
15-381
ARTIFICIAL

INTELLIGENCE
LECTURE 9: INFERENCE ON

BAYESIAN NETWORKS

Fall 2010

Thursday, September 23, 2010

PATTERN RECOGNITION
AND MACHINE LEARNING

http://research.microsoft.com/en-us/um/people/cmbishop/prml/

Thursday, September 23, 2010

http://research.microsoft.com/en-us/um/people/cmbishop/prml/
http://research.microsoft.com/en-us/um/people/cmbishop/prml/

REVIEW: PROBABILITY

PRODUCT RULE p(X,Y) = p(Y |X)p(X)

Conditional Probability

SUM RULE p(X) =
�

Y

p(X,Y)

Joint ProbabilityMarginal Probability

p(X|Y) =
p(Y |X)p(X)

p(Y)

Prior Probability

Posterior Probability
Evidence

Likelihood

BAYES’ THEOREM

Thursday, September 23, 2010

REVIEW: BAYES NETS

p(x) =
K�

k=1

p(xk|pak)

Thursday, September 23, 2010

REVIEW: BAYES NETS

• GRAPHICAL MODEL

p(x) =
K�

k=1

p(xk|pak)

Thursday, September 23, 2010

REVIEW: BAYES NETS

• GRAPHICAL MODEL

• EACH NODE DENOTES A RANDOM VARIABLE

p(x) =
K�

k=1

p(xk|pak)

Thursday, September 23, 2010

REVIEW: BAYES NETS

• GRAPHICAL MODEL

• EACH NODE DENOTES A RANDOM VARIABLE

• DIRECTED ACYCLIC GRAPH

p(x) =
K�

k=1

p(xk|pak)

Thursday, September 23, 2010

REVIEW: BAYES NETS

• GRAPHICAL MODEL

• EACH NODE DENOTES A RANDOM VARIABLE

• DIRECTED ACYCLIC GRAPH

• CONDITIONAL PROBABILITY TABLES

p(x) =
K�

k=1

p(xk|pak)

Thursday, September 23, 2010

Diagnosis of Liver Disorders

Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. A Bayesian network model for diagnosis of liver disorders. In Proceedings of the Eleventh Conference on Biocybernetics and
Biomedical Engineering, pages 842-846, Warsaw, Poland, December 2-4, 1999.

Thursday, September 23, 2010

http://www.pitt.edu/~druzdzel/abstracts/ibib99.html
http://www.pitt.edu/~druzdzel/abstracts/ibib99.html

CONDITIONAL INDEPENDENCE

p(a|b, c) = p(a|c)

Thursday, September 23, 2010

CONDITIONAL INDEPENDENCE

p(a|b, c) = p(a|c)

p(a, b|c) = p(a|b, c)p(b|c)

= p(a|c)p(b|c)

Thursday, September 23, 2010

CONDITIONAL INDEPENDENCE

p(a|b, c) = p(a|c)

p(a, b|c) = p(a|b, c)p(b|c)

= p(a|c)p(b|c)

a ⊥ b|c

Thursday, September 23, 2010

CONDITIONAL INDEPENDENCE

p(a|b, c) = p(a|c)

p(a, b|c) = p(a|b, c)p(b|c)

= p(a|c)p(b|c)

a ⊥ b|c

“a and b are independent given c”

Thursday, September 23, 2010

THREE GRAPHS

a b

c
a

b

c

c

ba

a ⊥ b|∅ p(a, b) = p(a)p(b)⇔

a ⊥ b|c p(a, b|c) = p(a|c)p(b|c)⇔

COMMON CAUSE CAUSAL CHAIN COMMON EFFECT

Thursday, September 23, 2010

COMMON CAUSE

a b

c

Thursday, September 23, 2010

COMMON CAUSE

a b

c

p(a, b, c) = p(a|c)p(b|c)p(c)

Thursday, September 23, 2010

COMMON CAUSE

a b

c

p(a, b, c) = p(a|c)p(b|c)p(c)

p(a, b)

Thursday, September 23, 2010

COMMON CAUSE

a b

c

p(a, b, c) = p(a|c)p(b|c)p(c)

=
�

c

p(a|c)p(b|c)p(c)p(a, b)

Thursday, September 23, 2010

COMMON CAUSE

a b

c

p(a, b, c) = p(a|c)p(b|c)p(c)

=
�

c

p(a|c)p(b|c)p(c)

�= p(a)p(b)

p(a, b)

Thursday, September 23, 2010

COMMON CAUSE

a b

c

p(a, b, c) = p(a|c)p(b|c)p(c)

=
�

c

p(a|c)p(b|c)p(c)

�= p(a)p(b)

a ⊥ b|∅

p(a, b)

Thursday, September 23, 2010

COMMON CAUSE

a b

c

p(a, b, c) = p(a|c)p(b|c)p(c)

=
�

c

p(a|c)p(b|c)p(c)

�= p(a)p(b)

a ⊥ b|∅

a and b are not independent

p(a, b)

Thursday, September 23, 2010

COMMON CAUSE

a b

c
observed

Thursday, September 23, 2010

COMMON CAUSE

a b

c
observed

p(a, b|c) = p(a, b, c)

p(c)

Thursday, September 23, 2010

COMMON CAUSE

a b

c
observed

p(a, b|c) = p(a, b, c)

p(c)

=
p(a|c)p(b|c)p(c)

p(c)
= p(a|c)p(b|c)

Thursday, September 23, 2010

COMMON CAUSE

a b

c
observed

p(a, b|c) = p(a, b, c)

p(c)

