I 5-381 ARTIFICIAL INTELLIGENCE LECTURE I 5: VISION II: GEOMETRY

FALL 2010

TEXTBOOK

Introductory Technique for 3D Computer Vision Trucco and Verri

VISION BOOKS

WHERE DOES A PIXEL COME FROM?

SHAPE AND MOTION FROM IMAGE STREAMS UNDER ORTHOGRAPHY (1992)

CARLO TOMASI AND TAKEO KANADE

WHY IS THIS PAPER INTERESTING?

• 3D reconstruction allows 3D navigation for robots,

match-moving for the movie industry, photogrammetry,

• First stable algorithm to recover 3D structure from

video. Spurred two decade of reconstruction research

INPUT: Points tracked across a video captured by a camera moving about an object

OUTPUT: 3D structure of the object and the camera motion

METHOD:

visualization, etc.

<u>Core idea</u>: Under orthographic projection, camera motion and object structure are "separable" from image measurements

- Despite having many measurements (100s of points in 100s of frames) the measurements were actually highly correlated.
- A rank 3 (or rank 4) condition derived on the measurements
- Singular Value Decomposition (SVD) was used to recover the camera motion and the 3D structure

HOW WOULD I IMPROVE THIS PAPER?

• The paper assumes an **orthographic** camera. Can we derive it for a perspective camera?

• The paper assumes a stationary object. Can we derive a similar algorithm for when the object moves during capture?

WHY RECOVER 3D?

Photo Tourism Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski University of Washington Microsoft Research

SIGGRAPH 2006

Snavely et al., SIGGRAPH, 2006

Barnum et al., ISMAR, 2009

Hoeim et al., SIGGRAPH, 2005

WHY RECOVER 3D?

Jain et al. , SCA, 2010

Sheikh et al. , TPAMI, 2008

PANORAMAS

LINEAR ALGEBRA PRIMER MATRICES

LINEAR ALGEBRA PRIMER VECTOR TRANSFORMATIONS

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e \\ f \end{bmatrix} = \begin{bmatrix} ae+bf \\ ce+df \end{bmatrix} = \begin{bmatrix} e \begin{bmatrix} a \\ c \end{bmatrix} + f \begin{bmatrix} b \\ d \end{bmatrix}$

$$\begin{bmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_M \\ | & | & | & | \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_M \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ v_1 \mathbf{a}_1 + v_2 \mathbf{a}_2 + \dots + v_M \mathbf{a}_M \\ | & | & | \end{bmatrix}$$

LINEAR ALGEBRA PRIMER RANK

Rank: Number of linearly independent rows or columns

$$\mathbf{A}_{3\times3} = \begin{bmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \\ | & | & | \end{bmatrix} \qquad \begin{array}{l} \mathbf{9} \text{ values} \\ \text{define} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A}_{3\times3} = \begin{bmatrix} \mathbf{a}_1 \mathbf{a}_1 + b_2 \mathbf{a}_2 \\ \mathbf{a}_1 + c_2 \mathbf{a}_2 + c_3 \mathbf{a}_3 = 0 \\ \mathbf{A}_{3\times3} = \begin{bmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & b_1 \mathbf{a}_1 + b_2 \mathbf{a}_2 \\ | & | & | & | \\ \end{array} \right] \qquad \begin{array}{l} \mathbf{8} \text{ values} \\ \text{define} \\ \mathbf{A} \\ \end{array}$$

Any $m \ge n$ matrix **A** can be written as a product of three matrices:

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

Rank 2 means the diagonal has only two non-zero elements

	u_{11}	u_{12}	u_{13}	s_1	0	0 -] [v_{11}	v_{12}	v_{13} -	$]^{T}$
$\mathbf{A} =$	u_{21}	u_{22}	u_{23}	0	s_2	0		v_{21}	v_{22}	v_{23}	
	u_{31}	u_{32}	u_{33}	0	0	s_3		v_{31}	v_{32}	v_{33}	

if **A** is rank I then

 $\mathbf{A} = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{bmatrix} \begin{bmatrix} s_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_{11} & v_{12} & v_{13} \\ v_{21} & v_{22} & v_{23} \\ v_{31} & v_{32} & v_{33} \end{bmatrix}^T$

$$\mathbf{A} = \begin{bmatrix} u_{11} \\ u_{21} \\ u_{31} \end{bmatrix} \begin{bmatrix} s_1 \end{bmatrix} \begin{bmatrix} v_{11} & v_{21} & v_{31} \end{bmatrix}$$

