
15-381: AI 

Classical Deterministic Planning – 

Representation and Search 

Fall 2009 

Manuela Veloso 
(Thanks to Reid Simmons for the blocksworld example run.) 

Carnegie Mellon 

15-381 AI 

Fall 09 

Outline 

•! Planning 

•! Actions, states, goals 

•! Linear planning 

•! Beyond linear planning 



15-381 AI 

Fall 09 

Problem Solving – Planning 

Newell and Simon 1956 

•! Given the actions available in a task domain. 

•! Given a problem specified as: 

–! an initial state of the world, 

–! a set of goals to be achieved. 

•! Find a solution to the problem, i.e., a way to transform 

the initial state into a new state of the world where the 
goal statement is true. 

Action Model, State, Goals 

15-381 AI 

Fall 09 

Classical Deterministic Planning 

•! Action Model:  

–! How to represent actions 

–! Deterministic, correct, rich representation 

•! State: 

–! single initial state, fully known 

•! Goals:  

–! complete satisfaction 



15-381 AI 

Fall 09 

The Blocks World Definition - Actions 

•! Blocks are picked up and put down by the arm 

•! Blocks can be picked up only if they are clear, i.e., 
without any block on top 

•! The arm can pick up a block only if the arm is empty, i.e., 
if it is not holding another block, i.e., the arm can be pick 
up only one block at a time 

•! The arm can put down blocks on blocks or on the table 

A 

B 

C 
Table 

A 

B 

C 
Table 

Note: assume table is infinite. 

15-381 AI 

Fall 09 

Planning by “Plain” State Search  

•! Search from an initial state of the world 

to a goal state 

•! Enumerate all states of the world 

•! Connect states with legal actions  

•! Search for paths between initial and goal 

states 

This isn’t great when there are a whole lot of states. 



15-381 AI 

Fall 09 

3-BlocksWorld State Transitions 

A B C 

A 
B C A B 

C 
A 

B 
C 

A 

B C 

A 

B C A 

B 

C A 

B 

C A B 

C 

A B 

C 

A 

B 

C A B 
C A 

B C 
A B 

C A 

B C A 

B 

C 

A 

B 

C 

A 

B 

C A 

B 

C A 

B 

C A 

B 

C 

A 

B 

C 

You can get from any state to the other by 

following arrows. 
This is a difficult search problem, though, 

since it’s hard to characterize how close 
you are to goal state. 

15-381 AI 

Fall 09 

Planning - Generation 

•! Many plan generation algorithms: 
–! Forward from state, backward from goals 

–! Serial, parallel search 

–! Logical satisfiability 

–!Heuristic search 

–!……….. 

Make sure you really get the following slides.  For the 

midterm, you may want to be able to perform DFS, BFS, etc, 
on block world.  And be able to describe how to do all these 

things. 



15-381 AI 

Fall 09 

Planning – Actions and States 

•! Model of an action 

–!a description of legal actions in the domain 

•! “move queen”, “open door if unlocked”, “unstack if 

top is clear”,…. 

•! Model of the state 
–! Numerical identification (s1, s2,...) – no information  

–! “Symbolic” description 

•! objects, predicates  

The representation problem is hard– as humans we often underestimate 

how difficult it is to precisely describe a problem domain. 

15-381 AI 

Fall 09 

The Blocks World - States 

•! Objects 

–! Blocks: A, B, C 

–! Table: Table 

•! Predicates 

–! (on A B), (on C table), (clear B), (arm-empty), (holding C)  

–! (on table A), (on A C), (top B),… 

–! (tower A B C),… 

•! States – Conjunctive 

–! (on A B) and (on B C) and (clear A) and (on C table) and 

(arm-empty) 
Note that different representations can have a 

huge impact on the search for solution.  Here we 
choose the conjunctive (binary) representation. 



15-381 AI 

Fall 09 

Model of World States 

•! Numerical identification (s1, s2,...) 

