15-381
Artificial Intelligence

Lecture 7: Probabilistic
Reasoning




PERCEPTION

ACTUAL SOUND

1. The ?eel is on the shoe

2. The 2eel is on the car

3. The ?eel is on the table

4. The leel is on the orange

Slide credit: David Mumford
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PERCEPTION

ACTUAL SOUND

1. The ?eel is on the shoe

2. The 2eel is on the car

3. The ?eel is on the table

4. The leel is on the orange

= » b=

4 4 4

PERCEIVED WORDS
ne heel is on the shoe

ne wheel is on the car
ne meal is on the table

ne peel is on the orange

(Warren & Warren, 1970)

Slide credit: David Mumford
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VISUAL PERCEPTION

“His outline is lost in clutter, shadows and wrinkles;
except for one ear, his face is invisible. No known
algorithm will find him.”

Slide credit: David Mumford
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REASONING UNDER
UNCERTAINTY

e MEASUREMENT ERROR
e INFORMATION INCOMPLETENESS
e MODEL ERROR
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BAG OF WORDS

Travel Agent Book Store




BAG OF WORDS

Travel Agent Book Store




BAG OF WORDS

Travel Agent Book Store




RANDOM VARIABLE

DISCRETE

OO0 |0

Figures from Pattern Recognition and Machine Learning (Bishop)
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RANDOM VARIABLE

Box : B € {r,b}

OO0
OO0 |0
OO0 100

Red Box (r) Blue Box (b)

Figures from Pattern Recognition and Machine Learning (Bishop)
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RANDOM VARIABLE

Box : B € {r,b}

apple (a)
O Fruit : ' € {a, 0}

et OO0 0| |0
OO0 ©OO

Red Box (r) Blue Box (b)

Figures from Pattern Recognition and Machine Learning (Bishop)
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RANDOM VARIABLE

ople (@ Box : B € {r,b}
O Fruit : ' € {a, 0}

erange O O O O p(B =r)
OO 0O p(B =b)

Red Box (r) Blue Box (b)

0.4
0.6

Figures from Pattern Recognition and Machine Learning (Bishop)
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RANDOM VARIABLE

Box : B € {r,b}

apple (a)
O Fruit : ' € {a, 0}

erange OOO O p(B=r1r)=0
OO 0O p(B =1b) =0.

Red Box (1) Blue Box (b) p(B=0b+pB=1r)=1

Figures from Pattern Recognition and Machine Learning (Bishop)
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RANDOM VARIABLE

WHAT IS THE PROBABILITY THAT THE SELECTION
PROCEDURE WILL PICK AN APPLE!?
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RANDOM VARIABLE

WHAT IS THE PROBABILITY THAT THE SELECTION
PROCEDURE WILL PICK AN APPLE!?

GIVEN THAT AN ORANGE WAS SELECTED WHAT ISTHE
PROBABILITY THAT THE BOXWE CHOSE WAS BLUE!?
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RANDOM VARIABLE

WHAT IS THE PROBABILITY THAT THE SELECTION
PROCEDURE WILL PICK AN APPLE!?

GIVEN THAT AN ORANGE WAS SELECTED WHAT ISTHE
PROBABILITY THAT THE BOXWE CHOSE WAS BLUE!?

SUM RULE AND PRODUCT RULE
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RANDOM VARIABLE

e DISCRETE R.V.
e BOOLEAN R.V.
o CONTINUOUS R.W.
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RANDOM VARIABLE

Box : B € {r,b} Fruit : F € {a, o0}




RANDOM VARIABLE

Box : B € {r,b} Fruit : F € {a, o0}

ON/OFF




RANDOM VARIABLE

BINARY/BOOLEAN

Box : B € {r,b} Fruit : F € {a, o0}

ON/OFF
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RANDOM VARIABLE




RANDOM VARIABLE

MMMMM




RANDOM VARIABLE

MUCHO  MACHO




RANDOM VARIABLE

DISCRETE

MUCHO
MACHO

MUCHO MACHO
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RANDOM VARIABLE

DISCRETE

- — /2 ¥ —
| /
§
. N —
. o
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Each s 100,000 households

X

L L LT L]

income of households i the bottum 99%
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Mean (Average) $57,000

Median $40,700
bottom 50%

Tlinch

$16,000

—$300,000

—$200,000

Internists

Dentists

Psychiatrists

Chief Executives

Podiatrists

—$100,000

Lawyers
Political Scientists

Astronomers
Sales Managers

Veterinarians

Computer Programmers
Chemists

Registered Nurses

Post Office Mail Carriers
Carpenters

Maintenance & Repair Worker:

Office Clerks

Security Guards

Working full-time at minimun

Domain of X?