=
p(a|c)p(b|c)p(c)

p(c)
= p(a|c)p(b|c)

a ⊥ b|c

Thursday, September 23, 2010

COMMON CAUSE

a b

c

a is conditionally independent of b given c

observed

p(a, b|c) = p(a, b, c)

p(c)

=
p(a|c)p(b|c)p(c)

p(c)
= p(a|c)p(b|c)

a ⊥ b|c

Thursday, September 23, 2010

TAIL-TO-TAIL

a b

c

Thursday, September 23, 2010

TAIL-TO-TAIL

a b

c

Node c is tail-to-tail

Thursday, September 23, 2010

TAIL-TO-TAIL

a b

c

Node c is tail-to-tail
Path exists from a to b through c

Thursday, September 23, 2010

TAIL-TO-TAIL

a b

c

Node c is tail-to-tail

When c is observed, it ‘blocks’ the path from a to b

Path exists from a to b through c

Thursday, September 23, 2010

CAUSAL CHAIN

a

b

c

p(a, b, c) = p(a)p(c|a)p(b|c)

Thursday, September 23, 2010

CAUSAL CHAIN

a

b

c

p(a, b, c) = p(a)p(c|a)p(b|c)

p(a, b)

Thursday, September 23, 2010

CAUSAL CHAIN

a

b

c

p(a, b, c) = p(a)p(c|a)p(b|c)

=
�

c

p(a)p(c|a)p(b|a) = p(a)
�

c

p(c|a)p(b|a)p(a, b)

Thursday, September 23, 2010

CAUSAL CHAIN

a

b

c
= p(a)p(b|a)

p(a, b, c) = p(a)p(c|a)p(b|c)

=
�

c

p(a)p(c|a)p(b|a) = p(a)
�

c

p(c|a)p(b|a)p(a, b)

Thursday, September 23, 2010

CAUSAL CHAIN

a

b

c
= p(a)p(b|a)

p(a, b, c) = p(a)p(c|a)p(b|c)

=
�

c

p(a)p(c|a)p(b|a) = p(a)
�

c

p(c|a)p(b|a)

a ⊥ b|∅

p(a, b)

Thursday, September 23, 2010

CAUSAL CHAIN

a

b

c
= p(a)p(b|a)

p(a, b, c) = p(a)p(c|a)p(b|c)

=
�

c

p(a)p(c|a)p(b|a) = p(a)
�

c

p(c|a)p(b|a)

a ⊥ b|∅

a and b are not independent

p(a, b)

Thursday, September 23, 2010

CAUSAL CHAIN

a

b

c

p(a, b|c) =
p(a)p(c|a)p(b|c)

p(c)

Thursday, September 23, 2010

CAUSAL CHAIN

a

b

c

p(a, b|c) = p(a, b, c)

p(c)
=

p(a)p(c|a)p(b|c)
p(c)

Thursday, September 23, 2010

CAUSAL CHAIN

a

b

c

p(a, b|c) = p(a, b, c)

p(c)

= p(a|c)p(b|c)

=
p(a)p(c|a)p(b|c)

p(c)

Thursday, September 23, 2010

CAUSAL CHAIN

a

b

c

p(a, b|c) = p(a, b, c)

p(c)

= p(a|c)p(b|c)

a ⊥ b|c

=
p(a)p(c|a)p(b|c)

p(c)

Thursday, September 23, 2010

CAUSAL CHAIN

a

b

c

p(a, b|c) = p(a, b, c)

p(c)

= p(a|c)p(b|c)

a ⊥ b|c

a is conditionally independent of b given c

=
p(a)p(c|a)p(b|c)

p(c)

Thursday, September 23, 2010

HEAD-TO-TAIL

a

b

c

Thursday, September 23, 2010

HEAD-TO-TAIL

a

b

c

Node c is head-to-tail

Thursday, September 23, 2010

HEAD-TO-TAIL

a

b

c

Node c is head-to-tail

Path exists from a to b through c

Thursday, September 23, 2010

HEAD-TO-TAIL

a

b

c

Node c is head-to-tail

When c is observed, it ‘blocks’ the path from a to b

Path exists from a to b through c

Thursday, September 23, 2010

COMMON EFFECT

c

ba

p(a, b, c) = p(a)p(b)p(c|a, b)

Thursday, September 23, 2010

COMMON EFFECT

c

ba

p(a, b, c) = p(a)p(b)p(c|a, b)

p(a, b) =
�

c

p(a)p(b)p(c|a, b)

Thursday, September 23, 2010

COMMON EFFECT

c

ba

p(a, b, c) = p(a)p(b)p(c|a, b)

p(a, b) =
�

c

p(a)p(b)p(c|a, b)= p(a)p(b)
�

c

p(c|a, b)

Thursday, September 23, 2010

COMMON EFFECT

c

ba

p(a, b, c) = p(a)p(b)p(c|a, b)

p(a, b) =
�

c

p(a)p(b)p(c|a, b)= p(a)p(b)
�

c

p(c|a, b)

= p(a)p(b)

Thursday, September 23, 2010

COMMON EFFECT

c

ba

p(a, b, c) = p(a)p(b)p(c|a, b)

p(a, b) =
�

c

p(a)p(b)p(c|a, b)= p(a)p(b)
�

c

p(c|a, b)

= p(a)p(b)

a ⊥ b|∅

Thursday, September 23, 2010

COMMON EFFECT

a and b are independent

c

ba

p(a, b, c) = p(a)p(b)p(c|a, b)

p(a, b) =
�

c

p(a)p(b)p(c|a, b)= p(a)p(b)
�

c

p(c|a, b)

