etc.
•  First stable algorithm to recover 3D structure from 
video. Spurred two decade of reconstruction research

HOW WOULD I IMPROVE THIS PAPER?
•  The paper assumes an orthographic camera. Can we 
derive it for a perspective camera?
•  The paper assumes a stationary object. Can we derive a 
similar algorithm for when the object moves during 
capture?



WHY RECOVER 3D?

Snavely et al. , SIGGRAPH, 2006





Barnum et al. , ISMAR, 2009



Hoeim et al. , SIGGRAPH, 2005



WHY RECOVER 3D?

Jain et al. , SCA, 2010



Sheikh et al. , TPAMI, 2008
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LINEAR ALGEBRA PRIMER
MATRICES
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LINEAR ALGEBRA PRIMER
VECTOR TRANSFORMATIONS
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LINEAR ALGEBRA PRIMER
RANK
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LINEAR ALGEBRA PRIMER
RANK

A1000×1000 =
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LINEAR ALGEBRA PRIMER
RANK
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LINEAR ALGEBRA PRIMER
SINGULAR VALUE DECOMPOSITION

A = UDVT

Any m x n matrix A can be written as a product of 
three matrices: 

=

=

Rank 2 means the diagonal has only two non-zero elements



LINEAR ALGEBRA PRIMER
SINGULAR VALUE DECOMPOSITION
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LINEAR ALGEBRA PRIMER
SINGULAR VALUE DECOMPOSITION

A = UDVT

Any m x n matrix A can be written as a product of 
three matrices: 

Note: SVD is widely used for many purposes. We’re only 
interested in it for these property for now
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LINEAR ALGEBRA PRIMER
ORTHOGONALITY
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LINEAR ALGEBRA PRIMER
ORTHOGONALITY
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aT3 a3 = 1

a1 a3Two vectors      and      are orthogonal if
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2D GEOMETRY
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2D TRANSLATION
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2D ROTATION
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Rotations have to occur with respect to the origin. This example is a rotation about the origin. If you wish to rotate 
about an arbitrary point, you need three transformations: apply a translation taking the arbitrary point to the 
origin, apply the desired rotation, and finally apply a translation taking the point back to its original position.



ROTATION MATRICES ARE 
ORTHOGONAL
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2D SCALE
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2D TRANSFORMATIONS
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FORWARD WARPING ALGORITHM

• FOR EACH SOURCE PIXEL [R, G, B, X, Y]

• APPLY TRANSFORM A TO X, Y TO GET X’, Y’

• FOR THE TARGET ARRAY X’, Y’ COPY R, G, B 



BACKWARD WARPING ALGORITHM

• FOR EACH TARGET PIXEL [? ?, ?, X’, Y’]

• APPLY TRANSFORM A-1 TO X’, Y’ TO GET X, Y

• FOR THE TARGET ARRAY X’, Y’ COPY R, G, B 



AFFINE TRANSFORMS
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PROJECTION
3D to 2D



PROJECTION: 2D TO1D
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PROJECTION: 2D TO1D
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How do we project to an arbitrary 1d ‘camera’?



PROJECTION: 2D TO1D
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PROJECTION: 3D TO 2D
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PROJECTION: 3D TO 2D
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ORTHOGRAPHIC VS PERSPECTIVE

parallel projection central projection



ORTHOGRAPHIC PROJECTION



REAL IMAGES



REAL IMAGES



FORCED PERSPECTIVE



ANOTHER PERSPECTIVE...



HOW DO WE RECOVER 3D?



EPIPOLAR GEOMETRY

Baseline



STEREOPSIS

• CORRESPONDENCE: FINDING THE 
IMAGE OF A 3D POINT IN BOTH 
IMAGES 

• RECONSTRUCTION: RECOVERING 
THE LOCATION OF THE 3D POINT



STEREO VIEWS



STEREO VIEWS

world point

image point



STEREO VIEWS

epipoleepipolar line



Example 1
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Example 2



MULTIPLE VIEWS?
STRUCTURE FROM MOTION



MULTIPLE VIEWS
STRUCTURE FROM MOTION
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ALGORITHM

1.  Input W matrix of tracks (F frames and P points)
2.  Perform SVD of W: [U,D,V] = SVD(W)
3.  Compute camera motion as R’ = UD’, where D is a submatrix of D
4.  Compute 3D structure as S’ = V’T where V’T is a submatrix of VT

5.  Compute metric upgrade using orthonormality constraints



STRUCTURE FROM MOTION
STRUCTURE
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STRUCTURE FROM MOTION
CAMERA MOTION
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STRUCTURE FROM MOTION
CAMERA MOTION
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STRUCTURE FROM MOTION
FACTORIZATION
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RANK CONSTRAINT

• RANK(W) = 4

• IN THE ORIGINAL PAPER, A RANK 3 
CONSTRAINT IS DESCRIBED

• HOW DO WE USE THIS PROPERTY TO 
ESTIMATE CAMERA MOTION AND 
STRUCTURE?



LINEAR ALGEBRA PRIMER
SINGULAR VALUE DECOMPOSITION

A = UDVT

Any m x n matrix A can be written as a product of 
three matrices: 

=

Rank 4 means the diagonal has only two non-zero elements



ALGORITHM

1.  Input W matrix of tracks (F frames and P points)
2.  Perform SVD of W: [U,D,V] = SVD(W)
3.  Compute camera motion as R’ = UD’, where D is a submatrix of D
4.  Compute 3D structure as S’ = V’T where V’T is a submatrix of VT

5.  Compute metric upgrade using orthonormality constraints



RESULTS



RESULTS
TRACKS



RESULTS



STRUCTURE FROM MOTION



Agarwal et al., ICCV 2009


