
15-381
ARTIFICIAL

INTELLIGENCE
LECTURE 15:

VISION II: GEOMETRY

FALL 2010

TEXTBOOK

Introductory Technique for 3D Computer Vision
Trucco and Verri

VISION BOOKS

radiometry

geometry

last lecture

this lecture





red
green
blue
x
y




=





178
172
158
545
1540





2048 x 3072 x 3

WHERE DOES A PIXEL COME FROM?

SHAPE AND MOTION FROM IMAGE STREAMS
UNDER ORTHOGRAPHY (1992)
CARLO TOMASI AND TAKEO KANADE

INPUT: Points tracked across a video captured by a camera moving about an object

OUTPUT: 3D structure of the object and the camera motion

METHOD:

Core idea: Under orthographic projection, camera motion and
object structure are “separable” from image measurements
• Despite having many measurements (100s of points in 100s
 of frames) the measurements were actually highly
 correlated.
• A rank 3 (or rank 4) condition derived on the
 measurements
• Singular Value Decomposition (SVD) was used to recover
 the camera motion and the 3D structure

Presented by: Yaser Sheikh

WHY IS THIS PAPER INTERESTING?
• 3D reconstruction allows 3D navigation for robots,
match-moving for the movie industry, photogrammetry,
visualization, etc.
• First stable algorithm to recover 3D structure from
video. Spurred two decade of reconstruction research

HOW WOULD I IMPROVE THIS PAPER?
• The paper assumes an orthographic camera. Can we
derive it for a perspective camera?
• The paper assumes a stationary object. Can we derive a
similar algorithm for when the object moves during
capture?

WHY RECOVER 3D?

Snavely et al. , SIGGRAPH, 2006

Barnum et al. , ISMAR, 2009

Hoeim et al. , SIGGRAPH, 2005

WHY RECOVER 3D?

Jain et al. , SCA, 2010

Sheikh et al. , TPAMI, 2008

PANORAMAS

LINEAR ALGEBRA PRIMER
MATRICES

A3×3 =




a11 a12 a13
a21 a22 a23
a31 a32 a33





3 columns

3 rows

A3×3 =




| | |
a1 a2 a3
| | |





AN×M =




| | |
a1 a2 . . . aM
| | |



= N x M

LINEAR ALGEBRA PRIMER
VECTOR TRANSFORMATIONS

�
a b
c d

� �
e
f

�
=

�
ae+ bf
ce+ df

�
=

�
e

�
a
c

�
+ f

�
b
d

� �




| | |
a1 a2 . . . aM
| | |









v1
v2
...

vM




=




|

v1a1
|

+
|

v2a2
|

+ · · ·
|

vMaM
|





=

LINEAR ALGEBRA PRIMER
RANK

A3×3 =




| | |
a1 a2 a3
| | |





Rank: Number of linearly independent rows or columns

9 values
define

A

a3 = b1a1 + b2a2
c1a1 + c2a2 + c3a3 = 0

A3×3 =




| | |
a1 a2 b1a1 + b2a2
| | |




8 values
define

A

LINEAR ALGEBRA PRIMER
RANK

A1000×1000 =




| | |
a1 a2 . . . a1000
| | |





1000 columns

1000 rows
1,000,000 values

define A

4000 values
define A if A is

rank 2

a1000 = b11000a1 + b21000a2

ai = b1ia1 + b2ia2, ∀i ∈ {1, . . . , 1000}

A1000×1000 =




| | |
a1 a2 . . . b11000a1 + b21000a2
| | |





LINEAR ALGEBRA PRIMER
RANK

A1000×1000 =




| |
a1 a2
| |




�

−b1−
−b2−

�

A1000×1000 =




| | |
a1 a2 . . . b11000a1 + b21000a2
| | |





= A1000×2B2×1000

=

LINEAR ALGEBRA PRIMER
SINGULAR VALUE DECOMPOSITION

A = UDVT

Any m x n matrix A can be written as a product of
three matrices:

=

=

Rank 2 means the diagonal has only two non-zero elements

LINEAR ALGEBRA PRIMER
SINGULAR VALUE DECOMPOSITION

A =




u11 u12 u13

u21 u22 u23

u31 u32 u33








s1 0 0
0 s2 0
0 0 s3








v11 v12 v13
v21 v22 v23
v31 v32 v33




T

if A is rank 1 then

A =




u11 u12 u13

u21 u22 u23

u31 u32 u33








s1 0 0
0 0 0
0 0 0








v11 v12 v13
v21 v22 v23
v31 v32 v33




T

A =




u11

u21

u31



 �
s1

� �
v11 v21 v31

�

LINEAR ALGEBRA PRIMER
SINGULAR VALUE DECOMPOSITION

A = UDVT

Any m x n matrix A can be written as a product of
three matrices:

Note: SVD is widely used for many purposes. We’re only
interested in it for these property for now

=

=

LINEAR ALGEBRA PRIMER
ORTHOGONALITY

x-coordinate

y-
co

or
di

na
te

a1

a2

a3

LINEAR ALGEBRA PRIMER
ORTHOGONALITY

aT1 a3 = 0

aT1 a1 = 1

aT3 a3 = 1

a1 a3Two vectors and are orthogonal if

a1a3

2D GEOMETRY
x

y

x2

x3 x4

x1

x1 =

�
x1

y1

�

2D TRANSLATION
x

y

x1 =

�
x1

y1

�

x2

x3 x4

x1

x�
1x�

2

x�
3 x�

4

ty

tx
x�
1 =

�
x1

y1

�
−

�
tx
ty

�

�
x�
1

y�1

�
=

�
1 0 tx
0 1 ty

�


x1

y1
1








x�
1

y�1
1



 =




1 0 tx
0 1 ty
0 0 1








x1

y1
1





x̂�
1 = Tx̂1

2D ROTATION
x

y

x2

x3 x4

x1

x��
1

x��
2

x��
3

x��
4

x1 =

�
x1

y1

�




x��
1

y��1
1



 =




cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1








x�
1

y�1
1





�
x��
1

y��1

�
=

�
cos(θ) − sin(θ)
sin(θ) cos(θ)

� �
x�
1

y�1

�
x̂�
1 = Tx̂1

x̂��
1 = Rx̂�

1

x̂��
1 = RTx̂1

x�
1x�

2

x�
3 x�

4

Rotations have to occur with respect to the origin. This example is a rotation about the origin. If you wish to rotate
about an arbitrary point, you need three transformations: apply a translation taking the arbitrary point to the
origin, apply the desired rotation, and finally apply a translation taking the point back to its original position.

ROTATION MATRICES ARE
ORTHOGONAL

�
cos(θ) − sin(θ)
sin(θ) cos(θ)

�T �
cos(θ) − sin(θ)
sin(θ) cos(θ)

�
=

�
1 0
0 1

�

�
cos(θ) − sin(θ)
sin(θ) cos(θ)

�

2D SCALE
x

y

x2

x3 x4

x1

x��
1 = RTx1

x1 =

�
x1

y1

�

x�
1 = Tx1

x���
1

x���
2

x���
3

x���
4

x���
1 = SRTx1

�
x���
1

y���1

�
=

�
Sx 0
0 Sy

� �
x��
1

y��1

�




x���
1

y���1
1



 =




Sx 0 0
0 Sy 0
0 0 1








x��
1

y��1
1





x��
1

x��
2

x��
3

x��
4

2D TRANSFORMATIONS

x���
1 = SRTx1




x���
1

y���1
1



 =




Sx 0 0
0 Sy 0
0 0 1








cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1








1 0 tx
0 1 ty
0 0 1








x1

y1
1








x���
1

y���1
1



 =




Sx cos(θ) − sin(θ) tx
sin(θ) Sy cos(θ) ty

0 0 1








x1

y1
1





x���
1 = Ax1

FORWARD WARPING ALGORITHM

• FOR EACH SOURCE PIXEL [R, G, B, X, Y]

• APPLY TRANSFORM A TO X, Y TO GET X’, Y’

• FOR THE TARGET ARRAY X’, Y’ COPY R, G, B

BACKWARD WARPING ALGORITHM

• FOR EACH TARGET PIXEL [? ?, ?, X’, Y’]

• APPLY TRANSFORM A-1 TO X’, Y’ TO GET X, Y

• FOR THE TARGET ARRAY X’, Y’ COPY R, G, B

AFFINE TRANSFORMS

A =




a11 a12 a13
a21 a22 a23
0 0 1





PROJECTION
3D to 2D

PROJECTION: 2D TO1D
x

y

x2

x3 x4

x1

image

u1 =
�
1 0 0

�



x1

y1
1





u1 = Kx̂1

2 dimensional to 1 dimensional projection

PROJECTION: 2D TO1D

x2

x3 x4

x1

x’
y’

x

y

How do we project to an arbitrary 1d ‘camera’?

