
15-381
Artificial Intelligence

Lecture 7: Probabilistic 
Reasoning
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PERCEPTION

ACTUAL SOUND

1. The ?eel is on the shoe
2. The ?eel is on the car

3. The ?eel is on the table
4. The ?eel is on the orange

Slide credit: David Mumford
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PERCEPTION

ACTUAL SOUND

1. The ?eel is on the shoe
2. The ?eel is on the car

3. The ?eel is on the table
4. The ?eel is on the orange

PERCEIVED WORDS
1. The heel is on the shoe
2. The wheel is on the car
3. The meal is on the table
4. The peel is on the orange

(Warren & Warren, 1970)

Slide credit: David Mumford
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VISUAL PERCEPTION

“His outline is lost in clutter, shadows and wrinkles; 
except for one ear, his face is invisible. No known 

algorithm will find him.”
Slide credit: David Mumford

Saturday, September 18, 2010



REASONING UNDER 
UNCERTAINTY

• MEASUREMENT ERROR

• INFORMATION INCOMPLETENESS

• MODEL ERROR
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Travel Agent Book Store

BAG OF WORDS
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Travel Agent Book Store

BAG OF WORDS

Saturday, September 18, 2010



Flight
Athens

Book
reservation

Greece

Travel Agent Book Store

Book
find

looking

author

Don Quixote

BAG OF WORDS

Miguel de 

Cervantes
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RANDOM VARIABLE
DISCRETE

Figures from Pattern Recognition and Machine Learning (Bishop)
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Red Box (r) Blue Box (b)

RANDOM VARIABLE
DISCRETE

Box : B ∈ {r, b}

Figures from Pattern Recognition and Machine Learning (Bishop)
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Red Box (r) Blue Box (b)

apple (a)

orange (o)

RANDOM VARIABLE
DISCRETE

Box : B ∈ {r, b}

Fruit : F ∈ {a, o}

Figures from Pattern Recognition and Machine Learning (Bishop)
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Red Box (r) Blue Box (b)

apple (a)

orange (o)

RANDOM VARIABLE
DISCRETE

Box : B ∈ {r, b}

Fruit : F ∈ {a, o}

Figures from Pattern Recognition and Machine Learning (Bishop)

p(B = r) = 0.4

p(B = b) = 0.6

Saturday, September 18, 2010



Red Box (r) Blue Box (b)

apple (a)

orange (o)

RANDOM VARIABLE
DISCRETE

Box : B ∈ {r, b}

Fruit : F ∈ {a, o}

Figures from Pattern Recognition and Machine Learning (Bishop)

p(B = r) = 0.4

p(B = b) = 0.6

p(B = b) + p(B = r) = 1
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RANDOM VARIABLE
DISCRETE

WHAT IS THE PROBABILITY THAT THE SELECTION 
PROCEDURE WILL PICK AN APPLE?
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RANDOM VARIABLE
DISCRETE

WHAT IS THE PROBABILITY THAT THE SELECTION 
PROCEDURE WILL PICK AN APPLE?

GIVEN THAT AN ORANGE WAS SELECTED WHAT IS THE 
PROBABILITY THAT THE BOX WE CHOSE WAS BLUE?
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RANDOM VARIABLE
DISCRETE

WHAT IS THE PROBABILITY THAT THE SELECTION 
PROCEDURE WILL PICK AN APPLE?

GIVEN THAT AN ORANGE WAS SELECTED WHAT IS THE 
PROBABILITY THAT THE BOX WE CHOSE WAS BLUE?

SUM RULE AND PRODUCT RULE
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RANDOM VARIABLE

• DISCRETE R.V.

• BOOLEAN R.V.

