
Artificial Intelligence

Markov decision processes (MDPs)
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What’s missing in HMMs
• HMMs cannot model important aspects of agent interactions:

- No model for rewards
- No model for actions which can affect these rewards

• These are actually issues that are faced by many applications:
- Agents negotiating deals on the web
- A robot which interacts with its environment- A robot which interacts with its environment



Example: No actions
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Formal definition of MDPs

• A set of states {s1 … sn}
• A set of rewards {r1 … rn} 
• A set of action {a1 .. am}
• Transition probability

One reward for each state

Number of actions could be 
larger than number of states
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Questions

• What is my expected payoff if I am in state i
• What is my expected payoff if I am in state i and perform 

action a?



Solving MDPs

• No actions: Value iterations

• With actions: Value iteration, Policy iteration



Value computation
• An obvious question for such models is what is 

combined expected value for each state
• What can we expect to earn over our life time if we 

become Asst. prof.?
• What if we go to industry?

Before we answer this question, we need to define a 
model for future rewards:

• The value of a current award is higher than the value 
of future awards

- Inflation, confidence

- Example: Lottery



Discounted rewards

• The discounted rewards model is specified using a 
parameter γ

• Total rewards = current reward +
γ (reward at time t+1) +
γ2 (reward at time t+2) +γ2 (reward at time t+2) +
………….
γk (reward at time t+k) +

infinite sum



Discounted awards

• The discounted award model is specified using a 
parameter γ

• Total awards = current award +
γ (award at time t+1) +
γ2 (award at time t+2) +γ2 (award at time t+2) +
………….
γk (award at time t+k) +

infinite sum

Converges if 0<γ<1



Determining the total rewards in a 
state 

• Define J*(si) = expected discounted sum of rewards when 
starting at state si

• How do we compute J*(si)?
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How can we solve this?



Computing j*(si) 
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• We have n equations with n unknowns 

• Can be solved in closed form
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Iterative approaches
• Solving in closed form is possible, but may be time consuming.
• Alternatively, this problem can be solved in an iterative manner
• Let’s define Jt(si) as the expected total discounted rewards after t 

steps
• How can we compute Jt(si)?
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Iterative approaches
• Solving in closed form is possible, but may be time 

consuming.
• Alternatively, this problem can be solved in an iterative 

manner
• Lets define Jk(si) as the expected discounted awards after k 

steps

We know how to solve this!

Lets fill the dynamic programming table

steps
• How can we compute Jk(si)?
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But wait …

This is a never ending task!



When do we stop?
ii rSJ =)(1
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Remember, we have a converging function

We can stop when |Jt-1(si)- Jt(si)|∞∞∞∞ < ε

Infinity norm selects maximal element



Example for γ=0.9
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Solving MDPs

• No actions: Value iterations

• With actions: Value iteration, Policy iteration
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Adding actions

A Markov Decision Process:
• A set of states {s1 … sn}
• A set of rewards {r1 … rn} 
• A set of action {a1 .. am}
• Transition probability• Transition probability
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Example: Actions
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Questions for MDPs

• Now we have actions
• The question changes to the following:

Given our current state and the possible actions, what is 
the best action for us in terms of long term payment?the best action for us in terms of long term payment?



Example: Actions
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Policy

• A policy maps states to 
actions

• An optimal policy leads to 
the highest expected 
returns

Gr B

Go A

returns
• Note that this does not 

depend on the start state
• How is this different from 

the Planning solutions we 
studies 2 weeks ago?
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Solving MDPs with actions

• It could be shown that for every MDP there exists an 
optimal policy (we won’t discuss the proof).

• Such policy guarantees that there is no other action that 
is expected to yield a higher payoff 



Computing the optimal policy: 
1. Modified value iteration

• We can compute it by modifying the value iteration 
method we discussed.

• Define pk
ij as the probability of transitioning from state i to 

state j when using action k
• Then we compute:• Then we compute:
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Also known as Bellman’s 
equation



Computing the optimal policy: 
1. Modified value iteration

• We can compute it by modifying the value iteration 
method we discussed.

• Define pk
ij as the probability of transitioning from state i to 

state j when using action k
• Then we compute:• Then we compute:
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Run until convergences



Computing the optimal policy: 
1. Modified value iteration

• We can compute it by modifying the value iteration 
method we discussed.

• Define pk
ij as the probability of transitioning from state i to 

state j when using action k
• Then we compute:• Then we compute:
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• When the algorithm converges, we have 
computed the best outcome for each state

• We associate states with the actions that 
maximize their return 



Value iteration for γ=0.9
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Computing the optimal policy: 
2. Policy iteration

• We can also compute optimal policies by revising an 
existing policy.

• We initially select a policy at random (mapping from 
states to actions). 

• We re-compute the expected long term reward at each • We re-compute the expected long term reward at each 
state using the selected policy

• We select a new policy using the expected rewards and 
iterate until convergences  



Policy iteration: algorithm

• Let �t(si) be the selected policy at time t
1. Randomly choose �0 ; set t = 0 
2. For each state si compute J*(si), the long term 

expected reward using policy �t .
3. Set � (s ) = �
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4. Convergence? Yes: output policy. No: t = t + 1, go to 2. 
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Policy iteration: algorithm

• Let �t(si) be the selected policy at time t for state i
1. Randomly choose �0 ; set t = 0 
2. For each state si compute J*(si), the long term 

expected reward using policy �t .
3. set � (s ) = �

�
�
�

+ � k sJpr )(*max γ3. set �t+1(si) = 

4. Convergence? Yes: output policy. No: t = t + 1, go to 2. 
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Can be computed 
using value iteration

Can be computed 
using J*(si) for all 
states



Value iteration vs. policy iteration

• Depending on the model and the information at hand:
- If you have a good guess regarding the optimal policy 
then policy iteration would converge much faster
- similarly, if there are many possible actions, policy 
iteration might be fasteriteration might be faster
- otherwise value iteration is a safer way



What you should know

• Models that include rewards and actions
• Value iteration for solving MDPs
• Policy iteration



Partially Observed Markov 
Decision Processes (POMDPs)

• Same model as MDP except: We do not observe the 
states we are in.

• Thus, we have a distribution over states
• There is an initial distribution for states (initial belief)
• Once we reach a new state and receive a reward we can • Once we reach a new state and receive a reward we can 

re-compute a new belief regrading the possible set of 
states



Example
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3 1
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• If we see 1, we can be in any of several 
locations.

• However, based on past and future 
observations we can increase a decrease 
our belief at a given state 1 2 1

POMDPs can be solved by extending the MDP 
methods to solve for a belief state vector rather than 
for the original single state MDP


