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REVIEW: BAYES NETS

• GRAPHICAL MODEL

• EACH NODE DENOTES A RANDOM VARIABLE

• DIRECTED ACYCLIC GRAPH
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Diagnosis of Liver Disorders

Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. A Bayesian network model for diagnosis of liver disorders. In Proceedings of the Eleventh Conference on Biocybernetics and 
Biomedical Engineering, pages 842-846, Warsaw, Poland, December 2-4, 1999.
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CONDITIONAL INDEPENDENCE

p(a|b, c) = p(a|c)

p(a, b|c) = p(a|b, c)p(b|c)

= p(a|c)p(b|c)

a ⊥ b|c

“a and b are independent given c”
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THREE GRAPHS

a b

c
a

b

c

c

ba

a ⊥ b|∅ p(a, b) = p(a)p(b)⇔

a ⊥ b|c p(a, b|c) = p(a|c)p(b|c)⇔

COMMON CAUSE CAUSAL CHAIN COMMON EFFECT
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COMMON CAUSE

a b

c

a is conditionally independent of b given c

observed

p(a, b|c) = p(a, b, c)
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Node c is tail-to-tail

When c is observed, it ‘blocks’ the path from a to b

Path exists from a to b through c
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COMMON EFFECT

a and b are independent
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COMMON EFFECT
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COMMON EFFECT

c

ba

Node c is head-to-head wrt path

When c is observed, it unblocks the path from a to b
c ‘blocks’ path from a to b
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SUMMARY

a b

c
a

b

c

c

ba

a ⊥ b|∅

a ⊥ b|c

a ⊥ b|∅

a ⊥ b|c

a ⊥ b|∅

a ⊥ b|c
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HEAD-TO-HEAD REVISITED

B

G

p(B = 1) = 0.9 p(F = 1) = 0.9

F
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1 0 0.2

0 1 0.2
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B p(G|B,F )

F
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BATTERY-FUEL-GAUGE
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p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F )

p(F = 0) = 0.1

prior

p(F = 0|G = 0) =
0.81 · p(F = 0)

0.315
posterior
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p(B = 1) = 0.9

p(F = 1) = 0.9
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EXPLAINING AWAY
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EXPLAINING AWAY
B

G

F

p(B = 1) = 0.9

p(F = 1) = 0.9

F

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

B p(G|B,F )

p(F = 0) = 0.1

prior

p(F = 0|G = 0) > p(F = 0)

p(F = 0|G = 0, B = 0) = 0.111

p(F = 0|G = 0) > p(F = 0|G = 0, B = 0)

F and B become dependent as a result of observing G
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SUMMARY

a b

c
a

b

c

c

ba

a ⊥ b|∅

a ⊥ b|c

a ⊥ b|∅
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D-SEPARATION
JUDEA PEARL

• DIRECTION-DEPENDENT SEPARATION

• A TECHNIQUE TO DETERMINING CONDITIONAL 
INDEPENDENCE PROPERTIES FROM GRAPHICAL MODELS

• “IS THE SET OF VARIABLES A CONDITIONALLY 
INDEPENDENT OF THE SET B GIVEN THE SET C?”
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D-SEPARATION
Task: Determine if A ⊥ B|C

Consider all possible paths from any node in A to any node in B

A path is blocked if it includes a node where either

If all paths are blocked then A is d-separated from B by C, then
A ⊥ B|C

the arrows on the path meet head-to-tail or tail-to-tail at 
the node, and the node is in C 

the arrows on the path meet head-to-head and neither 
the node nor any of its descendants is in C 
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INFERENCE ON BAYESIAN NETWORKS

JOHN

p(B|J = TRUE) =?

p(J |A = TRUE) = 0.9

p(J |A = FALSE) = 0.05

p(B = TRUE) = 0.001

In 1000 days:
There will be 1 burglary
John will call 50 times!

p(B|J = TRUE) � 0.2

p(J |A = TRUE) = 0.9
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INFERENCE

• WHEN SOME VARIABLES ARE OBSERVED 
WHAT CAN WE SAY ABOUT THE 
UNOBSERVED VARIABLES?

