15-381 Artificial Intelligence Lecture 7: Probabilistic Reasoning

PERCEPTION

ACTUAL SOUND

- 1. The ?eel is on the shoe
- 2. The ?eel is on the car
- 3. The ?eel is on the table
- 4. The ?eel is on the orange

PERCEPTION

ACTUAL SOUND

- 1. The ?eel is on the shoe
- 2. The ?eel is on the car
- 3. The ?eel is on the table
- 4. The ?eel is on the orange

PERCEIVED WORDS

- 1. The heel is on the shoe
- 2. The wheel is on the car
- 3. The meal is on the table
- 4. The peel is on the orange

(Warren & Warren, 1970)

VISUAL PERCEPTION

"His outline is lost in clutter, shadows and wrinkles; except for one ear, his face is invisible. No known algorithm will find him."

Slide credit: David Mumford

REASONING UNDER UNCERTAINTY

- MEASUREMENT ERROR
- INFORMATION INCOMPLETENESS
- MODEL ERROR

BAG OF WORDS

Travel Agent

Book Store

Saturday, September 18, 2010

BAG OF WORDS

BAG OF WORDS

Box : $B \in \{r, b\}$

Box : $B \in \{r, b\}$ Fruit : $F \in \{a, o\}$

Box : $B \in \{r, b\}$ Fruit : $F \in \{a, o\}$

p(B=r) = 0.4p(B=b) = 0.6

Box : $B \in \{r, b\}$ Fruit : $F \in \{a, o\}$

p(B = r) = 0.4p(B = b) = 0.6

p(B=b) + p(B=r) = 1

WHAT IS THE PROBABILITY THAT THE SELECTION PROCEDURE WILL PICK AN APPLE?

WHAT IS THE PROBABILITY THAT THE SELECTION PROCEDURE WILL PICK AN APPLE?

GIVEN THAT AN ORANGE WAS SELECTED WHAT IS THE PROBABILITY THAT THE BOX WE CHOSE WAS BLUE?

WHAT IS THE PROBABILITY THAT THE SELECTION PROCEDURE WILL PICK AN APPLE?

GIVEN THAT AN ORANGE WAS SELECTED WHAT IS THE PROBABILITY THAT THE BOX WE CHOSE WAS BLUE?

SUM RULE AND PRODUCT RULE

RANDOMVARIABLE

- DISCRETE R.V.
 - BOOLEAN R.V.
- CONTINUOUS R.V.

RANDOM VARIABLE BINARY/BOOLEAN

Box : $B \in \{r, b\}$ Fruit : $F \in \{a, o\}$

RANDOM VARIABLE BINARY/BOOLEAN

Box : $B \in \{r, b\}$ Fruit : $F \in \{a, o\}$

RANDOM VARIABLE BINARY/BOOLEAN

Box : $B \in \{r, b\}$ Fruit : $F \in \{a, o\}$

MUCHO

MUCHO MACHO

MUCHO MACHO

SEDAN

SUV

COUPE

TRUCK

RANDOM VARIABLE Continuous

X: Income of Households

RANDOM VARIABLE continuous

HEIGHT IN 15-381?

What is the probability of observing a blue coupe?

JOINT PROBABILITY DISCRETE

JOINT PROBABILITY DISCRETE

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

JOINT PROBABILITY DISCRETE

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

 $Y \in \{\text{Red}, \text{White}, \text{Blue}, \text{Beige}\}$
$X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

 $Y \in \{\text{Red}, \text{White}, \text{Blue}, \text{Beige}\}$

Saturday, September 18, 2010

What is the probability of a coupe of any color?

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

$$p(X = x_i) = \frac{\sum_j n_{ij}}{N}$$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

 $Y \in \{\text{Red}, \text{White}, \text{Blue}, \text{Beige}\}$

Marginal Probability

$$p(X = x_i) = \frac{\sum_j n_{ij}}{N}$$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

 $Y \in \{\text{Red}, \text{White}, \text{Blue}, \text{Beige}\}$

Marginal Probability

$$p(X = x_i) = \frac{\sum_j n_{ij}}{N}$$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

$$p(X = x_i) = \frac{\sum_j n_{ij}}{N}$$

$$c_i = \sum_j n_{ij}$$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$

$$p(X = x_i) = \sum_j p(X = x_i, Y = y_j)$$

$$p(X = x_i) = \sum_j p(X = x_i, Y = y_j)$$

$$p(x_i) = \sum_j p(x_i, y_j)$$

$$p(X = x_i) = \sum_j p(X = x_i, Y = y_j)$$

$$p(x_i) = \sum_j p(x_i, y_j)$$

$$p(y_j) = \sum_i p(x_i, y_j)$$

$$p(X = x_i) = \sum_j p(X = x_i, Y = y_j)$$

$$p(x_i) = \sum_j p(x_i, y_j)$$

$$p(y_j) = \sum_i p(x_i, y_j)$$

$$p(X) = \sum_{Y} p(X, Y)$$

Given that the car is a coupe, what is the probability that it is blue?