Catherine Mulbrandon

Figure Cred
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@Visualizing Economics Visit www.visualizingeconomics.com
Making the Invisible Hand Visible 1O view maore examples

1913-2004 United States, Canada, United Kingdom, France, Japan
Percentage of Income going to the Top 0.1 Percent

U.S. Top 0.1 Percent

6.9% United States (I)

v/\«\/\/“ 5.2% Canada $1.1 million
H\*’\,N_/\/
i \,‘/\/\
6.9% United States
3.3% United Kingdom
— /_/
8UC /\/\k
6.9% United States
~— 2.0% France
8% /\fw
6.9% United States
2.2% Japan
u 1914 1924 1934 1944 1954 1964 1974 1984 1994 2004
94%
M\ , N N "\ Top Marginal Tax Rate for the United States
[ N\~ — 35%
7% —

X: ! Domain of X?
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RANDOM VARIABLE

HEIGHT IN 15-381?




CAR RECOGNITION

Yan Li, Leon Gu, Takeo Kanade,“A robust shape model for multi-view car alignment,” CVPR 2009.
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http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Yan.html
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Yan Li, Leon Gu, Takeo Kanade,“A robust shape model for multi-view car alignment,” CVPR 2009.
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CAR RECOGNITION

Yan Li, Leon Gu, Takeo Kanade,“A robust shape model for multi-view car alignment,” CVPR 2009.
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What is the probability of observing a blue coupe!?
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JOINT PROBABILITY




JOINT PROBABILITY

X € {Sedan,SUV, Coupe, Truck}
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JOINT PROBABILITY

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}
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JOINT PROBABILITY

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

RS

HEEE
HEEN
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JOINT PROBABILITY

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

Red
White
Blue
-
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JOINT PROBABILITY

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

Red
White
Blue
-

uepag
ANS

adno>H

YonJ
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JOINT PROBABILITY

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

uepag
ANS

adno>H

YonJ

Joint Probability

Red \
p(X =2, Y = yj)
White

Blue | | | | |
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JOINT PROBABILITY

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

Ly
wn @) —
-
> < o ~ Joint Probability

Red \
p(X =2, Y = yj)
White

Y; Blue
-
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JOINT PROBABILITY

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

Joint Probability

Red \
p(X =x;,Y = yj)
White

aturday, September 18, 2010



JOINT PROBABILITY

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

Joint Probability

Red \
p(X =x;,Y = yj)
White
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JOINT PROBABILITY

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

Joint Probability

White vy
Tlij

Yj Blue 0y p(X =, Y = ?/j) —
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JOINT PROBABILITY

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

)
wm @) —
e & o =
5 < 3 7
Red
White
Y Blue 0y

Joint Probability

N\ -

p(X =z;,Y =y;) =

T

X =2,V =y;) = -
. . :nij

p(aj'l7y]) N
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JOINT PROBABILITY

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

)
wm @) —
e & o =
5 < 3 7
Red
White
Y Blue 0y

Joint Probability

AN

TV; 4
p(X =z, =y,;) = J
g Zij Nij
M. -
X: 7;7Y: ) — 2
TV ;4

Saturday, September 18, 2010



What is the probability of a coupe of any color?
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SUM RULE

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

L
wn @) —
R & 9 g
2 < 3 7
Red
White
Y; Blue zy
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SUM RULE

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

L
wn @) —
O
> b ~ p(X — xz)
Red
White
Yj Blue U2y
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SUM RULE

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

X; Marginal Probability
@ 0O = /
2 & g ¢ Sy
5 < 3B =% p(X = x;) = g
= x;) =
N
Red
White
Yj Blue Uy
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SUM RULE

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

adnon &

UBpS
ANS
YonJp

Red
White

Y; Blue 2]

i
.