= p(a)p(b)

a ⊥ b|∅

Thursday, September 23, 2010

COMMON EFFECT

c

ba

p(a, b|c) = p(a, b, c)

p(c)

Thursday, September 23, 2010

COMMON EFFECT

c

ba

p(a, b|c) = p(a, b, c)

p(c)

=
p(a)p(b)p(c|a, b)

p(c)

Thursday, September 23, 2010

COMMON EFFECT

c

ba

p(a, b|c) = p(a, b, c)

p(c)

=
p(a)p(b)p(c|a, b)

p(c)

�= p(a|c)p(b|c)

Thursday, September 23, 2010

COMMON EFFECT

c

ba

p(a, b|c) = p(a, b, c)

p(c)

=
p(a)p(b)p(c|a, b)

p(c)

�= p(a|c)p(b|c)

a ⊥ b|c

Thursday, September 23, 2010

COMMON EFFECT

a and b not conditionally independent given c

c

ba

p(a, b|c) = p(a, b, c)

p(c)

=
p(a)p(b)p(c|a, b)

p(c)

�= p(a|c)p(b|c)

a ⊥ b|c

Thursday, September 23, 2010

COMMON EFFECT

c

ba

Thursday, September 23, 2010

COMMON EFFECT

c

ba

Node c is head-to-head wrt path

Thursday, September 23, 2010

COMMON EFFECT

c

ba

Node c is head-to-head wrt path
c ‘blocks’ path from a to b

Thursday, September 23, 2010

COMMON EFFECT

c

ba

Node c is head-to-head wrt path

When c is observed, it unblocks the path from a to b
c ‘blocks’ path from a to b

Thursday, September 23, 2010

SUMMARY

a b

c
a

b

c

c

ba

a ⊥ b|∅

a ⊥ b|c

a ⊥ b|∅

a ⊥ b|c

a ⊥ b|∅

a ⊥ b|c

Thursday, September 23, 2010

HEAD-TO-HEAD REVISITED

B

G

p(B = 1) = 0.9 p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

F

Thursday, September 23, 2010

BATTERY-FUEL-GAUGE

B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

Thursday, September 23, 2010

BATTERY-FUEL-GAUGE

B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

p(F = 0|G = 0)

posterior

Thursday, September 23, 2010

BATTERY-FUEL-GAUGE

B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

=
p(G = 0|F = 0)p(F = 0)

p(G = 0)
p(F = 0|G = 0)

posterior

Thursday, September 23, 2010

BATTERY-FUEL-GAUGE

B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

=
p(G = 0|F = 0)p(F = 0)

p(G = 0)

p(G = 0) =
�

B∈{0,1}

�

F∈{0,1}

p(G = 0, B, F)

p(F = 0|G = 0)

posterior

Thursday, September 23, 2010

BATTERY-FUEL-GAUGE

B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

=
p(G = 0|F = 0)p(F = 0)

p(G = 0)

p(G = 0) =
�

B∈{0,1}

�

F∈{0,1}

p(G = 0, B, F)

=
�

B∈{0,1}

�

F∈{0,1}

p(G = 0|B,F)p(B)p(F)

p(F = 0|G = 0)

posterior

Thursday, September 23, 2010

BATTERY-FUEL-GAUGE

B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

=
p(G = 0|F = 0)p(F = 0)

p(G = 0)

p(G = 0) =
�

B∈{0,1}

�

F∈{0,1}

p(G = 0, B, F)

=
�

B∈{0,1}

�

F∈{0,1}

p(G = 0|B,F)p(B)p(F)

= 0.315

p(F = 0|G = 0)

posterior

Thursday, September 23, 2010

BATTERY-FUEL-GAUGE

B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

p(F = 0|G = 0) =
p(G = 0|F = 0)p(F = 0)

0.315
posterior

Thursday, September 23, 2010

BATTERY-FUEL-GAUGE

B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

p(F = 0|G = 0) =
p(G = 0|F = 0)p(F = 0)

0.315

p(G = 0|F = 0) =
�

B∈{0,1}

p(G = 0|B,F = 0)p(B)

posterior

Thursday, September 23, 2010

BATTERY-FUEL-GAUGE

B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

p(F = 0|G = 0) =
p(G = 0|F = 0)p(F = 0)

0.315

p(G = 0|F = 0) =
�

B∈{0,1}

p(G = 0|B,F = 0)p(B)

= 0.81

posterior

Thursday, September 23, 2010

BATTERY-FUEL-GAUGE

B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

p(F = 0|G = 0) =
0.81 · p(F = 0)

0.315
posterior

Thursday, September 23, 2010

BATTERY-FUEL-GAUGE

B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

p(F = 0|G = 0) =
0.81 · p(F = 0)

0.315

=
0.81× 0.1

0.315

posterior

Thursday, September 23, 2010

BATTERY-FUEL-GAUGE

B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

p(F = 0|G = 0) =
0.81 · p(F = 0)

0.315

=
0.81× 0.1

0.315

= 0.257

posterior

Thursday, September 23, 2010

BATTERY-FUEL-GAUGE

B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

p(F = 0|G = 0) =
0.81 · p(F = 0)

0.315

=
0.81× 0.1

0.315

= 0.257

posterior

p(F = 0|G = 0) > p(F = 0)

Thursday, September 23, 2010

BATTERY-FUEL-GAUGE

B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

p(F = 0|G = 0) =
0.81 · p(F = 0)

