
Multiplayer games where there is an adversary trying to make you lose.

1

Utility function assigns scores to leaves.

2

For zero sum games, you have an utility function that assigns values according to

point of view of player 1 (X).

Player 1 is trying to maximize this utility fn, Player 2 tries to minimize.

Important NOTE: Here we assume players can see to the bottom of the search tree

and play optimally

One ply is a move from one of the players. This is a 2 ply tree: Max makes one

move and Min makes one move.

Max is 1st player who tries to maximize utility. Represented by triangle up

Min is 2nd player who tries to minimize utility. Represented by triangle down

(Notation: up triangle is MAX, inverted triangle is MIN)

3

4

5

Never worse.

Basic argument: if we are facing a suboptimal opponent and they could force us to

take a worse outcome by being stupid, then the adversary would be better than the

optima, contradiction. More formal argument: use induction on the definition of

minimax values (base case: leaves).

6

If it is player X’s turn, then player X will try to maximize his or her score.

7

Answer to rhetorical question: “No”. We do not need to look at the other nodes from

the middle branch after seeing “2”, because we know our MIN opponent will select

something that has at most a payout of 2 for us, and we can already get 3 by going

left.

8

Alpha and beta are initalized to negative and positive in

9

10

We set the beta of this min node to the max value of its successor.

11

12

We have determined the value of the left move node is 3, so we set alpha = beta =

3 and propogate upwards.

13

14

We pass down the 3 to our middle node search, because we know we can achieve

it.

15

If alpha >= beta, then prune!

16

17

In this branch, we might be able to get 14

18

19

Now we see 5.

20

21

Now we see 2. If the right branch had more nodes, or if we looked at that node first

we could prune as our alpha >= beta

22

Imagine the m > n. We can terminate our search in the squiggly branch.

23

Here we do not need to look at 4 or 6, because we already have found 2 < 3. If the

order were 6,4,2 we would need to expand all the nodes in the middle branch.

24

Can we prune at every level? No. Only every other level. Need to do half the

branching as before.

Can establish average-case bounds by considering that we’ll find the max or min

value after b/2 expansions (halfway between best and worst).

25

35^10 is 10-ply lookahead.

26

Characteristics we want in our heuristic: fast, good (not necessarily an

underestimate).

In general, eval gets better closer to the leaves. If eval was consistently accurate,

then there would be little incentive to look far down the tree. You would just look at

successors

27

Thought experiment: where do the values of pawns, knights, bishops, etc. come

from? Can you think of ways to generate these values?

28

According to Manuela, the first big-time computer chess competition took place in

the Wean Hall lounge.

29

30

31

Sometimes we call chance nodes moves by the “nature” player.

32

Calculate the expected values at chance nodes.

33

34