•! Symbolic description 
–! Features 

–! Predicates  
–! Conjunctive, enumerative, observable 

–! Complete, correct, deterministic 

•! Probabilistic, approximate, incremental, on-
demand 

15-381 AI 

Fall 09 

Action Representation - BlocksWorld 

(OPERATOR PICK_FROM_TABLE 
?ob BLOCK 
:preconds  
 (and (clear ?ob) 
       (on-table ?ob) 
       (arm-empty)) 
:effects  
  del (on-table ?ob) 
  del (clear ?ob) 
  del (arm-empty) 
  add (holding ?ob)) 

(OPERATOR 

PICK_FROM_BLOCK                

?uob BLOCK 

?uob BLOCK 

:preconds 

 (and (on ?ob ?uob) 

       (clear ?ob) 

       (arm-empty)) 

:effects  

   del (on ?ob ?uob) 

   del (clear ?ob) 

   del (arm-empty) 

   add (holding ?ob) 

   add (clear ?uob)) 

STRIPS planner, by Fikes & Nilsson (Stanford) 

Work with preconditions and effects (add and delete) on literals 

Preconds: To pick, object must be clear 

(nothing on it), must be on table, and 
can’t be holding something else. 

Effects: Once you pick it up, it’s not on the table, so it’s no 

longer clear, and your arm isn’t empty– rather it’s holding the 
object.  Note how careful we are, we don’t want to leave 

anything out.  We need to keep the state consistent. 

STRIPS 

assumption: 
anything not 

mentioned in the 
effect remains 

unchanged.  E.g. 

one move in 
sliding puzzle 

only changes 2 
tiles. 



15-381 AI 

Fall 09 

Action Representation - BlocksWorld 

(OPERATOR PUT_ON_BLOCK 

  ?ob BLOCK 

  ?uob BLOCK 

  :preconds  

     (and (clear ?uob) 

       (holding ?ob)) 

  :effects  

   del (holding ?ob) 

   del (clear ?uob) 

   add (clear ?ob ) 

   add (arm-empty) 

   add (on ?ob ?uob)) 

(OPERATOR PUT_DOWN_ON_TABLE 

?ob 

BLOCK               :precon

ds                             

 (holding ?ob) 

 :effects  

   del (holding ?ob) 

   add (clear ?ob) 

   add (arm-empty) 

   add (on-table ?ob)) 

15-381 AI 

Fall 09 

Different Representation -  Blocksworld 

(OPERATOR MOVE 

 :preconds 
   ?block BLOCK 

   ?from OBJECT 
   ?to OBJECT 

  (and (clear ?block) 
    (clear ?to) 

    (on ?block ?from) 
 :effects 

  add (on ?block ?to) 
  del (on ?block ?from) 

  (if (block-p ?from) 
      add (clear ?from)) 

  (if (block-p ?to) 
      del (clear ?to))) 

•! MOVE(x,y,z) moves block x from the top of y to the top of 

z.  y and z can be either the table or another block.  

MOVE is applicable only if x and z are clear, and x is on y. 

You’ll have to be able to make 

a representation, either on 
HW3 or on the midterm. 



15-381 AI 

Fall 09 

STRIPS Action Representation 

•! Actions - operators -- rules -- with: 

–! Precondition expression -- must be satisfied before 

the operator is applied. 

–! Set of effects -- describe how the application of the 

operator changes the state. 

•! Precondition expression: propositional, typed first order 

predicate logic, negation, conjunction, disjunction, 

existential and universal quantification, and functions. 

•! Effects: add-list and delete-list. 

•! Conditional effects -- dependent on condition on the 

state when action takes place. 

Here’s a formal definition– try to identify these things in the previous slides. 

15-381 AI 

Fall 09 

Many Planning “Domains” 

•! Web management agents 

•! Robot planning 

•! Manufacturing planning 

•! Image processing management  

•! Logistics transportation 

•! Crisis management  

•! Bank risk management 

•! Blocksworld 

•! Puzzles 

•! Artificial domains 



15-381 AI 

Fall 09 

Example – Action Model 

Note that drill-hole can go last, since has-hole is not a precondition for anything 

Is there anything that needs to be a precondition at start, since nothing adds it? 