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$ $Y \in \{\text{Red}, \text{White}, \text{Blue}, \text{Beige}\}$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$ $Y \in \{\text{Red}, \text{White}, \text{Blue}, \text{Beige}\}$

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$ $Y \in \{\text{Red}, \text{White}, \text{Blue}, \text{Beige}\}$ **Conditional Probability** x_i $p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$ Truck Coup Sedan $p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$ White n_{ij} r_{j} y_j Blue

 C_i

Red

Beige

 $X \in \{\text{Sedan, SUV, Coupe, Truck}\}$ $Y \in \{\text{Red, White, Blue, Beige}\}$ Conditional Probabilityn

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$ $Y \in \{\text{Red}, \text{White}, \text{Blue}, \text{Beige}\}$ **Conditional Probability** $p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$ x_i Truck Coup Sedan $p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$ Red $= p(Y = y_i | X = x_i) p(X = x_i)$ White n_{ij} r_{j} y_j Blue Beige

 C_i

 $X \in \{\text{Sedan}, \text{SUV}, \text{Coupe}, \text{Truck}\}$ $Y \in \{\text{Red}, \text{White}, \text{Blue}, \text{Beige}\}$ **Conditional Probability** x_i $\begin{array}{cccc} x_i & & \\ \text{Set oup} & \underset{\text{ruc}}{\text{Normalized}} & p(Y=y_j|X=x_i) = \frac{n_{ij}}{c_i} \end{array}$ Sedar $p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$ Red $= p(Y = y_j | X = x_i) p(X = x_i)$ White n_{ij} r_j y_j Blue $p(X = x_i, Y = y_j) = p(Y = y_j | X = x_i)p(X = x_i)$ Beige C_i

 $p(X = x_i, Y = y_j) = p(Y = y_j | X = x_i)p(X = x_i)$

$$p(X = x_i, Y = y_j) = p(Y = y_j | X = x_i)p(X = x_i)$$
$$p(X = x_i, Y = y_j) = p(X = x_i | Y = y_j)p(Y = y_j)$$

$$p(X = x_i, Y = y_j) = p(Y = y_j | X = x_i)p(X = x_i)$$
$$p(X = x_i, Y = y_j) = p(X = x_i | Y = y_j)p(Y = y_j)$$

$$p(X,Y) = p(Y|X)p(X)$$
SUM RULE
$$p(X) = \sum_{Y} p(X, Y)$$

PRODUCT RULE

p(X,Y) = p(Y|X)p(X)

p(X,Y) = p(Y|X)p(X)

p(X|Y)p(Y) = p(X,Y) = p(Y|X)p(X)

p(X|Y)p(Y) = p(X,Y) = p(Y|X)p(X)p(X|Y)p(Y) = p(Y|X)p(X)

$$p(X|Y) = \frac{p(Y|X)p(X)}{p(Y)}$$

$$p(X|Y)p(Y) = p(X,Y) = p(Y|X)p(X)$$
$$p(X|Y)p(Y) = p(Y|X)p(X)$$

$$p(X|Y)p(Y) = p(X,Y) = p(Y|X)p(X)$$
$$p(X|Y)p(Y) = p(Y|X)p(X)$$

Posterior Probability
$$\mathbf{P}(X|Y) = \frac{p(Y|X)p(X)}{p(Y)}$$
 Prior Probability

p(X|Y)p(Y) = p(X,Y) = p(Y|X)p(X)p(X|Y)p(Y) = p(Y|X)p(X)

p(X|Y)p(Y) = p(X,Y) = p(Y|X)p(X)p(X|Y)p(Y) = p(Y|X)p(X)

X

X

$$p(B = r) = 0.4$$
$$p(B = b) = 0.6$$

p(B=b) + p(B=r) = 1

$$p(B = r) = 0.4$$
$$p(B = b) = 0.6$$

p(B=b) + p(B=r) = 1

$$p(B = r) = 0.4$$
$$p(B = b) = 0.6$$

$$p(B=b) + p(B=r) = 1$$

$$p(F = a | B = r) =$$
$$p(F = o | B = r) =$$
$$p(F = a | B = b) =$$
$$p(F = o | B = b) =$$

$$r) = 0.4$$

p(F = a | B = r) = 0.25p(F = o | B = r) = 0.75p(F = a | B = b) = 0.75p(F = o | B = b) = 0.25

$$p(B = r) = 0.4$$
$$p(B = b) = 0.6$$

p(B=b) + p(B=r) = 1

$$p(B = r) = 0.4$$
$$p(B = b) = 0.6$$

p(F = a | B = r) = 0.25p(F = o | B = r) = 0.75p(F = a | B = b) = 0.75p(F = o | B = b) = 0.25

$$p(F = a | B = r) + p(F = o | B = r) = 1$$
$$p(F = a | B = b) + p(F = o | B = b) = 1$$

p(B=b) + p(B=r) = 1

WHAT IS THE PROBABILITY THAT THE SELECTION PROCEDURE WILL PICK AN APPLE?