Any $m \ge n$ matrix **A** can be written as a product of three matrices:

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

Note: SVD is <u>widely</u> used for many purposes. We're only interested in it for these property for now

LINEAR ALGEBRA PRIMER ORTHOGONALITY y-coordinate \mathbf{a}_2 \mathbf{a}_3 \mathbf{a}_1 x-coordinate

LINEAR ALGEBRA PRIMER ORTHOGONALITY

Two vectors \mathbf{a}_1 and \mathbf{a}_3 are orthogonal if

$$\mathbf{a}_1^T \mathbf{a}_3 = 0$$
$$\mathbf{a}_1^T \mathbf{a}_1 = 1$$
$$\mathbf{a}_3^T \mathbf{a}_3 = 1$$

2D GEOMETRY

2D TRANSLATION

 $\mathbf{x}_1 = \left[\begin{array}{c} x_1 \\ y_1 \end{array} \right]$

2D ROTATION

 $\mathbf{x}_1 = \left| \begin{array}{c} x_1 \\ y_1 \end{array} \right|$ × \mathbf{X}_2 \mathbf{X}_1 $\hat{\mathbf{x}}_1' = \mathbf{T}\hat{\mathbf{x}}_1$ $\mathbf{y}_{\mathbf{X}_{\mathbf{A}}} = \begin{vmatrix} x_{1}'' \\ y_{1}'' \end{vmatrix} = \begin{vmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{vmatrix} \begin{vmatrix} x_{1}' \\ y_{1}' \end{vmatrix}$ \mathbf{X}_3 $\overrightarrow{\mathbf{y}} \begin{bmatrix} x_1'' \\ y_1'' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix}$ $\hat{\mathbf{x}}_1'' = \mathbf{R}\hat{\mathbf{x}}_1'$ $\hat{\mathbf{x}}_1'' = \mathbf{RT}\hat{\mathbf{x}}_1$

Rotations have to occur with respect to the origin. This example is a rotation about the origin. If you wish to rotate about an arbitrary point, you need three transformations: apply a translation taking the arbitrary point to the origin, apply the desired rotation, and finally apply a translation taking the point back to its original position.

ROTATION MATRICES ARE ORTHOGONAL

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}^{T} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}^{T} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

2D TRANSFORMATIONS

 $\mathbf{x}_1^{\prime\prime\prime} = \mathbf{SRT}\mathbf{x}_1$

$$\begin{bmatrix} x_1''' \\ y_1''' \\ 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_1''' \\ y_1''' \\ 1 \end{bmatrix} = \begin{bmatrix} S_x \cos(\theta) & -\sin(\theta) & t_x \\ \sin(\theta) & S_y \cos(\theta) & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

 $\mathbf{x}_1^{\prime\prime\prime} = \mathbf{A}\mathbf{x}_1$

FORWARD WARPING ALGORITHM

- FOR EACH SOURCE PIXEL [R, G, B, X, Y]
 - APPLY TRANSFORM \mathbf{A} TO X, Y TO GET X', Y'
 - FOR THE TARGET ARRAY X', Y' COPY R, G, B

BACKWARD WARPING ALGORITHM

- FOR EACH TARGET PIXEL [? ?, ?, X', Y']
 - APPLY TRANSFORM A^{-1} TO X', Y' TO GET X, Y
 - FOR THE TARGET ARRAY X',Y' COPY R, G, B

AFFINE TRANSFORMS

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

PROJECTION 3D to 2D

PROJECTION: 2D TO I D

2 dimensional to 1 dimensional projection

PROJECTION: 2D TO I D

How do we project to an arbitrary 1d 'camera'?