PROJECTION: 2D TO1D
x

y

x���
1

x���
2

x���
3

x���
4

u���
1 =

�
1 0 0

�



x���
1

y���1
1





u���
1 = Kx̂���

1

u���
1 = KSRTx̂1

PROJECTION: 3D TO 2D

x =




x
y
1





u���
1 = K1×3S3×3R3×3T3×3x̂1 x���

1 = K2×4S4×4R4×4T4×4X̂1

X =





X
Y
Z
1




ˆˆ

PROJECTION: 3D TO 2D

x���
1 = K2×4S4×4R4×4T4×4X̂1

x =

�
p11 p12 p13 p14
p21 p22 p23 p24

�
X

�
x
y

�
=

�
p11 p12 p13 p14
p21 p22 p23 p24

�




X
Y
Z
1





ORTHOGRAPHIC VS PERSPECTIVE

parallel projection central projection

ORTHOGRAPHIC PROJECTION

REAL IMAGES

REAL IMAGES

FORCED PERSPECTIVE

ANOTHER PERSPECTIVE...

HOW DO WE RECOVER 3D?

EPIPOLAR GEOMETRY

Baseline

STEREOPSIS

• CORRESPONDENCE: FINDING THE
IMAGE OF A 3D POINT IN BOTH
IMAGES

• RECONSTRUCTION: RECOVERING
THE LOCATION OF THE 3D POINT

STEREO VIEWS

STEREO VIEWS

world point

image point

STEREO VIEWS

epipoleepipolar line

Example 1

e

e’

Example 2

MULTIPLE VIEWS?
STRUCTURE FROM MOTION

MULTIPLE VIEWS
STRUCTURE FROM MOTION

W =





x11 x12 x1P

y11 y12 y1P
x21 x22 x2P

y21 y22 y2P
...

...
xF1 xF2 xFP

yF1 yF2 yFP





2xF (F frames)

P (P points)

1 2 F

ALGORITHM

1. Input W matrix of tracks (F frames and P points)
2. Perform SVD of W: [U,D,V] = SVD(W)
3. Compute camera motion as R’ = UD’, where D is a submatrix of D
4. Compute 3D structure as S’ = V’T where V’T is a submatrix of VT

5. Compute metric upgrade using orthonormality constraints

STRUCTURE FROM MOTION
STRUCTURE

S =





X1 X2 . . . XP

Y1 Y2 YP

Z1 Z2 ZP

1 1 . . . 1





S1 =





X1

Y1

Z1

1





S =
�
S1 S2 . . . SP

�

STRUCTURE FROM MOTION
CAMERA MOTION

R1 =

�
r11 r12 r13 r14
r21 r22 r23 r24

�
R =





R1

R2
...

RF





�
x1

y1

�
=

�
r11 r12 r13 r14
r21 r22 r23 r24

�




X1

Y1

Z1

1





x1 = R1S1

STRUCTURE FROM MOTION
CAMERA MOTION

�
x11 x12 . . . x1P

�
= R1

�
S1 S2 . . . SF

�

many points seen in one camera

one point seen in many cameras





x11

x21
...

xF1




=





R1

R2
...

RF




S1

STRUCTURE FROM MOTION
FACTORIZATION

W =





x11 x12 x1P

y11 y12 y1P
x21 x22 x2P

y21 y22 y2P
...

...
xF1 xF2 xFP

yF1 yF2 yFP





=





R1

R2
...

RF




�
S1 S2 . . . SF

�

=rank 4

RANK CONSTRAINT

• RANK(W) = 4

• IN THE ORIGINAL PAPER, A RANK 3
CONSTRAINT IS DESCRIBED

• HOW DO WE USE THIS PROPERTY TO
ESTIMATE CAMERA MOTION AND
STRUCTURE?

LINEAR ALGEBRA PRIMER
SINGULAR VALUE DECOMPOSITION

A = UDVT

Any m x n matrix A can be written as a product of
three matrices:

=

Rank 4 means the diagonal has only two non-zero elements

ALGORITHM

1. Input W matrix of tracks (F frames and P points)
2. Perform SVD of W: [U,D,V] = SVD(W)
3. Compute camera motion as R’ = UD’, where D is a submatrix of D
4. Compute 3D structure as S’ = V’T where V’T is a submatrix of VT

5. Compute metric upgrade using orthonormality constraints

RESULTS

RESULTS
TRACKS

RESULTS

STRUCTURE FROM MOTION

Agarwal et al., ICCV 2009