RANDOMVARIABLE

DISCRETE

WHAT IS THE PROBABILITY THAT THE SELECTION PROCEDURE WILL PICK AN APPLE?

RANDOMVARIABLE

DISCRETE

WHAT IS THE PROBABILITY THAT THE SELECTION PROCEDURE WILL PICK AN APPLE?

p(F=a)

RANDOMVARIABLE

DISCRETE

WHAT IS THE PROBABILITY THAT THE SELECTION PROCEDURE WILL PICK AN APPLE?

$$p(F=a) \, = \sum_B p(F=a,B) \; \; \text{sum rule}$$

RANDOM VARIABLE DISCRETE

WHAT IS THE PROBABILITY THAT THE SELECTION PROCEDURE WILL PICK AN APPLE?

$$p(F=a) = \sum_B p(F=a,B)$$
 sum rule $= p(F=a,B=r) + p(F=a,B=b)$

RANDOM VARIABLE DISCRETE

WHAT IS THE PROBABILITY THAT THE SELECTION PROCEDURE WILL PICK AN APPLE?

$$p(F=a) = \sum_B p(F=a,B) \;\;$$
 sum rule
$$= p(F=a,B=r) + p(F=a,B=b)$$

$$= p(F=a|B=r)p(B=r) + p(F=a|B=b)p(B=b)$$

PRODUCT RULE

RANDOM VARIABLE DISCRETE

WHAT IS THE PROBABILITY THAT THE SELECTION PROCEDURE WILL PICK AN APPLE?

$$p(F = a) = \sum_{B} p(F = a, B)$$
 sum rule
= $p(F = a, B = r) + p(F = a, B = b)$
= $p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)$
product rule
= $0.25 \times 0.4 + 0.75 \times 0.6 = 0.55$

RANDOM VARIABLE DISCRETE

RANDOM VARIABLE DISCRETE

$$p(B=b|F=o)$$

RANDOM VARIABLE DISCRETE

$$p(B=b|F=o) \ = \frac{p(F=o|B=b)p(B=b)}{p(F=o)} \quad \text{Bayes' Theorem}$$

RANDOM VARIABLE DISCRETE

$$p(B=b|F=o) \ = \frac{p(F=o|B=b)p(B=b)}{p(F=o)} \quad \text{Bayes' Theorem}$$

$$=\frac{0.25\times0.6}{0.45}=0.33$$

RANDOM VARIABLE DISCRETE

$$p(B=b|F=o) \ = \frac{p(F=o|B=b)p(B=b)}{p(F=o)} \quad \text{Bayes' Theorem}$$

$$=\frac{0.25 \times 0.6}{0.45} = 0.33$$

$$p(B = r | F = o) = 1 - p(B = b | F = o) = 0.66$$

BAYES' THEOREM PRIOR TO POSTERIOR

$$p(X, Y) = p(X)p(Y)$$
$$p(Y|X) = p(Y)$$

$$p(X, Y) = p(X)p(Y)$$
$$p(Y|X) = p(Y)$$

$$p(X, Y) = p(X)p(Y)$$
$$p(Y|X) = p(Y)$$

$$p(X, Y) = p(X)p(Y)$$
$$p(Y|X) = p(Y)$$

$$p(F|B) = p(F)$$

CONDITIONAL INDEPENDENCE

P(X|Y,Z) = P(X|Z)P(Y|X,Z) = P(Y|Z)

X and Y are **conditionally independent** given Z

JOINT PROBABILITY CONTINUOUS

HEIGHT vs WEIGHT IN 15-381?

JOINT PROBABILITY CONTINUOUS

 $p(\mathbf{x}) \ge 0$ $\int p(\mathbf{x}) = 1$

SUM RULE continuous

CONDITIONAL DISTRIBUTION

X

PRODUCT RULE CONTINUOUS

p(X,Y) = p(Y|X)p(X)

p(x, y) = p(y|x)p(x)

BAYES' THEOREM CONTINUOUS

$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$

WHAT IS PROBABILITY?

Frequentists

Bayesians

Frequency of Event

Degree of Belief

"Probability theory could be regarded as an extension of Boolean logic to situations involving uncertainty." --- E.T. Jaynes