PROJECTION: 3D TO 2D

ORTHOGRAPHICVS PERSPECTIVE

parallel projection

central projection

ORTHOGRAPHIC PROJECTION

REAL IMAGES

REAL IMAGES

FORCED PERSPECTIVE

ANOTHER PERSPECTIVE...

HOW DOWE RECOVER 3D?

STEREOPSIS

- CORRESPONDENCE: FINDING THE
 IMAGE OF A 3D POINT IN BOTH
 IMAGES
- **RECONSTRUCTION:** RECOVERING THE LOCATION OF THE 3D POINT

STEREO VIEWS

Example I

Example 2

MULTIPLE VIEWS? STRUCTURE FROM MOTION

MULTIPLE VIEWS STRUCTURE FROM MOTION

ALGORITHM

- I. Input W matrix of tracks (F frames and P points)
- 2. Perform SVD of W: $[\mathbf{U}, \mathbf{D}, \mathbf{V}] = SVD(\mathbf{W})$
- 3. Compute camera motion as $\mathbf{R'} = \mathbf{UD'}$, where **D** is a submatrix of **D**
- 4. Compute 3D structure as $S' = V'^{T}$ where V'^{T} is a submatrix of V^{T}
- 5. <u>Compute metric upgrade using orthonormality constraints</u>

STRUCTURE FROM MOTION STRUCTURE

$$\mathbf{S} = \begin{bmatrix} X_1 & X_2 & \dots & X_P \\ Y_1 & Y_2 & & Y_P \\ Z_1 & Z_2 & & Z_P \\ 1 & 1 & \dots & 1 \end{bmatrix}$$
$$\mathbf{S} = \begin{bmatrix} \mathbf{S}_1 & \mathbf{S}_2 & \dots & \mathbf{S}_P \end{bmatrix}$$
$$\mathbf{S}_1 = \begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \\ 1 \end{bmatrix}$$

STRUCTURE FROM MOTION CAMERA MOTION

$$\mathbf{R}_{1} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & r_{14} \\ r_{21} & r_{22} & r_{23} & r_{24} \end{bmatrix} \quad \mathbf{R} = \begin{bmatrix} \mathbf{R}_{1} \\ \mathbf{R}_{2} \\ \vdots \\ \mathbf{R}_{F} \end{bmatrix}$$
$$\begin{bmatrix} x_{1} \\ y_{1} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & r_{14} \\ r_{21} & r_{22} & r_{23} & r_{24} \end{bmatrix} \begin{bmatrix} X_{1} \\ Y_{1} \\ Z_{1} \\ 1 \end{bmatrix}$$

 $\mathbf{x}_1 = \mathbf{R}_1 \mathbf{S}_1$

STRUCTURE FROM MOTION CAMERA MOTION

one point seen in many cameras

$$\begin{bmatrix} \mathbf{x}_{11} & \mathbf{x}_{12} & \dots & \mathbf{x}_{1P} \end{bmatrix} = \mathbf{R}_1 \begin{bmatrix} \mathbf{S}_1 & \mathbf{S}_2 & \dots & \mathbf{S}_F \end{bmatrix}$$

many points seen in one camera

STRUCTURE FROM MOTION FACTORIZATION

RANK CONSTRAINT

- RANK(**W**) = 4
 - IN THE ORIGINAL PAPER, A RANK 3
 CONSTRAINT IS DESCRIBED
- HOW DO WE USE THIS PROPERTY TO ESTIMATE CAMERA MOTION AND STRUCTURE?

Any $m \ge n$ matrix **A** can be written as a product of three matrices:

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

Rank 4 means the diagonal has only two non-zero elements

ALGORITHM

- I. Input W matrix of tracks (F frames and P points)
- 2. Perform SVD of W: $[\mathbf{U}, \mathbf{D}, \mathbf{V}] = SVD(\mathbf{W})$
- 3. Compute camera motion as **R'** = **UD**', where **D** is a submatrix of **D**
- 4. Compute 3D structure as $S' = V'^{T}$ where V'^{T} is a submatrix of V^{T}
- 5. Compute metric upgrade using orthonormality constraints

RESULTS

RESULTS TRACKS

RESULTS

STRUCTURE FROM MOTION

Agarwal et al., ICCV 2009