• CONTINUOUS R.V.
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RANDOM VARIABLE
BINARY/BOOLEAN

Box : B ∈ {r, b} Fruit : F ∈ {a, o}
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RANDOM VARIABLE
BINARY/BOOLEAN

ON/OFF

Box : B ∈ {r, b} Fruit : F ∈ {a, o}
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RANDOM VARIABLE
BINARY/BOOLEAN

ON/OFF

Box : B ∈ {r, b} Fruit : F ∈ {a, o}
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RANDOM VARIABLE
DISCRETE
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RANDOM VARIABLE
DISCRETE

MUCHO
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RANDOM VARIABLE
DISCRETE

MUCHO MACHO
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RANDOM VARIABLE
DISCRETE

MUCHO MACHO
MUCHO
MACHO
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RANDOM VARIABLE
DISCRETE

MUCHO MACHO
MUCHO
MACHO

SEDAN SUV COUPE TRUCK
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RANDOM VARIABLE
CONTINUOUS

Figure Credit: Catherine Mulbrandon

X: Income of Households

Domain of X?
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X: ? Domain of X?
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RANDOM VARIABLE
CONTINUOUS

HEIGHT IN 15-381?
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CAR RECOGNITION

Yan Li, Leon Gu, Takeo Kanade, “A robust shape model for multi-view car alignment,” CVPR 2009.

Saturday, September 18, 2010

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Yan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Yan.html
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CAR RECOGNITION

Yan Li, Leon Gu, Takeo Kanade, “A robust shape model for multi-view car alignment,” CVPR 2009.

White SUV
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CAR RECOGNITION

Gray 
Sedan

Yan Li, Leon Gu, Takeo Kanade, “A robust shape model for multi-view car alignment,” CVPR 2009.

White SUV
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CAR RECOGNITION

Black 
Sedan

Gray 
Sedan

Yan Li, Leon Gu, Takeo Kanade, “A robust shape model for multi-view car alignment,” CVPR 2009.

White SUV
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What is the probability of observing a blue coupe?
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JOINT PROBABILITY
DISCRETE
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JOINT PROBABILITY
DISCRETE

X ∈ {Sedan, SUV,Coupe,Truck}
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JOINT PROBABILITY
DISCRETE

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}
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JOINT PROBABILITY
DISCRETE

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}
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JOINT PROBABILITY
DISCRETE

Red

White

Blue

Beige

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}
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JOINT PROBABILITY
DISCRETE

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}
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JOINT PROBABILITY
DISCRETE

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck

p(X = xi, Y = yj)

Joint Probability

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}
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JOINT PROBABILITY
DISCRETE

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck
yj

p(X = xi, Y = yj)

Joint Probability

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}
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JOINT PROBABILITY
DISCRETE

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck
nijyj

p(X = xi, Y = yj)

Joint Probability

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}
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JOINT PROBABILITY
DISCRETE

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck
nijyj

p(X = xi, Y = yj) =
nij�
ij nij

Joint Probability

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}
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JOINT PROBABILITY
DISCRETE

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck
nijyj

p(X = xi, Y = yj) =
nij�
ij nij

Joint Probability

p(X = xi, Y = yj) =
nij

N

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}
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JOINT PROBABILITY
DISCRETE

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck
nijyj

p(X = xi, Y = yj) =
nij�
ij nij

p(xi, yj) =
nij

N

Joint Probability

p(X = xi, Y = yj) =
nij

N

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}
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JOINT PROBABILITY
DISCRETE

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck
nijyj

p(X = xi, Y = yj) =
nij�
ij nij

p(xi, yj) =
nij

N

Joint Probability

N → ∞

p(X = xi, Y = yj) =
nij

N

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}
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What is the probability of a coupe of any color?
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SUM RULE
DISCRETE