0.315

=
0.81× 0.1

0.315

= 0.257

posterior

p(F = 0|G = 0) > p(F = 0)

posterior prior
Thursday, September 23, 2010

EXPLAINING AWAY
B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

p(F = 0|G = 0, B = 0) = 0.111

Thursday, September 23, 2010

EXPLAINING AWAY
B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

p(F = 0|G = 0, B = 0) = 0.111

p(F = 0|G = 0) > p(F = 0|G = 0, B = 0)

Thursday, September 23, 2010

EXPLAINING AWAY
B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

p(F = 0|G = 0) > p(F = 0)

p(F = 0|G = 0, B = 0) = 0.111

p(F = 0|G = 0) > p(F = 0|G = 0, B = 0)

Thursday, September 23, 2010

EXPLAINING AWAY
B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F)

p(F = 0) = 0.1

prior

p(F = 0|G = 0) > p(F = 0)

p(F = 0|G = 0, B = 0) = 0.111

p(F = 0|G = 0) > p(F = 0|G = 0, B = 0)

F and B become dependent as a result of observing G
Thursday, September 23, 2010

SUMMARY

a b

c
a

b

c

c

ba

a ⊥ b|∅

a ⊥ b|c

a ⊥ b|∅

a ⊥ b|c

a ⊥ b|∅

a ⊥ b|c

Thursday, September 23, 2010

D-SEPARATION
JUDEA PEARL

Thursday, September 23, 2010

D-SEPARATION
JUDEA PEARL

• DIRECTION-DEPENDENT SEPARATION

Thursday, September 23, 2010

D-SEPARATION
JUDEA PEARL

• DIRECTION-DEPENDENT SEPARATION

• A TECHNIQUE TO DETERMINING CONDITIONAL
INDEPENDENCE PROPERTIES FROM GRAPHICAL MODELS

Thursday, September 23, 2010

D-SEPARATION
JUDEA PEARL

• DIRECTION-DEPENDENT SEPARATION

• A TECHNIQUE TO DETERMINING CONDITIONAL
INDEPENDENCE PROPERTIES FROM GRAPHICAL MODELS

• “IS THE SET OF VARIABLES A CONDITIONALLY
INDEPENDENT OF THE SET B GIVEN THE SET C?”

Thursday, September 23, 2010

D-SEPARATION
Task: Determine if A ⊥ B|C

Thursday, September 23, 2010

D-SEPARATION
Task: Determine if A ⊥ B|C

Consider all possible paths from any node in A to any node in B

Thursday, September 23, 2010

D-SEPARATION
Task: Determine if A ⊥ B|C

Consider all possible paths from any node in A to any node in B

A path is blocked if it includes a node where either

Thursday, September 23, 2010

D-SEPARATION
Task: Determine if A ⊥ B|C

Consider all possible paths from any node in A to any node in B

A path is blocked if it includes a node where either

the arrows on the path meet head-to-tail or tail-to-tail at
the node, and the node is in C

Thursday, September 23, 2010

D-SEPARATION
Task: Determine if A ⊥ B|C

Consider all possible paths from any node in A to any node in B

A path is blocked if it includes a node where either

the arrows on the path meet head-to-tail or tail-to-tail at
the node, and the node is in C

the arrows on the path meet head-to-head and neither
the node nor any of its descendants is in C

Thursday, September 23, 2010

D-SEPARATION
Task: Determine if A ⊥ B|C

Consider all possible paths from any node in A to any node in B

A path is blocked if it includes a node where either

If all paths are blocked then A is d-separated from B by C, then
A ⊥ B|C

the arrows on the path meet head-to-tail or tail-to-tail at
the node, and the node is in C

the arrows on the path meet head-to-head and neither
the node nor any of its descendants is in C

Thursday, September 23, 2010

Thursday, September 23, 2010

a

b

c

d

e

a ⊥ b|c ?

Thursday, September 23, 2010

a

b

c

d

e

a ⊥ b|c ?

a

b

c

d

e

a ⊥ b|e ?

Thursday, September 23, 2010

INFERENCE ON BAYESIAN NETWORKS

Thursday, September 23, 2010

INFERENCE ON BAYESIAN NETWORKS

JOHN

Thursday, September 23, 2010

INFERENCE ON BAYESIAN NETWORKS

JOHN

p(B|J = TRUE) =?

Thursday, September 23, 2010

INFERENCE ON BAYESIAN NETWORKS

JOHN

p(B|J = TRUE) =?p(J |A = TRUE) = 0.9

Thursday, September 23, 2010

INFERENCE ON BAYESIAN NETWORKS

JOHN

p(B|J = TRUE) =?

p(J |A = TRUE) = 0.9

p(J |A = FALSE) = 0.05

p(B = TRUE) = 0.001

p(J |A = TRUE) = 0.9

Thursday, September 23, 2010

INFERENCE ON BAYESIAN NETWORKS

JOHN

p(B|J = TRUE) =?

p(J |A = TRUE) = 0.9

p(J |A = FALSE) = 0.05

p(B = TRUE) = 0.001

In 1000 days:

p(J |A = TRUE) = 0.9

Thursday, September 23, 2010

INFERENCE ON BAYESIAN NETWORKS

JOHN

p(B|J = TRUE) =?

p(J |A = TRUE) = 0.9

p(J |A = FALSE) = 0.05

p(B = TRUE) = 0.001

In 1000 days:
There will be 1 burglary

p(J |A = TRUE) = 0.9

Thursday, September 23, 2010

INFERENCE ON BAYESIAN NETWORKS

JOHN

p(B|J = TRUE) =?

p(J |A = TRUE) = 0.9

p(J |A = FALSE) = 0.05

p(B = TRUE) = 0.001

In 1000 days:
There will be 1 burglary
John will call 50 times!

p(J |A = TRUE) = 0.9

Thursday, September 23, 2010

INFERENCE ON BAYESIAN NETWORKS

JOHN

p(B|J = TRUE) =?

p(J |A = TRUE) = 0.9

p(J |A = FALSE) = 0.05

p(B = TRUE) = 0.001

In 1000 days:
There will be 1 burglary
John will call 50 times!

p(B|J = TRUE) � 0.2

p(J |A = TRUE) = 0.9

Thursday, September 23, 2010

INFERENCE

Thursday, September 23, 2010

INFERENCE

• WHEN SOME VARIABLES ARE OBSERVED
WHAT CAN WE SAY ABOUT THE
UNOBSERVED VARIABLES?