What is an alg to search for a solution?  For starters, if you want an action, trace backwards for an 
action that causes these preconditions.  For ex. Precond to drill-hole is has-spot.  However, the tricky 

part is achieving these preconditions in the right order. 

15-381 AI 

Fall 09 

Example – Problem and Plan 

put-part(part-1) 

put-drill=bit(drill-1) 

drill-spot(part-1, drill-1) 

remove-drill-bit(drill-1) 

put-drill-bit(drill-2) 

drill-hole(part-1, drill-2) 



15-381 AI 

Fall 09 

GPS – Means-ends Analysis 

(Newell and Simon 60s) (Ernst and Newell 69) 

GPS Algorithm (initial-state, goals) 

•! If goals ! initial-state, then return True 

•! Choose a difference d " goals between initial-state and 

goals 

•! Choose an operator o to reduce the difference d 

•! If no more operators, then return False 

•! State=GPS(initial-state, preconditions(o)) 

•! If State, then return GPS(apply(o, initial-state), goals) 

General problem solver 

You keep a search stack, recursively calling GPS 

15-381 AI 

Fall 09 

GPS Blocks-World Example 

1. Search Stack   State 

Clear(B) 

Clear(C) 

On(C, A) 

On(A, Table) 

On(B, Table) 

Handempty 

On(A, C) On(C, B) 

A 

B 

C 

Goal 

A B 

C 

Initial State 

2. Search Stack   State 

Clear(B) 

Clear(C) 

On(C, A) 

On(A, Table) 

On(B, Table) 

Handempty 

On(A, C) On(C, B) 

On(A, C) 

On(C, B) 

3. Search Stack   State 

Clear(B) 

Clear(C) 

On(C, A) 

On(A, Table) 

On(B, Table) 

Handempty 

On(A, C) On(C, B) 

On(A, C) 

Put_Block(C, B) 

Holding(C) Clear(B) 

4. Search Stack   State 

Clear(B) 

Clear(C) 

On(C, A) 

On(A, Table) 

On(B, Table) 

Handempty 

On(A, C) On(C, B) 

On(A, C) 

Put_Block(C, B) 

Holding(C) Clear(B) 

Holding(C) 

Clear(B) 

Clear(B) 

Clear(C) 

On(C, A) 

On(A, Table) 

On(B, Table) 

Handempty 

Here’s an illustration of the challenge– we have multilple goals– C on B and A on C.  This 

makes it harder to get a good heuristic, as we did in search.  

Cyan: Goal. 

Green: Difference 

between init and 

goals 

We took all available actions with On(C,B) as postcond and 

picked one (in magenta).  Now we push the precond of 

Put_Block(C,B) and add to stack as a goal. 

We’re on state  = GPS(init, 

precond(Put_Block(C,B)) 

Compute the differences– add 
the two greens to the stack.   



15-381 AI 

Fall 09 

GPS Blocks-World Example 
9. Search Stack   State 

Clear(B) 

Clear(C) 

On(A, Table) 

On(B, Table) 

Holding(C) 

Clear(A) 

On(A, C) On(C, B) 

On(A, C) 

Put_Block(C, B) 

[Pick_Block(C)] 

On(A, C) On(C, B) 

On(A, C) 

10. Search Stack   

State Clear(C) 

On(A, Table) 

On(B, Table) 

Clear(A) 

Handempty 

On(C, B) 

[Pick_Block(C); Put_Block(C, B)] 

On(A, C) On(C, B) 

11. Search Stack   

State Clear(C) 

On(A, Table) 

On(B, Table) 

Clear(A) 

Handempty 

On(C, B) 

[Pick_Block(C) 

 Put_Block(C, B)] 

Put_Block(A, C) 

Holding(A) Clear(C) 

On(A, C) On(C, B) 

12. Search Stack   

State Clear(C) 

On(A, Table) 

On(B, Table) 

Clear(A) 

Handempty 

On(C, B) 

[Pick_Block(C) 

 Put_Block(C, B)] 

Put_Block(A, C) 

Holding(A) Clear(C) 

Holding(A) 

Clear(C) 

Clear(B) 

Clear(C) 

On(A, Table) 

On(B, Table) 