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck
yj

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}

nij

Saturday, September 18, 2010



SUM RULE
DISCRETE

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck
yj

p(X = xi) =

�
j nij

N

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}

nij
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SUM RULE
DISCRETE

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck
yj

p(X = xi) =

�
j nij

N

Marginal Probability

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}

nij
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SUM RULE
DISCRETE

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck

ci

yj

p(X = xi) =

�
j nij

N

Marginal Probability

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}

nij
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SUM RULE
DISCRETE

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck

ci

yj

ci =
�

j

nij

p(X = xi) =

�
j nij

N

Marginal Probability

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}

nij
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SUM RULE
DISCRETE

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck

ci

yj p(X = xi) =
ci
N

ci =
�

j

nij

p(X = xi) =

�
j nij

N

Marginal Probability

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}

nij
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SUM RULE
DISCRETE

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck

ci

yj p(X = xi) =
ci
N

ci =
�

j

nij

p(X = xi) =

�
j nij

N

Marginal Probability

p(X = xi) =
�

j

p(X = xi, Y = yj)

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}

nij
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SUM RULE
DISCRETE

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck

ci

rjyj p(X = xi) =
ci
N

ci =
�

j

nij

p(X = xi) =

�
j nij

N

Marginal Probability

p(X = xi) =
�

j

p(X = xi, Y = yj)

Y ∈ {Red,White,Blue,Beige}

X ∈ {Sedan, SUV,Coupe,Truck}

nij
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SUM RULE
DISCRETE

Saturday, September 18, 2010



SUM RULE
DISCRETE

p(X = xi) =
�

j

p(X = xi, Y = yj)
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SUM RULE
DISCRETE

p(xi) =
�

j

p(xi, yj)

p(X = xi) =
�

j

p(X = xi, Y = yj)
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SUM RULE
DISCRETE

p(xi) =
�

j

p(xi, yj)

p(yj) =
�

i

p(xi, yj)

p(X = xi) =
�

j

p(X = xi, Y = yj)
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SUM RULE
DISCRETE

p(xi) =
�

j

p(xi, yj)

p(yj) =
�

i

p(xi, yj)

p(X = xi) =
�

j

p(X = xi, Y = yj)

p(X) =
�

Y

p(X,Y )
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Given that the car is a coupe, what is the probability 
that it is blue?
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PRODUCT RULE
DISCRETE

Y ∈ {Red,White,Blue,Beige}

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck

X ∈ {Sedan, SUV,Coupe,Truck}

nij

ci

rjyj
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PRODUCT RULE
DISCRETE

Y ∈ {Red,White,Blue,Beige}

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck

X ∈ {Sedan, SUV,Coupe,Truck}

nij

ci

rjyj

p(Y = yj |X = xi) =
nij

ci
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PRODUCT RULE
DISCRETE

Y ∈ {Red,White,Blue,Beige}

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck

X ∈ {Sedan, SUV,Coupe,Truck}

nij

ci

rjyj

p(Y = yj |X = xi) =
nij

ci

Conditional Probability
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PRODUCT RULE
DISCRETE

Y ∈ {Red,White,Blue,Beige}

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck

X ∈ {Sedan, SUV,Coupe,Truck}

nij

ci

rjyj

p(Y = yj |X = xi) =
nij

ci

p(X = xi, Y = yj) =
nij

N

Conditional Probability
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PRODUCT RULE
DISCRETE

Y ∈ {Red,White,Blue,Beige}

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck

X ∈ {Sedan, SUV,Coupe,Truck}

nij

ci

rjyj

p(Y = yj |X = xi) =
nij

ci

=
nij

ci
· ci
N

p(X = xi, Y = yj) =
nij

N

Conditional Probability
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PRODUCT RULE
DISCRETE

Y ∈ {Red,White,Blue,Beige}

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck

X ∈ {Sedan, SUV,Coupe,Truck}

nij

ci

rjyj

p(Y = yj |X = xi) =
nij

ci

=
nij

ci
· ci
N

= p(Y = yj |X = xi)p(X = xi)

p(X = xi, Y = yj) =
nij

N

Conditional Probability
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PRODUCT RULE
DISCRETE