Thursday, September 23, 2010

INFERENCE

• WHEN SOME VARIABLES ARE OBSERVED
WHAT CAN WE SAY ABOUT THE
UNOBSERVED VARIABLES?

• DIRECTED GRAPH TO SPECIFY MODEL

Thursday, September 23, 2010

INFERENCE

• WHEN SOME VARIABLES ARE OBSERVED
WHAT CAN WE SAY ABOUT THE
UNOBSERVED VARIABLES?

• DIRECTED GRAPH TO SPECIFY MODEL

• FACTOR GRAPH FOR INFERENCE AND
LEARNING

Thursday, September 23, 2010

INFERENCE

• WHEN SOME VARIABLES ARE OBSERVED
WHAT CAN WE SAY ABOUT THE
UNOBSERVED VARIABLES?

• DIRECTED GRAPH TO SPECIFY MODEL

• FACTOR GRAPH FOR INFERENCE AND
LEARNING

ab+ ac = a(b+ c)

Thursday, September 23, 2010

FACTOR GRAPH

p(x) =
�

s

fs(xs)

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3)

Thursday, September 23, 2010

FACTOR GRAPH

p(x) =
�

s

fs(xs)

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3)

x1 x2 x3
variable node

Thursday, September 23, 2010

FACTOR GRAPH

p(x) =
�

s

fs(xs)

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3)

x1 x2 x3
variable node

fa fb fc fd

factor node
Thursday, September 23, 2010

FACTOR GRAPH

p(x) =
�

s

fs(xs)

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3)

x1 x2 x3
variable node

fa fb fc fd

factor node
Thursday, September 23, 2010

FACTOR GRAPH

p(x) =
�

s

fs(xs)

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3)

x1 x2 x3
variable node

fa fb fc fd

factor node
Thursday, September 23, 2010

FACTOR GRAPH

p(x) =
�

s

fs(xs)

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3)

x1 x2 x3
variable node

fa fb fc fd

factor node
Thursday, September 23, 2010

FACTOR GRAPH

p(x) =
�

s

fs(xs)

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3)

x1 x2 x3
variable node

fa fb fc fd

factor node
Thursday, September 23, 2010

FACTOR GRAPH
x1 x2

x3

p(x)

Thursday, September 23, 2010

FACTOR GRAPH
x1 x2

x3

p(x) p(x1, x2, x3)=

f

Thursday, September 23, 2010

FACTOR GRAPH
x1 x2

x3

f

x1 x2

x3

p(x) p(x1, x2, x3)=

f

Thursday, September 23, 2010

FACTOR GRAPH
x1 x2

x3

f

x1 x2

x3

p(x)

fa fb fc

p(x1)p(x2)p(x3|x1, x2)=p(x1, x2, x3)=

f

Thursday, September 23, 2010

FACTOR GRAPH
x1 x2

x3

f

x1 x2

x3

fa fb

fc
x1 x2

x3

p(x)

fa fb fc

p(x1)p(x2)p(x3|x1, x2)=p(x1, x2, x3)=

f

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM

• TREE OR POLYTREE

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM

• TREE OR POLYTREE

• BELIEF PROPAGATION: SPECIAL CASE

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM

• TREE OR POLYTREE

• BELIEF PROPAGATION: SPECIAL CASE

• GOAL:

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM

• TREE OR POLYTREE

• BELIEF PROPAGATION: SPECIAL CASE

• GOAL:

• OBTAIN EFFICIENT EXACT ALGORITHM
FOR FINDING MARGINALS

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM

• TREE OR POLYTREE

• BELIEF PROPAGATION: SPECIAL CASE

• GOAL:

• OBTAIN EFFICIENT EXACT ALGORITHM
FOR FINDING MARGINALS

• ALLOW COMPUTATIONS TO BE SHARED
EFFICIENTLY

Thursday, September 23, 2010

POLYTREE
EB

A

J M

Thursday, September 23, 2010

POLYTREE
EB

A

J M

DAG

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

x1 x2 x3

fa fb

fc

x4

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

root

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

x1 x2 x3

fa fb

fc

x4

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

root

µx1→fa(x1)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

x1 x2 x3

fa fb

fc

x4

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

root

µfa→x2(x2)µx1→fa(x1)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

x1 x2 x3

fa fb

fc

x4

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

root

µfa→x2(x2)µx1→fa(x1)

µx4→fc(x4)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

x1 x2 x3

fa fb

fc

x4

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

root

µfa→x2(x2)µx1→fa(x1)

µx4→fc(x4)

µfc→x2(x2)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

x1 x2 x3

fa fb

fc

x4

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

root

µfa→x2(x2)µx1→fa(x1)

µx4→fc(x4)

µfc→x2(x2)

µx2→fb(x2)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

x1 x2 x3

fa fb

fc

x4

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

root

µfa→x2(x2)µx1→fa(x1)

µx4→fc(x4)

µfc→x2(x2)

µx2→fb(x2) µfb→x3(x3)

Thursday, September 23, 2010

Thursday, September 23, 2010

x

...