Holding(C) 

Clear(A) 

Clear(C) 

On(A, Table) 

On(B, Table) 

Clear(A) 

Handempty 

On(C, B) 

15-381 AI 

Fall 09 

GPS Blocks-World Example 

5. Search Stack   State 

Clear(B) 

Clear(C) 

On(C, A) 

On(A, Table) 

On(B, Table) 

Handempty 

On(A, C) On(C, B) 

On(A, C) 

Put_Block(C, B) 

Holding(C) Clear(B) 

Holding(C) 

6. Search Stack   State 

Clear(B) 

Clear(C) 

On(C, A) 

On(A, Table) 

On(B, Table) 

Handempty 

On(A, C) On(C, B) 

On(A, C) 

Put_Block(C, B) 

Holding(C) Clear(B) 

Pick_Block(C) 

Handempty Clear(C) On(C, ?b) 

7. Search Stack   State 

Clear(B) 

Clear(C) 

On(C, A) 

On(A, Table) 

On(B, Table) 

Handempty 

On(A, C) On(C, B) 

On(A, C) 

Put_Block(C, B) 

Holding(C) Clear(B) 

Pick_Block(C) 

8. Search Stack   State 

Clear(B) 

Clear(C) 

On(A, Table) 

On(B, Table) 

Holding(C) 

Clear(A) 

On(A, C) On(C, B) 

On(A, C) 

Put_Block(C, B) 

Holding(C) Clear(B) 

[Pick_Block(C)] 

Clear(B) 

Clear(C) 

On(C, A) 

On(A, Table) 

On(B, Table) 

Handempty 

Clear(B) 

Clear(C) 

On(C, A) 

On(A, Table) 

On(B, Table) 

Handempty 

Clear(B) 

Clear(C) 

On(A, Table) 

On(B, Table) 

Holding(C) 

Clear(A) 

Now take Clear(B) from the stack since it’s 

in the state already.  PB(C) is the next 

operator. 

Call GPS with cyan 

as new goals. 

All of Handempty, Clear(C), and C on 

something are in the state, so return 

true.  Apply PB(C) 

Now call GPS(PB(C)(init-state), 

current goals). Where current 

goals are the top of the stack– 
holding(C) and clear(B). These 

are already in, return true again. 



15-381 AI 

Fall 09 

GPS Blocks-World Example 

On(A, C) On(C, B) 

13. Search Stack   

State Clear(C) 

On(A, Table) 

On(B, Table) 

Clear(A) 

Handempty 

On(C, B) 

Put_Block(A, C) 

Holding(A) Clear(C) 

Holding(A) 

On(A, C) On(C, B) 

15. Search Stack   

State Clear(C) 

On(A, Table) 

On(B, Table) 

Clear(A) 

Handempty 

On(C, B) 

[Pick_Block(C);  

Put_Block(C, B)] 

Put_Block(A, C) 

Holding(A) Clear(C) 

Pick_Table(A) 

16. Search Stack   

State Clear(C) 

On(B, Table) 

Clear(A) 

On(C, B) 

Holding(A) 

[Pick_Block(C);  

Put_Block(C, B);  

Pick_Table(A)] 

On(A, C) On(C, B) 

Put_Block(A, C) 

Holding(A) Clear(C) 

Clear(C) 

On(A, Table) 

On(B, Table) 

Clear(A) 

Handempty 

On(C, B) 

Clear(C) 

On(A, Table) 

On(B, Table) 

Clear(A) 

Handempty 

On(C, B) 

Clear(C) 

On(B, Table) 

Clear(A) 

On(C, B) 

Holding(A) 

[Pick_Block(C); 

 Put_Block(C, B)] 

On(A, C) On(C, B) 

14. Search Stack   

State Clear(C) 

On(A, Table) 

On(B, Table) 

Clear(A) 

Handempty 

On(C, B) 

Put_Block(A, C) 

Holding(A) Clear(C) 

Pick_Table(A) 

Handempty Clear(A)  

On(A, Table) 

[Pick_Block(C); Put_Block(C, B)] 

Now call GPS on the 

action, so our new goal diff 

is Holding(A) 

Recurse back, try to get to 

holding(A) 

Preconds to holding(A) 

were fulfilled already, so 

add that to the actions. 

