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Outline

« CSPs:

— Definitions, DFS search, DFS with
backtracking, Forward chaining,
Constraint propagation, heuristics:
variable and value ordering

* Local Search:
— Hill climbing, stochastic hill climbing
* This lecture:

— Local search for CSPs
— Problem structure in CSPs




Consider N nodes in a graph
Assign values V;,..,V\ to each of the N nodes
The values are taken in {R,G,B}

Constraints: If there is an edge between j and j,
then V; must be different from V,

Note that in CSPs, the path doesn’t matter, only the solution.

Important things in a graph coloring problem: values (colors), variables (nodes), and
the topology of the graph (constraints).



Local Search Techniques for CSP

N-Queens

Already seen: Hill climbing for N-Queens

Eval is # of pairs attacking queens.
Neighbors are states where one queen has been moved.

Hill climbing will try the move that leaves the fewest remaining conflicts. Itis a
greedy algorithm. Therefore hill climbing doesn’t backtrack, not even for random
search between ties. However, you may not want to keep track because a) it takes
memory, b) if there are only global maxima/minima, or c) we'’re likely to revisit
states.



Local Search for CSP

State = assignment of Vi Vo |V |V | Vs | Ve
values to all the variables |a |b |c |d |e |f
Move = Change one variable ﬂ
V, |V, | V5|V, |Vs |V
a |b |c’|d |e |f

Evaluation = number of conflicts (non-satisfied
constraints) between variables

Generalize hill climbing algorithm that we used on N-Queens for all CSP’s.
Other methods (DFS, forward search, constraint propagation) did not assign all
variables up front.



Local Search for CSPs

* During search:
— States have unsatisfied constraints
— Successors mean to reassign variable values

* Variable selection
— randomly select any conflicted variable

* Vaiue seiection
— min-conflicts heuristic

Min-conflicts heuristic - Select variable at random, and then give it the value that
results in the fewest conflicts.



Min-Conflicts Algorithm

 Start with a complete assignment of
variables

* Repeat until a solution is found or
maximum number of iterations is reached:

—Select a variable V; randomly among the
variables in conflict

—Set V, to the value that minimizes the
number of constraints violated




Example: 4-Queens

« States: 4 queens in 4 columns (44 = 256 states)

* Actions: move queen in column

* Goal test: no attacks

« Evaluation: h(n) = number of attacks (pairs of queens)

pega s feli

« Given random initial state, can solve n-queens in almost
constant time for arbitrary n with high probability (e.g., n
=10,000,000)

If you don’t choose which queen to move randomly, then it is easy to get stuck in a
local minimum



USA |N-Queens |Zebra
(4 coloring) (1<N<=50)
DFS >108 [>4010% |[3.910°
Backtracking
+ MRV > 106 [13.5 106 1,000
Forward 2,000|>4010% [35,000
Checking
+ VIRV 60 817,000 500
Min-Conflicts |64 4 000 2,000

(Data from Russell & Norvig)

(Zebra is a complicated murder mystery-like problem.)

This is why Al is awesome. Because simple ideas produce disturbingly large
improvements.

MRV is Minimum Remaining Value



Discussion

* N-queens is easy for local search
— Solutions are densely distributed
» Advantages of local search applied to CSPs

— Online settings when the problem changes

* Weekly’s airline schedule; flights, personnel
assignments

— Local search from current is faster than
backtracking

— Backtracking could find a solution with many
changes from the current schedule

Deterministic bias is bad...it is generally much better to choose randomly when
choosing which queen to move.



Outline

» Last Monday — CSPs:

— Definitions, DFS search, DFS with
backtracking, Forward chaining,
Constraint propagation, heuristics:
variable and value ordering

e Last lecture — Local Search:
— Hill climbing, stochastic hill climbing

* This lecture:

— Local search for CSPs
‘ — Problem structure in CSPs

With local search each state is a complete assignment.

How do you generate initial assignment? It is domain specific, though random is
generally pretty good.



SO

Constraint Graph

+ Observations about structure of the graph
— Components, independence, connectivity... ..

T is not connected

()

O—c
If just SA were not there....
s

\Y

Q)

T can be anything

Everyone except T has to be different than SA
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Independence

* Why important?

» Suppose each component has ¢ variables,
each takes d values, from a total of n
variables; then n/c subproblems, with time
d”*c therefore O(d”*c * n/c) linear in n,
versus O(d”n).

| Ry Y .Y .Y 5 T <) . i Y o ¥ o W L

* n=80 booiean CSP, four with c=20, worst
case from a lifetime down to less than 1s.
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Simplest Case: Constraint Trees
/< N\ Root
"4

- Any two variables are connected by at most one path

» Complexity of solving tree-structured CSPs?
* Time linear in the number of variables.
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A9

Intuition: If all the values in the
parent’'s domain are consistent with
the values in all the children’s
domains, it is easy to choose
consistent values, starting from the
root of the tree
N~ Y
/—\ /\
v2 v1 v4 v5 v7 v3 v6 v8

Order the variables such that the parent of a node
appears always before that node in the list

You can really choose any node as the root of the tree.
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Constraint Tree Algorithm

Visit each variable once: N

1. Up from leave
— For every variable V;, starting at the leaves:

— V] = parent(V)
— Remove all the values x in D(V,) for which there is
no consistent value in

2. Down from root Worst case: Need to check all

, pais of values: d?
— Assign a value to tneroot or tne ree

— For every variable V;:

» Choose a value x in D(V;) cons| Total time:
value assigned to parent(V) O(N d?)

16



Almost Tree

* The constraint graph becomes a tree once a value
is chosen for V

* We don’t know which value to choose - Try all
possible values

After we give V6 a color, the graph can be treated as a tree, where V5 and V3 start
off with one fewer acceptable colors.

Here the complexity of the tree is (N-1 * d*2), done d times, so we have (N-1)*d"3
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More General Case

For the HWs/midterm: you should think about these structural ideas, and how the
algorithms are impacted by structure.

18



__Complexity: O((N-p) &*?)

Worst case: Need to
check all possible

assignments in G =2 dP
UAarrsSIuITrm L

can be solv

variables in G:

1 group G of p variables
nto a tree problem that

Tree algorithm - (N-p) d?

» Apply the tree algorithm to the rest of the variables
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__Complexity: O((N-p) dP+?) V.

R A

ind the minimum

gNote: Unfortunately, it is |mp033|ble to

p in polynomial time

4 2

Worst case: Need to
check all possible
assignments in G 2 dP

r-ll VNI TIT

nected group G of p
rms the graph into a tree

be solved efficiently

N :

* Apply the tree algorithm to the rest of the variables

Tree algorithm - (N-p) d2
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CSPs — Summary

Definitions

Standard DFS search
Improvements

— Backtracking

— Forward checking

— Constraint propagation
Heuristics:

— Variable ordering

— Value ordering

Examples

Local search for CSP problems
Problem structure in CSPs

What you need to know
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