Thursday, September 23, 2010

...

x

...
fs

Thursday, September 23, 2010

...

x

...
fs

F
s
(x
,X

s
)

Thursday, September 23, 2010

...

x

...
fs

F
s
(x
,X

s
)

xm

Thursday, September 23, 2010

...

x

...
fs

F
s
(x
,X

s
)

...

xm

Thursday, September 23, 2010

...

x

...
fs

F
s
(x
,X

s
)

...

xm

Gm(xm, Xsm)

Thursday, September 23, 2010

...

x

...
fs

F
s
(x
,X

s
)

...
...

xm

Gm(xm, Xsm)

Thursday, September 23, 2010

...

x

...
fs

F
s
(x
,X

s
)

...
...

Fl(xm, Xml)

xm

Gm(xm, Xsm)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM

p(x) =
�

x\x

p(x)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM

p(x) =
�

x\x

p(x)

x = {x, x1, x2, · · · , xN}

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM

p(x) =
�

x\x

p(x)

x = {x, x1, x2, · · · , xN}
x\x : all of x except x

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM

p(x) =
�

x\x

p(x)

x = {x, x1, x2, · · · , xN}
x\x : all of x except x

p(x) =
�

x1

�

x2

p(x, x1, x2) =
�

x\x

p(x, x1, x2)

Thursday, September 23, 2010

...

x

...
fs

F
s
(x
,X

s
)

...
...

xm

Thursday, September 23, 2010

...

x

...

µfs→x(x)

fs
F
s
(x
,X

s
)

...
...

xm

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
FACTOR TO VARIABLE

p(x) =
�

x\x

p(x)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
FACTOR TO VARIABLE

p(x) =
�

x\x

p(x) p(x) =
�

s∈ne(x)

Fs(x,Xs)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
FACTOR TO VARIABLE

p(x) =
�

x\x

p(x) p(x) =
�

s∈ne(x)

Fs(x,Xs)

ne(x) : neighbors of x

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
FACTOR TO VARIABLE

p(x) =
�

x\x

p(x) p(x) =
�

s∈ne(x)

Fs(x,Xs)

ne(x) : neighbors of x
s ∈ ne(x) : a particular neighbor of x

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
FACTOR TO VARIABLE

p(x) =
�

x\x

p(x) p(x) =
�

s∈ne(x)

Fs(x,Xs)

ne(x) : neighbors of x
s ∈ ne(x) : a particular neighbor of x

p(x) =
�

s∈ne(x)

��

Xs

Fs(x,Xs)
�

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
FACTOR TO VARIABLE

p(x) =
�

x\x

p(x) p(x) =
�

s∈ne(x)

Fs(x,Xs)

ne(x) : neighbors of x
s ∈ ne(x) : a particular neighbor of x

p(x) =
�

s∈ne(x)

��

Xs

Fs(x,Xs)
�

=
�

s∈ne(x)

µfs→x(x)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
FACTOR TO VARIABLE

p(x) =
�

x\x

p(x) p(x) =
�

s∈ne(x)

Fs(x,Xs)

ne(x) : neighbors of x
s ∈ ne(x) : a particular neighbor of x

p(x) =
�

s∈ne(x)

��

Xs

Fs(x,Xs)
�

=
�

s∈ne(x)

µfs→x(x)

µfs→x(x) ≡
�

Xs

Fs(x,Xs)

Thursday, September 23, 2010

...

x

...

µfs→x(x)

fs
F
s
(x
,X

s
)

...
...

xm

Thursday, September 23, 2010

...

x

...

µfs→x(x)

fs
F
s
(x
,X

s
)

...
...

xm

Gm(xm, Xsm)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
µfs→x(x) ≡

�

Xs

Fs(x,Xs)

Fs(x,Xs)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
µfs→x(x) ≡

�

Xs

Fs(x,Xs)

Fs(x,Xs) = fs(x, x1, · · · , xM)G1(x1, Xs1) · · ·GM (xM , XsM)

Thursday, September 23, 2010

...

x

...

µfs→x(x)

fs
F
s
(x
,X

s
)

...
...

xm

Gm(xm, Xsm)

Thursday, September 23, 2010

...

x

...

µfs→x(x)

fs
F
s
(x
,X

s
)

...
...

Fl(xm, Xml)

xm

Gm(xm, Xsm)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
VARIABLE TO FACTOR

µfs→x(x) ≡
�

Xs

Fs(x,Xs)

Fs(x,Xs) = fs(x, x1, · · · , xM)G1(x1, Xs1) · · ·GM (xM , XsM)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
VARIABLE TO FACTOR

µfs→x(x) ≡
�

Xs

Fs(x,Xs)

Fs(x,Xs) = fs(x, x1, · · · , xM)G1(x1, Xs1) · · ·GM (xM , XsM)

µfs→x =
�

X

fs(x, x1, · · · , xM)
�

m∈ne(fs)\x

� �

Xsm

Gm(xm, Xsm)
�

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
VARIABLE TO FACTOR

µfs→x(x) ≡
�

Xs

Fs(x,Xs)

Fs(x,Xs) = fs(x, x1, · · · , xM)G1(x1, Xs1) · · ·GM (xM , XsM)

=
�

X

fs(x, x1, · · · , xM)
�

m∈ne(fs)\x

µxm→fs(xm)

µfs→x =
�

X

fs(x, x1, · · · , xM)
�

m∈ne(fs)\x

� �

Xsm

Gm(xm, Xsm)
�

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
VARIABLE TO FACTOR

µfs→x(x) ≡
�

Xs

Fs(x,Xs)

Fs(x,Xs) = fs(x, x1, · · · , xM)G1(x1, Xs1) · · ·GM (xM , XsM)

=
�

X

fs(x, x1, · · · , xM)
�

m∈ne(fs)\x

µxm→fs(xm)

µfs→x =
�

X

fs(x, x1, · · · , xM)
�

m∈ne(fs)\x

� �

Xsm

Gm(xm, Xsm)
�

µxm→fs(xm) ≡
�

Xsm

Gm(xm, Xsm)

Thursday, September 23, 2010

...

x

...