Add PT(A) to the actions, and 

move down to the next goals 

on the stack.  Oh look, they’re 
already in our state. 

15-381 AI 

Fall 09 

GPS Blocks-World Example 

On(A, C) On(C, B) 

17. Search Stack   

State Clear(C) 

On(B, Table) 

Clear(A) 

On(C, B) 

Holding(A) 

[Pick_Block(C); 

Put_Block(C, B); 

Pick_Table(A)] 

Put_Block(A, C) 

Clear(C) 

On(B, Table) 

Clear(A) 

On(C, B) 

Holding(A) 

On(B, Table) 

Clear(A) 

On(C, B) 

Handempty 

On(A, C) 

On(A, C) On(C, B) 

18. Search Stack   

State On(B, Table) 

Clear(A) 

On(C, B) 

Handempty 

On(A, C) [Pick_Block(C);  

Put_Block(C, B);  

Pick_Table(A); 

Put_Block(A, C)] 

19. Search Stack   

State On(B, Table) 

Clear(A) 

On(C, B) 

Handempty 

On(A, C) [Pick_Block(C);  

Put_Block(C, B);  

Pick_Table(A); 

Put_Block(A, C)] 

So that means we want 

our action PB(A,C).  Add to 

our actions. 

Now we’re down to our 

original goals. 

And since our goals are a 

subset of our state, we 

return true.  Since our 
stack’s empty we’re done. 



15-381 AI 

Fall 09 

Properties of Planning Algorithms 

•! Soundness 
–! A planning algorithm is sound if all solutions found are legal 

plans 

•! All preconditions and goals are satisfied 

•! No constraints are violated (temporal, variable binding) 

•! Completeness 
–! A planning algorithm is complete if a solution can be found 

whenever one actually exists 

–! A planning algorithm is strictly complete if all solutions are 
included in the search space 

•! Optimality 
–! A planning algorithm is optimal if the order in which solutions 

are found is consistent with some measure of plan quality 

Optimality can be complicated.  For instance, we may have many factors affecting optimality of a 

subway trip (stations with escalators, crowds on trains, etc).  “Best” is complex. 

15-381 AI 

Fall 09 

Why is Planning Hard? 

Planning involves a complex search: 

•! Alternative operators to achieve a goal 

•! Multiple goals that interact 

•! Solution optimality, quality 

•! Planning efficiency, soundness, completeness 



15-381 AI 

Fall 09 

Linear Planning: Discussion 

•! Advantages 

–! Reduced search space, since goals are solved one at 

a time 

–! Advantageous if goals are (mainly) independent 

–! Linear planning is sound 

•! Disadvantages 

–! Linear planning may produce suboptimal solutions 

(based on the number of operators in the plan) 

15-381 AI 

Fall 09 

The Sussman Anomaly 

C 

B 

A 

C 

B A 

Linear Solution: 

•! (on B C) 
•! Pickup (B) 

•! Stack (B, C) 
•! (on A B) 

•! Unstack (B, C) 

•! Putdown (B) 
•! Unstack (C, A) 

•! Putdown (C) 
•! Stack (A, B) 

•! (on B C) 

•! Unstack (A, B) 
•! Putdown (A) 

•! Pickup (B) 
•! Stack (B, C) 

•! (on A B) 

•! Pickup (A) 
•! Stack (A,B)  

Linear Solution: 

•! (on A B) 
•! Unstack (C, A) 

•! Putdown (C) 
•! Stack (A, B) 

•! (on B C) 

•! Unstack (A, B) 
•! Putdown (A) 

•! Pickup (B) 
•! Stack (B, C) 

•! (on A B) 

•! Pickup (A) 
•! Stack (A,B)  

Here you get really stuck 

because you’re only working on 
one goal at a time. 

Because “C on table” isn’t a 

goal, we don’t do the obvious. 

So, when you have multiple 

goals, the ordering really affects 
what you do. 