Y ∈ {Red,White,Blue,Beige}

xi

Red

White

Blue

Beige

Sedan

SU
V

C
oupe

Truck

X ∈ {Sedan, SUV,Coupe,Truck}

nij

ci

rjyj

p(Y = yj |X = xi) =
nij

ci

=
nij

ci
· ci
N

= p(Y = yj |X = xi)p(X = xi)

p(X = xi, Y = yj) =
nij

N

Conditional Probability

p(X = xi, Y = yj) = p(Y = yj |X = xi)p(X = xi)
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PRODUCT RULE
DISCRETE
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PRODUCT RULE
DISCRETE

p(X = xi, Y = yj) = p(Y = yj |X = xi)p(X = xi)
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PRODUCT RULE
DISCRETE

p(X = xi, Y = yj) = p(Y = yj |X = xi)p(X = xi)

p(X = xi, Y = yj) = p(X = xi|Y = yj)p(Y = yj)
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PRODUCT RULE
DISCRETE

p(X = xi, Y = yj) = p(Y = yj |X = xi)p(X = xi)

p(X = xi, Y = yj) = p(X = xi|Y = yj)p(Y = yj)

p(X,Y ) = p(Y |X)p(X)
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RULES OF PROBABILITY

SUM RULE

PRODUCT RULE

p(X) =
�

Y

p(X,Y )

p(X,Y ) = p(Y |X)p(X)
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RULES OF PROBABILITY

SUM RULE

PRODUCT RULE

p(X) =
�

Y

p(X,Y )

p(X,Y ) = p(Y |X)p(X)

Joint Probability
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RULES OF PROBABILITY

SUM RULE

PRODUCT RULE

p(X) =
�

Y

p(X,Y )

p(X,Y ) = p(Y |X)p(X)

Joint ProbabilityMarginal Probability
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RULES OF PROBABILITY

SUM RULE

PRODUCT RULE

p(X) =
�

Y

p(X,Y )

p(X,Y ) = p(Y |X)p(X)

Conditional Probability

Joint ProbabilityMarginal Probability
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BAYES’ THEOREM

p(X,Y ) = p(Y |X)p(X)
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BAYES’ THEOREM

p(X,Y ) = p(Y |X)p(X)p(X|Y )p(Y ) =
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BAYES’ THEOREM

p(X,Y ) = p(Y |X)p(X)p(X|Y )p(Y ) =

p(X|Y )p(Y ) = p(Y |X)p(X)
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BAYES’ THEOREM

p(X,Y ) = p(Y |X)p(X)p(X|Y )p(Y ) =

p(X|Y )p(Y ) = p(Y |X)p(X)

p(X|Y ) =
p(Y |X)p(X)

p(Y )
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BAYES’ THEOREM

p(X,Y ) = p(Y |X)p(X)p(X|Y )p(Y ) =

p(X|Y )p(Y ) = p(Y |X)p(X)

p(X|Y ) =
p(Y |X)p(X)

p(Y )

Prior Probability
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BAYES’ THEOREM

p(X,Y ) = p(Y |X)p(X)p(X|Y )p(Y ) =

p(X|Y )p(Y ) = p(Y |X)p(X)

p(X|Y ) =
p(Y |X)p(X)

p(Y )

Prior Probability

Posterior Probability
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BAYES’ THEOREM

p(X,Y ) = p(Y |X)p(X)p(X|Y )p(Y ) =

p(X|Y )p(Y ) = p(Y |X)p(X)

p(X|Y ) =
p(Y |X)p(X)

p(Y )

Prior Probability

Posterior Probability

Likelihood
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BAYES’ THEOREM

p(X,Y ) = p(Y |X)p(X)p(X|Y )p(Y ) =

p(X|Y )p(Y ) = p(Y |X)p(X)

p(X|Y ) =
p(Y |X)p(X)

p(Y )

Prior Probability

Posterior Probability

Evidence

Likelihood
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p(X,Y )

X

Y = 2

Y = 1

MODELING DISTRIBUTIONS
HISTOGRAMS
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p(X,Y )