µfs→x(x)

fs
F
s
(x
,X

s
)

...
...

Fl(xm, Xml)

xm

Gm(xm, Xsm)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
µfs→x(x) ≡

�

Xs

Fs(x,Xs)

µxm→fs(xm) ≡
�

Xsm

Gm(xm, Xsm)

Gm(xm, Xsm) =
�

l=ne∈(xm)\fs

Fl(xm, Xml)

µxm→fs(xm) =
�

l=ne∈(xm)\fs

��

Xml

Fl(xm, Xml)
�

=
�

l=ne∈(xm)\fs

µfl→xm(xm)

Thursday, September 23, 2010

...

x

...

µfs→x(x)

fs
F
s
(x
,X

s
)

...
...

Fl(xm, Xml)

xm

Gm(xm, Xsm)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
LEAF NODES

µfs→x(x) ≡
�

Xs

Fs(x,Xs)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
LEAF NODES

µfs→x(x) ≡
�

Xs

Fs(x,Xs)

µfs→x =
�

X

fs(x, x1, · · · , xM)
�

m∈ne(fs)\x

µxm→fs(xm)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
LEAF NODES

µfs→x(x) ≡
�

Xs

Fs(x,Xs)

µxm→fs(xm) =
�

l=ne∈(xm)\fs

µfl→xm(xm)

µfs→x =
�

X

fs(x, x1, · · · , xM)
�

m∈ne(fs)\x

µxm→fs(xm)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
LEAF NODES

µfs→x(x) ≡
�

Xs

Fs(x,Xs)

µxm→fs(xm) =
�

l=ne∈(xm)\fs

µfl→xm(xm)

µfs→x =
�

X

fs(x, x1, · · · , xM)
�

m∈ne(fs)\x

µxm→fs(xm)

µx→f (x) = 1

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
LEAF NODES

µfs→x(x) ≡
�

Xs

Fs(x,Xs)

µxm→fs(xm) =
�

l=ne∈(xm)\fs

µfl→xm(xm)

µfs→x =
�

X

fs(x, x1, · · · , xM)
�

m∈ne(fs)\x

µxm→fs(xm)

µx→f (x) = 1

µf→x(x) = f(x)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
ALGORITHM

Task: Evaluate p(x)

View x as root of factor graph

Initiate message at the leaves of the graph

Recursively pass messages until root has received
message from all neighbors

Evaluate the marginal

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
MARGINAL FOR EVERY NODE

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
MARGINAL FOR EVERY NODE

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
MARGINAL FOR EVERY NODE

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
MARGINAL FOR EVERY NODE

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
MARGINAL FOR EVERY NODE

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
ALGORITHM

Task: Efficiently compute marginals for all x

Pick any x as root of factor graph

Send message from leaves to root

Send message back from root to leaves

Calculate marginal distribution for all x

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

x1 x2 x3

fa fb

fc

x4

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

x1 x2 x3

fa fb

fc

x4

root

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

x1 x2 x3

fa fb

fc

x4

root

µx1→fa(x1)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

x1 x2 x3

fa fb

fc

x4

root

µfa→x2(x2)µx1→fa(x1)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

x1 x2 x3

fa fb

fc

x4

root

µfa→x2(x2)µx1→fa(x1)

µx4→fc(x4)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

x1 x2 x3

fa fb

fc

x4

root

µfa→x2(x2)µx1→fa(x1)

µx4→fc(x4)

µfc→x2(x2)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

x1 x2 x3

fa fb

fc

x4

root

µfa→x2(x2)µx1→fa(x1)

µx4→fc(x4)

µfc→x2(x2)

µx2→fb(x2)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

x1 x2 x3

fa fb

fc

x4

root

µfa→x2(x2)µx1→fa(x1)

µx4→fc(x4)

µfc→x2(x2)

µx2→fb(x2) µfb→x3(x3)

Thursday, September 23, 2010

FORWARD MESSAGES
x1 x2 x3

fa fb

fc

x4

µfa→x2(x2)µx1→fa(x1)

µx4→fc(x4)

µfc→x2(x2)

µx2→fb(x2) µfb→x3(x3)

Thursday, September 23, 2010

FORWARD MESSAGES
µx1→fa(x1) = 1 x1 x2 x3

fa fb

fc

x4

µfa→x2(x2)µx1→fa(x1)

µx4→fc(x4)

µfc→x2(x2)

µx2→fb(x2) µfb→x3(x3)

Thursday, September 23, 2010

FORWARD MESSAGES
µx1→fa(x1) = 1

µfa→x2(x2) =
�

x1

fa(x1, x2)

x1 x2 x3

fa fb

fc

x4

µfa→x2(x2)µx1→fa(x1)

µx4→fc(x4)

µfc→x2(x2)

µx2→fb(x2) µfb→x3(x3)