15-381 AI 

Fall 09 

“NonLinear” Solution 

C 

B 

A 

C 

B A 

NonLinear Solution: 

•! (on A B) 
•! Unstack (C, A) 

•! Putdown (C) 
•! (on B C) 

•! Pickup (B) 

•! Stack (B, C) 
•! (on A B) 

•! Pickup (A) 
•! Stack (A, B) 

The only way to solve this is goal switching.  When you’re on the way to (on A 

B), you interrupt it and switch to (on B C).  Goals are now a set, rather than a 
stack.  Branching factor increases dramatically, but you can actually solve the 

problem. 

15-381 AI 

Fall 09 

Linear Planning – Goal Stack 

•! Planner can be unoptimal 

•! Planner's efficiency is sensitive to goal orderings 

–! Control knowledge for the “right” ordering 

–! Random restarts 

–! Iterative deepening 

•! Planner keeps a small search space by not considering 

all the possible goal orderings. 

•! Any other problems/features? 



15-381 AI 

Fall 09 

Example:  One-Way Rocket (Veloso 89) 

(OPERATOR LOAD-ROCKET 

 :preconds 

  ?roc ROCKET 

  ?obj OBJECT 

  ?loc LOCATION 

 (and (at ?obj ?loc) 

      (at ?roc ?loc)) 

 :effects  

  add (inside ?obj ?roc) 

  del (at ?obj ?loc)) 

(OPERATOR UNLOAD-ROCKET 

 :preconds 

  ?roc ROCKET 

  ?obj OBJECT 

  ?loc LOCATION 

 (and (inside ?obj ?roc) 

      (at ?roc ?loc)) 

 :effects  

  add (at ?obj ?loc) 

  del (inside ?obj ?roc)) 

(OPERATOR MOVE-ROCKET 

 :preconds 

  ?roc ROCKET 

  ?from-l LOCATION 

  ?to-l LOCATION 

 (and (at ?roc ?from-l) 

      (has-fuel ?roc)) 

 :effects  

  add (at ?roc ?to-l) 

  del (at ?roc ?from-l) 

  del (has-fuel ?roc)) 

Sussman’s anomaly showed “unoptimal”.  But sometimes linear planning can 

even be not complete.  Here, you run out of fuel– we have nonreversible actions, 
unlike in the block world where you can always return to a past state. 

15-381 AI 

Fall 09 

Incompleteness of Linear Planning 

Initial state:  

(at obj1 locA)                

(at obj2 locA)  

(at ROCKET locA) 

(has-fuel ROCKET) 

Goal statement: 

(and 

  (at obj1 locB) 

  (at obj2 locB)) 

Goal Plan 

(at obj1 locB) (LOAD-ROCKET obj1 locA) 

(MOVE-ROCKET) 

(UNLOAD-ROCKET obj1 locB) 

(at obj2 locB) failure 



15-381 AI 

Fall 09 

State-Space Nonlinear Planning 

Extend linear planning [Prodigy4.0]: 

•! From stack to set of goals. 

•! Include in the search space all possible interleaving of goals 

State-space nonlinear planning is complete. 

Goal Plan 

(at obj1 locB) (LOAD-ROCKET obj1 locA) 

(at obj2 locB) (LOAD-ROCKET obj2 locA) 

(at obj1 locB) (MOVE-ROCKET) 

(UNLOAD-ROCKET obj1 locB) 

(at obj2 locB) (UNLOAD-ROCKET obj1 locB) 

15-381 AI 

Fall 09 

Summary 
•! State and Action Representation: predicates, 

conjunction of predicates; preconditions, adds, deletes 

•! Planning: selecting one sequence of actions (operators) 
that transform (apply to) an initial state to a final state 
where the goal statement is true. 

•! Means-ends analysis: identify and reduce, as soon as 
possible, differences between state and goals. 

•! Linear planning: backward chaining with means-ends 
analysis using a stack of goals - potentially efficient, 
possibly unoptimal, incomplete; GPS, STRIPS. 

•! Nonlinear planning with means-ends analysis: 
backward chaining using a set of goals; reason about 
when “to reduce the differences;” Prodigy4.0. 