X

Y = 2

Y = 1

MODELING DISTRIBUTIONS
HISTOGRAMS

sample
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p(X,Y )

X

Y = 2

Y = 1

p(X)

X

MODELING DISTRIBUTIONS
HISTOGRAMS

sample
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p(X,Y )

X

Y = 2

Y = 1

p(Y )

p(X)

X

MODELING DISTRIBUTIONS
HISTOGRAMS

sample
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p(X,Y )

X

Y = 2

Y = 1

p(Y )

p(X)

X X

p(X |Y = 1)

MODELING DISTRIBUTIONS
HISTOGRAMS

sample
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RANDOM VARIABLE
DISCRETE

Box : B ∈ {r, b}

Fruit : F ∈ {a, o}

p(B = r) = 0.4

p(B = b) = 0.6

p(B = b) + p(B = r) = 1
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RANDOM VARIABLE
DISCRETE

Box : B ∈ {r, b}

Fruit : F ∈ {a, o}

p(B = r) = 0.4

p(B = b) = 0.6

p(B = b) + p(B = r) = 1
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RANDOM VARIABLE
DISCRETE

Box : B ∈ {r, b}

Fruit : F ∈ {a, o}

p(B = r) = 0.4

p(B = b) = 0.6

p(B = b) + p(B = r) = 1

p(F = a|B = r) = 0.25

p(F = o|B = r) = 0.75

p(F = a|B = b) = 0.75

p(F = o|B = b) = 0.25
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RANDOM VARIABLE
DISCRETE

Box : B ∈ {r, b}

Fruit : F ∈ {a, o}

p(B = r) = 0.4

p(B = b) = 0.6

p(B = b) + p(B = r) = 1

p(F = a|B = r) = 0.25

p(F = o|B = r) = 0.75

p(F = a|B = b) = 0.75

p(F = o|B = b) = 0.25
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RANDOM VARIABLE
DISCRETE

Box : B ∈ {r, b}

Fruit : F ∈ {a, o}

p(B = r) = 0.4

p(B = b) = 0.6

p(B = b) + p(B = r) = 1

p(F = a|B = r) = 0.25

p(F = o|B = r) = 0.75

p(F = a|B = b) = 0.75

p(F = o|B = b) = 0.25

p(F = a|B = r) + p(F = o|B = r) = 1

p(F = a|B = b) + p(F = o|B = b) = 1
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RANDOM VARIABLE
DISCRETE

WHAT IS THE PROBABILITY THAT THE SELECTION 
PROCEDURE WILL PICK AN APPLE?
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RANDOM VARIABLE
DISCRETE

WHAT IS THE PROBABILITY THAT THE SELECTION 
PROCEDURE WILL PICK AN APPLE?

p(B = r) = 0.4
p(B = b) = 0.6

p(F = a|B = r) = 0.25

p(F = o|B = r) = 0.75

p(F = a|B = b) = 0.75

p(F = o|B = b) = 0.25
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RANDOM VARIABLE
DISCRETE

WHAT IS THE PROBABILITY THAT THE SELECTION 
PROCEDURE WILL PICK AN APPLE?

p(F = a)

p(B = r) = 0.4
p(B = b) = 0.6

p(F = a|B = r) = 0.25

p(F = o|B = r) = 0.75

p(F = a|B = b) = 0.75

p(F = o|B = b) = 0.25
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RANDOM VARIABLE
DISCRETE

WHAT IS THE PROBABILITY THAT THE SELECTION 
PROCEDURE WILL PICK AN APPLE?

p(F = a) =
�

B

p(F = a,B) SUM RULE

p(B = r) = 0.4
p(B = b) = 0.6

p(F = a|B = r) = 0.25

p(F = o|B = r) = 0.75

p(F = a|B = b) = 0.75

p(F = o|B = b) = 0.25
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RANDOM VARIABLE
DISCRETE