Thursday, September 23, 2010

FORWARD MESSAGES
µx1→fa(x1) = 1

µx4→fc(x4) = 1

µfa→x2(x2) =
�

x1

fa(x1, x2)

x1 x2 x3

fa fb

fc

x4

µfa→x2(x2)µx1→fa(x1)

µx4→fc(x4)

µfc→x2(x2)

µx2→fb(x2) µfb→x3(x3)

Thursday, September 23, 2010

FORWARD MESSAGES
µx1→fa(x1) = 1

µx4→fc(x4) = 1

µfa→x2(x2) =
�

x1

fa(x1, x2)

µfc→x2(x2) =
�

x1

fc(x2, x4)

x1 x2 x3

fa fb

fc

x4

µfa→x2(x2)µx1→fa(x1)

µx4→fc(x4)

µfc→x2(x2)

µx2→fb(x2) µfb→x3(x3)

Thursday, September 23, 2010

FORWARD MESSAGES
µx1→fa(x1) = 1

µx4→fc(x4) = 1

µfa→x2(x2) =
�

x1

fa(x1, x2)

µfc→x2(x2) =
�

x1

fc(x2, x4)

µx2→fb(x2) = µfa→x2(x2)µfc→x2(x2)

x1 x2 x3

fa fb

fc

x4

µfa→x2(x2)µx1→fa(x1)

µx4→fc(x4)

µfc→x2(x2)

µx2→fb(x2) µfb→x3(x3)

Thursday, September 23, 2010

FORWARD MESSAGES
µx1→fa(x1) = 1

µx4→fc(x4) = 1

µfa→x2(x2) =
�

x1

fa(x1, x2)

µfc→x2(x2) =
�

x1

fc(x2, x4)

µx2→fb(x2) = µfa→x2(x2)µfc→x2(x2)

µfb→x3(x3) =
�

x2

fb(x2, x3)µx2→fb(x2)

x1 x2 x3

fa fb

fc

x4

µfa→x2(x2)µx1→fa(x1)

µx4→fc(x4)

µfc→x2(x2)

µx2→fb(x2) µfb→x3(x3)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

x1 x2 x3

fa fb

fc

x4

root

Thursday, September 23, 2010

BACKWARD MESSAGES
x1 x2 x3

fa fb

fc

x4

Thursday, September 23, 2010

BACKWARD MESSAGES
µx3→fb(x3) = 1

x1 x2 x3

fa fb

fc

x4

Thursday, September 23, 2010

BACKWARD MESSAGES
µx3→fb(x3) = 1

µfb→x2(x2) =
�

x3

fb(x2, x3)

x1 x2 x3

fa fb

fc

x4

Thursday, September 23, 2010

BACKWARD MESSAGES
µx3→fb(x3) = 1

µfb→x2(x2) =
�

x3

fb(x2, x3)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2)

x1 x2 x3

fa fb

fc

x4

Thursday, September 23, 2010

BACKWARD MESSAGES
µx3→fb(x3) = 1

µfb→x2(x2) =
�

x3

fb(x2, x3)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2)

µfa→x1(x1) =
�

x2

fa(x1, x2)µx2→fa(x2)

x1 x2 x3

fa fb

fc

x4

Thursday, September 23, 2010

BACKWARD MESSAGES
µx3→fb(x3) = 1

µfb→x2(x2) =
�

x3

fb(x2, x3)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2)

µfa→x1(x1) =
�

x2

fa(x1, x2)µx2→fa(x2)

µx2→fc(x2) = µfa→x2(x2)µfb→x2(x2)

x1 x2 x3

fa fb

fc

x4

Thursday, September 23, 2010

BACKWARD MESSAGES
µx3→fb(x3) = 1

µfb→x2(x2) =
�

x3

fb(x2, x3)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2)

µfa→x1(x1) =
�

x2

fa(x1, x2)µx2→fa(x2)

µfc→x4(x4) =
�

x2

fc(x2, x4)µx2→fc(x2)

µx2→fc(x2) = µfa→x2(x2)µfb→x2(x2)

x1 x2 x3

fa fb

fc

x4

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

x1 x2 x3

fa fb

fc

x4

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

p(x2) = µfa→x2(x2)µfb→x2(x2)µfc→x2(x2)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

p(x2) = µfa→x2(x2)µfb→x2(x2)µfc→x2(x2)

=
��

x1

fa(x1, x2)
���

x3

fb(x2, x3)
���

x4

fc(x2, x4)
�

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

p(x2) = µfa→x2(x2)µfb→x2(x2)µfc→x2(x2)

=
��

x1

fa(x1, x2)
���

x3

fb(x2, x3)
���

x4

fc(x2, x4)
�

=
�

x1

�

x3

�

x4

fa(x1, x2)fb(x2, x3)fc(x2, x4)

Thursday, September 23, 2010

SUM-PRODUCT ALGORITHM
EXAMPLE

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

p(x2) = µfa→x2(x2)µfb→x2(x2)µfc→x2(x2)

=
��

x1

fa(x1, x2)
���

x3

fb(x2, x3)
���

x4

fc(x2, x4)
�

=
�

x1

�

x3

�

x4

fa(x1, x2)fb(x2, x3)fc(x2, x4)

=
�

x1

�

x3

�

x4

p(x)

Thursday, September 23, 2010

SUMMARY

• D-SEPARATION

• FACTOR GRAPHS

• SUM-PRODUCT ALGORITHM

• FURTHER READING:

• MARKOV RANDOM FIELDS

• MAX-PRODUCT ALGORITHM

• LOOPY BELIEF PROPAGATION

Thursday, September 23, 2010