Beige

Marginal Probability

/

p(X = ;)

Zj iy

N
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SUM RULE

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

X; Marginal Probability
wn @) —
a - O c / Z N;
= < o Q o 9 J
° p(X = x;) =
N
Red
C;, — E nij
White ;
Y Blue | | |nz’j | |
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SUM RULE

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

X; Marginal Probability
wn @) —
a - O c / Z n
5 < 3T x> Y — g Y
p(X =x;) = N
Red
C;, — E nij
White )
J Ci

Y Blue ]

%
S
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|
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Red
White

Y; Blue

Beige

SUM RULE

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

adnon &

UBpS
ANS
YonJp

i
.

]

Marginal Probability

p(X:xz)— N
C;, — Znij
J
&
p(X =1zi) = -
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Red
White

Y; Blue

Beige

SUM RULE

X € {Sedan,SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

Lg
%4
o w 9 =
s S £ 5
= < o ~

L
t

Uz I

QE
.

T

Marginal Probability

p(X:xz)— N
C;, — Znij
J
&
p(X =1zi) = -
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SUM RULE
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SUM RULE

Zp(X —z;, Y

J

Yj)




SUM RULE

Zp — Ly,
— ZP(%‘,%‘)

Y =y;)




SUM RULE

Zp — Lq,
= ZP(%‘,%‘)
— Zp(mi,yj)

Y =y;)




SUM RULE




Given that the car is a coupe, what is the probability
that it is blue?
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uepag

ANS

PRODUCT RULE

X € {Sedan, SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

53

adno)
MaNnd|




uepag

ANS

PRODUCT RULE

X € {Sedan, SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}

X4 71@7
¢ F pYV =yl X =) =
3 = &




uepag

ANS

PRODUCT RULE

X € {Sedan, SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}
Conditional Probability

o < nij
o pY =yl X =14 =

3 = &
- s
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PRODUCT RULE

X € {Sedan, SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}
Conditional Probability

o < nij
W — — : — L) —
g e § 3 pYV=yl|X=x)=
5 < ¥ = Ci
Red X =x;,Y = = 24
White
Y Blue T4 Tr;

C;
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PRODUCT RULE

X € {Sedan, SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}
Conditional Probability

o < nij
% —] — 9y — . ) —
T e § F p¥Y=ylX=2)=
5 < ¥ = Ci
Nnij UZY
Red p(X:gj“Y:yJ): N ” N
(A
White
Y Blue T4 Tr;

C;
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uepag

Red
White
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ANS

PRODUCT RULE

X € {Sedan, SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}
Conditional Probability

0 7 p(Y =y X =z) =
3 = &
v oy ey Ty G
p(X_aij_y])_ N Cz' N
=p(Y = yj\X = x;)p(X = ;)
n@-j Tj
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PRODUCT RULE

X € {Sedan, SUV, Coupe, Truck}
Y € {Red, White, Blue, Beige}
Conditional Probability

wn %Z — / nZ]
£ e & 7 pY=ylX=z)=
5 < 3 2 C
N ;i n;; Cj
ped pX =a,Y =y) =2 =" o
White — p(Y — yj\X — %)Z?(X — xz)
Y Blue 7y Ty

p(X =, Y = y;) = p(Y = y;| X = z;)p(X = x;)
Beige

C;
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PRODUCT RULE




PRODUCT RULE

p(X = ;Y = yj) — p(Y — yj|X — %)P(X — 33@)




PRODUCT RULE

p(X = ;Y = yj) — p(Y — yj|X — %)P(X

p(X =2;,Y =y;) =p(X =2;]Y =y,;)p(Y




PRODUCT RULE

p(X = ;Y = yj) — p(Y — yj|X — %)P(X

p(X =2;,Y =y;) =p(X =2;]Y =y,;)p(Y

p(X,Y) = p(Y|X)p(X)




RULES OF PROBABILITY

SUM RULE p(X)=)> p(X.Y)

PRODUCT RULE p(X,Y) =p(Y|X)p(X)




RULES OF PROBABILITY

Joint Probability

SUM RULE p(X)=> p(X.Y)

PRODUCT RULE p(X,Y) =p(Y|X)p(X)




RULES OF PROBABILITY

Marginal Probability Joint Probability
AN ~
SUM RULE p(X) =) p(XY)
Y

PRODUCT RULE p(X,Y) =p(Y|X)p(X)




RULES OF PROBABILITY

Marginal Probability Joint Probability
AN pd
SUM RULE p(X)=)> p(X.Y)
Y
PRODUCT RULE p(X,Y) = p(Y\|X )p(X)