WHAT IS THE PROBABILITY THAT THE SELECTION 
PROCEDURE WILL PICK AN APPLE?

p(F = a) =
�

B

p(F = a,B)

= p(F = a,B = r) + p(F = a,B = b)

SUM RULE

p(B = r) = 0.4
p(B = b) = 0.6

p(F = a|B = r) = 0.25

p(F = o|B = r) = 0.75

p(F = a|B = b) = 0.75

p(F = o|B = b) = 0.25
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RANDOM VARIABLE
DISCRETE

WHAT IS THE PROBABILITY THAT THE SELECTION 
PROCEDURE WILL PICK AN APPLE?

p(F = a) =
�

B

p(F = a,B)

= p(F = a,B = r) + p(F = a,B = b)

= p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

SUM RULE

PRODUCT RULE

p(B = r) = 0.4
p(B = b) = 0.6

p(F = a|B = r) = 0.25

p(F = o|B = r) = 0.75

p(F = a|B = b) = 0.75

p(F = o|B = b) = 0.25
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RANDOM VARIABLE
DISCRETE

WHAT IS THE PROBABILITY THAT THE SELECTION 
PROCEDURE WILL PICK AN APPLE?

p(F = a) =
�

B

p(F = a,B)

= p(F = a,B = r) + p(F = a,B = b)

= p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

= 0.25× 0.4 + 0.75× 0.6 = 0.55

SUM RULE

PRODUCT RULE

p(B = r) = 0.4
p(B = b) = 0.6

p(F = a|B = r) = 0.25

p(F = o|B = r) = 0.75

p(F = a|B = b) = 0.75

p(F = o|B = b) = 0.25
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RANDOM VARIABLE
DISCRETE

GIVEN THAT AN ORANGE WAS SELECTED WHAT IS THE 
PROBABILITY THAT THE BOX WE CHOSE WAS BLUE?

p(B = r) = 0.4
p(B = b) = 0.6

p(F = a|B = r) = 0.25

p(F = o|B = r) = 0.75

p(F = a|B = b) = 0.75

p(F = o|B = b) = 0.25
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RANDOM VARIABLE
DISCRETE

GIVEN THAT AN ORANGE WAS SELECTED WHAT IS THE 
PROBABILITY THAT THE BOX WE CHOSE WAS BLUE?

p(B = b|F = o)

p(B = r) = 0.4
p(B = b) = 0.6

p(F = a|B = r) = 0.25

p(F = o|B = r) = 0.75

p(F = a|B = b) = 0.75

p(F = o|B = b) = 0.25
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RANDOM VARIABLE
DISCRETE

GIVEN THAT AN ORANGE WAS SELECTED WHAT IS THE 
PROBABILITY THAT THE BOX WE CHOSE WAS BLUE?

BAYES’ THEOREM=
p(F = o|B = b)p(B = b)

p(F = o)
p(B = b|F = o)

p(B = r) = 0.4
p(B = b) = 0.6

p(F = a|B = r) = 0.25

p(F = o|B = r) = 0.75

p(F = a|B = b) = 0.75

p(F = o|B = b) = 0.25
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RANDOM VARIABLE
DISCRETE

GIVEN THAT AN ORANGE WAS SELECTED WHAT IS THE 
PROBABILITY THAT THE BOX WE CHOSE WAS BLUE?

BAYES’ THEOREM=
p(F = o|B = b)p(B = b)

p(F = o)
p(B = b|F = o)

=
0.25× 0.6

0.45
= 0.33

p(B = r) = 0.4
p(B = b) = 0.6

p(F = a|B = r) = 0.25

p(F = o|B = r) = 0.75

p(F = a|B = b) = 0.75

p(F = o|B = b) = 0.25
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RANDOM VARIABLE
DISCRETE

GIVEN THAT AN ORANGE WAS SELECTED WHAT IS THE 
PROBABILITY THAT THE BOX WE CHOSE WAS BLUE?