• DIRECTED GRAPH TO SPECIFY MODEL

• FACTOR GRAPH FOR INFERENCE AND 
LEARNING

ab+ ac = a(b+ c)
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FACTOR GRAPH

p(x) =
�

s

fs(xs)

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3)
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FACTOR GRAPH
x1 x2

x3

f

x1 x2

x3

p(x)

fa fb fc

p(x1)p(x2)p(x3|x1, x2)=p(x1, x2, x3)=

f
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x1 x2

x3

fa fb

fc
x1 x2

x3

p(x)

fa fb fc

p(x1)p(x2)p(x3|x1, x2)=p(x1, x2, x3)=

f
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SUM-PRODUCT ALGORITHM

• TREE OR POLYTREE

• BELIEF PROPAGATION: SPECIAL CASE

• GOAL:

• OBTAIN EFFICIENT EXACT ALGORITHM 
FOR FINDING MARGINALS

• ALLOW COMPUTATIONS TO BE SHARED 
EFFICIENTLY
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SUM-PRODUCT ALGORITHM
EXAMPLE

x1 x2 x3

fa fb

fc

x4

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

root

µfa→x2(x2)µx1→fa(x1)

µx4→fc(x4)

µfc→x2(x2)

µx2→fb(x2) µfb→x3(x3)
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p(x) =
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x\x

p(x)

x = {x, x1, x2, · · · , xN}
x\x : all of x except x

p(x) =
�
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LEAF NODES

µfs→x(x) ≡
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Xs
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SUM-PRODUCT ALGORITHM
ALGORITHM

Task: Evaluate p(x)

View x as root of factor graph

Initiate message at the leaves of the graph

Recursively pass messages until root has received 
message from all neighbors

Evaluate the marginal
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SUM-PRODUCT ALGORITHM
ALGORITHM

Task: Efficiently compute marginals for all x

Pick any x as root of factor graph

Send message from leaves to root

Send message back from root to leaves

Calculate marginal distribution for all x
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µx4→fc(x4)

µfc→x2(x2)
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FORWARD MESSAGES
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FORWARD MESSAGES
µx1→fa(x1) = 1
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�

x1
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FORWARD MESSAGES
µx1→fa(x1) = 1

µx4→fc(x4) = 1
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�

x1
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SUM-PRODUCT ALGORITHM
EXAMPLE

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

x1 x2 x3

fa fb
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x4

root
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BACKWARD MESSAGES
µx3→fb(x3) = 1

x1 x2 x3

fa fb

fc

x4

Thursday, September 23, 2010



BACKWARD MESSAGES
µx3→fb(x3) = 1

µfb→x2(x2) =
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µx3→fb(x3) = 1

µfb→x2(x2) =
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µx3→fb(x3) = 1

µfb→x2(x2) =
�
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BACKWARD MESSAGES
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SUM-PRODUCT ALGORITHM
EXAMPLE
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SUM-PRODUCT ALGORITHM
EXAMPLE
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SUM-PRODUCT ALGORITHM
EXAMPLE

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

p(x2) = µfa→x2(x2)µfb→x2(x2)µfc→x2(x2)

=
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���

x3
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���
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�
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SUM-PRODUCT ALGORITHM
EXAMPLE

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

p(x2) = µfa→x2(x2)µfb→x2(x2)µfc→x2(x2)

=
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x1
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���

x3
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���
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SUM-PRODUCT ALGORITHM
EXAMPLE

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

p(x2) = µfa→x2(x2)µfb→x2(x2)µfc→x2(x2)

=
��

x1

fa(x1, x2)
���

x3

fb(x2, x3)
���

x4

fc(x2, x4)
�

=
�

x1

�
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�
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=
�

x1

�

x3

�

x4
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SUMMARY

• D-SEPARATION

• FACTOR GRAPHS

• SUM-PRODUCT ALGORITHM

• FURTHER READING:

• MARKOV RANDOM FIELDS

• MAX-PRODUCT ALGORITHM

• LOOPY BELIEF PROPAGATION

Thursday, September 23, 2010