Conditional Probability
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BAYES' THEOREM

p(X,Y) = p(Y]X)p(X)




BAYES' THEOREM

p(X[Y)p(Y) = p(X,Y) = p(Y[X)p(X)




BAYES' THEOREM
p(X|YV)p(Y) = pXAT=p(Y]X)p(X)

p(X|Y)p(Y) = p(Y|X)p(X)




BAYES' THEOREM
p(X|YV)p(Y) = pXAT=p(Y]X)p(X)

p(X|Y)p(Y) = p(Y|X)p(X)

p(X]Y) =




BAYES' THEOREM
p(X|YV)p(Y) = pXAT=p(Y]X)p(X)

p(X|Y)p(Y) = p(Y|X)p(X)

Prior Probability

(V| X)p(X)”

p(X]Y) = (V)




BAYES' THEOREM
p(X|YV)p(Y) = pXAT=p(Y]X)p(X)

p(X|Y)p(Y) = p(Y|X)p(X)

Prior Probability

yd
Posterior Probability p (Y ‘ X)p (X)

Sp(X|Y) = oY)




BAYES' THEOREM
p(X|YV)p(Y) = pXAT=p(Y]X)p(X)

p(X|Y)p(Y) = p(Y|X)p(X)

Likelihood \ Prior Probability

yd
Posterior Probability p (Y ‘ X)p (X)

“p(XY) = oY)




BAYES' THEOREM
p(X|YV)p(Y) = pXAT=p(Y]X)p(X)

p(X|Y)p(Y) = p(Y|X)p(X)

Likelihood \ Prior Probability

/
Posterior Probability p [’ X p X




MODELING DISTRIBUTIONS

HISTOGRAMS




MODELING DISTRIBUTIONS

HISTOGRAMS

sample




MODELING DISTRIBUTIONS

HISTOGRAMS

sample




MODELING DISTRIBUTIONS

HISTOGRAMS

sample




MODELING DISTRIBUTIONS

HISTOGRAMS

sample




RANDOM VARIABLE

00 Box:BE{’l“,b}
000 |o
000 1900 Fruit: F € {a,0}




RANDOM VARIABLE

00 Box:BE{’l“,b}
000 |o
000 1900 Fruit: F € {a,0}




RANDOM VARIABLE

00 Box:BE{’l",b}
000 |o
000 1900 Fruit: F € {a,0}

B—r)—0.4 p(F:CLB:r)
B=b)=0.6 pir = o0l5 =)

p(F = a|B =)
b) +p(B=r1) =1 p(F = o|B = b)




RANDOM VARIABLE

OO0
OO0 |0
Q00O 10O

Box : B € {r,b}
Fruit : F' € {a, 0}

(F

=
O & O 8

T

S
T

S
T

(
(
(

=




RANDOM VARIABLE

OO0
OO0 |0
Q00O 10O

0.4

0.6

=r)=1
p(F =
p(F

Box : B € {r, b}
Fruit : F' € {a, 0}

p(F'=a|B=r)=
p(F=0|B=r)=
p(F = a|lB =) =
p(F' =o0|B =b) =
a|B=r)+p(F =o|B
a|B=0b)+p(F =o0|B
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RANDOM VARIABLE

WHAT IS THE PROBABILITY THAT THE SELECTION
PROCEDURE WILL PICK AN APPLE!?
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= RANDOM VARIABLE

WHAT IS THE PROBABILITY THAT THE SELECTION
PROCEDURE WILL PICK AN APPLE!?

urday, September 18, 2010



= RANDOM VARIABLE

WHAT IS THE PROBABILITY THAT THE SELECTION
PROCEDURE WILL PICK AN APPLE!?
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= RANDOM VARIABLE

WHAT IS THE PROBABILITY THAT THE SELECTION
PROCEDURE WILL PICK AN APPLE!?

— Zp(F = a, B) SUM RULE
B
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= RANDOM VARIABLE

WHAT IS THE PROBABILITY THAT THE SELECTION
PROCEDURE WILL PICK AN APPLE!?

— Zp(F = a, B) SUM RULE
B

=p(F=a,B=7r)+p(F=a,B=>0)
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s RANDOM VARIABLE

WHAT IS THE PROBABILITY THAT THE SELECTION
PROCEDURE WILL PICK AN APPLE!?