BAYES’ THEOREM=
p(F = o|B = b)p(B = b)

p(F = o)
p(B = b|F = o)

=
0.25× 0.6

0.45
= 0.33

p(B = r|F = o) = 1− p(B = b|F = o) = 0.66

p(B = r) = 0.4
p(B = b) = 0.6

p(F = a|B = r) = 0.25

p(F = o|B = r) = 0.75

p(F = a|B = b) = 0.75

p(F = o|B = b) = 0.25
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BAYES’ THEOREM
PRIOR TO POSTERIOR
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BAYES’ THEOREM
PRIOR TO POSTERIOR

p(X|Y ) =
p(Y |X)p(X)

p(Y )

Prior Probability

Posterior Probability

Evidence

Likelihood
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BAYES’ THEOREM
PRIOR TO POSTERIOR

p(X|Y ) =
p(Y |X)p(X)

p(Y )

Prior Probability

Posterior Probability

Evidence

Likelihood

+
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BAYES’ THEOREM
PRIOR TO POSTERIOR

prior posterior

red 0.4 0.66

blue 0.6 0.33

p(X|Y ) =
p(Y |X)p(X)

p(Y )

Prior Probability

Posterior Probability

Evidence

Likelihood

+
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INDEPENDENCE

p(X,Y ) = p(X)p(Y )

p(Y |X) = p(Y )

X and Y are independent
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INDEPENDENCE

p(X,Y ) = p(X)p(Y )

p(Y |X) = p(Y )

X and Y are independent
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INDEPENDENCE

p(X,Y ) = p(X)p(Y )

p(Y |X) = p(Y )

X and Y are independent
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INDEPENDENCE

p(X,Y ) = p(X)p(Y )

p(Y |X) = p(Y )

p(F |B) = p(F )

X and Y are independent
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CONDITIONAL INDEPENDENCE

P (X|Y, Z) = P (X|Z)

P (Y |X,Z) = P (Y |Z)

X and Y are conditionally independent given Z
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PROBABILITY
CONTINUOUS

xδx

p(x) P (x)

p(x) ≥ 0
� ∞

−∞
p(x)dx = 1

cumulative distribution 
function

probability density function

p(x ∈ (a, b)) =

� b

a
p(x)dx
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JOINT PROBABILITY
CONTINUOUS

HEIGHT vs WEIGHT IN 15-381?

Saturday, September 18, 2010



CONTINUOUS

X

Y

p(X,Y )

X

Y = 2

Y = 1

DISCRETE
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JOINT PROBABILITY
CONTINUOUS

x = [x1, x2, · · · , xn]

height weight age

vital stats

p(x) ≥ 0
�

p(x) = 1
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SUM RULE
CONTINUOUS

p(X) =
�

Y

p(X,Y )

p(X,Y )

X

Y = 2

Y = 1

p(X)

X

CONTINUOUS

X

Y

N (x|µ, σ2)

x

2σ

µ

p(x) =

�

y
p(x, y)dy

Saturday, September 18, 2010



CONDITIONAL DISTRIBUTION

p(X,Y )

X

Y = 2

Y = 1

CONTINUOUS

X

Y

N (x|µ, σ2)

x

2σ

µ

X

p(X |Y = 1)
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PRODUCT RULE
CONTINUOUS

p(X,Y )

X

Y = 2

Y = 1

CONTINUOUS

X

Y

N (x|µ, σ2)

x

2σ

µ

X

p(X |Y = 1)

p(x, y) = p(y|x)p(x)p(X,Y ) = p(Y |X)p(X)
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BAYES’ THEOREM
CONTINUOUS

p(x|y) = p(y|x)p(x)
p(y)
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WHAT IS PROBABILITY?

Frequentists Bayesians

Frequency of Event Degree of Belief

“Probability theory could be regarded as an extension of 
Boolean logic to situations involving uncertainty.”

--- E.T. Jaynes
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