— Zp(F — a,B) SUM RULE
B
=p(F=a,B=7r)+p(F=a,B=>0)

=p(F=a|lB=r)p(B=r)+p(F =a|B=>0b)p(B="0)

PRODUCT RULE
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s RANDOM VARIABLE

WHAT IS THE PROBABILITY THAT THE SELECTION
PROCEDURE WILL PICK AN APPLE!?

:Zp(F:a,B) SUM RULE
=pl'=a,B=r)+p(F =a,B=0)
=p(F=a|lB=r)p(B=r)+p(F =a|B=>0b)p(B="0)

PRODUCT RULE

= 0.25 x 0.4+ 0.75 X 0.6 = 0.99
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EB;WG RANDOM VARIABLE

GIVEN THAT AN ORANGE WAS SELECTED WHAT ISTHE
PROBABILITY THAT THE BOXWE CHOSE WAS BLUE!?
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EB;WG RANDOM VARIABLE

GIVEN THAT AN ORANGE WAS SELECTED WHAT ISTHE
PROBABILITY THAT THE BOXWE CHOSE WAS BLUE!?

p(B = b|F = o)
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EBWS - RANDOM VARIABLE

( — ) = 0.75
(F=a|B=10b)=0.75
(F = o|B=b) = 0.25

GIVEN THAT AN ORANGE WAS SELECTED WHAT ISTHE
PROBABILITY THAT THE BOXWE CHOSE WAS BLUE!?

F = o|B = b)p(B = b)
p(F = o)

BAYES’ THEOREM

p(B =0blF =0) = !
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EBWS - RANDOM VARIABLE

( — ) = 0.75
(F=a|B=10b)=0.75
(F = o|B=b) = 0.25

GIVEN THAT AN ORANGE WAS SELECTED WHAT ISTHE
PROBABILITY THAT THE BOXWE CHOSE WAS BLUE!?

F =o0|B =b)p(B =b)
p(F = o)
0.25 x 0.6

= = 0.33
0.45

BAYES’ THEOREM

p(B =0blF =0) = !
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EBWS - RANDOM VARIABLE

( — ) = 0.75
(F=a|B=10b)=0.75
(F = o|B=b) = 0.25

GIVEN THAT AN ORANGE WAS SELECTED WHAT ISTHE
PROBABILITY THAT THE BOXWE CHOSE WAS BLUE!?

F =o0|B =b)p(B =b)
p(F = o)
0.25 x 0.6

= = 0.33
0.45

BAYES’ THEOREM

p(B =0blF =0) = !

p(B=r|F =0)=1—p(B=>blF =0) =0.66
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BAYES' THEOREM

PRIOR TO POSTERIOR

o0
OO0 |0
Q00 100
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BAYES' THEOREM
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0

Q00 |0

Q00| ©O0O
/ Prior Probability

Likelihood \

ior Probability \p(X‘Y) _ p(Y‘X)p(X)

urday, September 18, 2010
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INDEPENDENCE

p(X,Y) = p(X)p(Y)
p(Y[X) =p(Y)

X and Y are independent




OO0
000

INDEPENDENCE

p(X,Y) = p(X)p(Y)
p(Y[X) =p(Y)

X and Y are independent
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p(X,Y) = p(X)p(Y)
p(Y[X) =p(Y)

X and Y are independent
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INDEPENDENCE

p(X,Y) = p(X)p(Y)
p(Y[X) =p(Y)

X and Y are independent

O p(F|B) = p(F)
OO




CONDITIONAL INDEPENDENCE

P(X|Y,Z) = P(X|Z)
P(Y|X,Z) = P(Y|Z)

X and Y are conditionally independent given Z




PROBABILITY

cumulative distribution

function
P(x)
p(z)
probability density function
ox
p(z) =20
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JOINT PROBABILITY

HEIGHT vs WEIGHT IN 15-381?
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JOINT PROBABILITY

height weight age

vital stats \ \ /

T~Xx = [37173727'” 7xn]




SUM RULE

Q)

X

CONTINUOUS




CONDITIONAL DISTRIBUTION




PRODUCT RULE

X
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WHAT IS PROBABILITY?

Frequentists

Frequency of Event

Bayesians

Degree of Belief

“Probability theory could be regarded as an extension of
Boolean logic to situations involving uncertainty.”

--- E.T. Jaynes
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