Constraint Satisfaction
Problems

Canonical Example: Graph
Coloring

+ Assign values V,,..,V) to each of the N nodes
* The values are taken in {R,G,B}

« Constraints: If there is an edge between i and
J, then V; must be different from V,

Constraint satisfaction basically boils down to graph coloring.
Graph coloring is NP complete, so any solution is *worst case* exponential time.

This is a valid 4-coloring...we're just not using the 4t color!

Example: Map-Coloring

New South Wales
Victoria

Tasmania

* Variables WA, NT, Q, NSW, V, SA, T
« Domains D, = {red,green,blue}

« Constraints: adjacent regions colored
differently

Note map coloring can be defined as graph coloring. Each state in map is
represented as a node in the graph, with edges between nodes if the states are

adjacent

All map coloring can be represented as graph coloring, but not all graph coloring
can be represented as map coloring. This is because maps are planar graphs.

Example: Map-Coloring

« Solutions are complete and consistent
assignments, e.g.,
— WA =red, NT = green, Q = red, NSW = green,
V =red, SA = blue, T = green

Complete: every state is colored. Consistent: it's a valid soln.

Constraint graph

- Binary CSP: each constraint relates two
variables

- Constraint graph: nodes are variables, arcs
are constraints

= @A

New South Wales 'I
ria

Northern
Territory

Western
Australia

South
Australia

Binary CSP can usually be expressed as a graph, because each edge has 2
endpoints, so each edge can be one constraint.

CSP Definition
« CSP={V, D, C}
» Variables: V={V,,..,V\}
* Domain: The set of d values that each variable
can take

* Constraints: C = {C,,..,C«}
» Each constraint consists of a tuple of variables

and a list of values that the tuple is allowed to
take for this problem

— Example:
[(V2,V3).{(R,B),(R,G),(B,R),(B,G),(G,R),(G,B)}]
» Constraints are usually defined implicitly
— Example: V; # V, for every edge (i)

Example ([(V2,V3),{(R,B),...}]): the possible values the tuple (V2,V3) can take
The second example is an easier way to write the first.

Varieties of constraints

* Unary constraints involve a single variable,
- e.g., SA # green

- Binary constraints involve pairs of variables,
- e.g., SA # WA

* Higher-order constraints involve 3 or more
variables

Higher order example: allDif(X,Y,Z)
allDif(X,Y,Z) means XY, and Z all must be different.

Binary CSP

+ Each constraint is either unary or binary, i.e., refers to
one variable or to two variables.

* Itis possible to convert any n-ary CSP to a binary CSP.

Note you can convert any CSP to binary. Ex: diff(X,Y,Z) = diff(X,Y), diff(Y,Z),
diff(Z,X)

When you convert to binary, # of constraints can blow up

N-Queens

Given one queen per
column, find row for
each queen, such that
there no queen attacks
another queen.

Q1:1 Q2=3

i: column
Q;: row

10

Example: N-Queens

Variables: Q;
Domains: D, = {1, 2, 3, 4}
Constraints

- Q#Q; (cannot be in the
same row)

—|Q; - Q| #|i - j| (or same
diagonal)

Q1:1 Q2:3

Valid values for (Q,, Q,) are

(1,3) (1,4) (2,4) (3,1) (4,1)
(4,2)

11

Cryptarithmetic

SEND
+MORE
MONEY

12

Example: Cryptarithmetic

* Variables SEND
D,E,M,N,O,R,S,Y +MORE
« Domains

{0,1,2,3 ,4,5,6,7,8,9} MONEY
» Constraints

M+=0,S #0 (unary constraints)

Y=D+E OR Y=D+E-10.

DE,D=M,D =N, etc.

13

Varieties of CSPs

* Discrete variables
— finite domains:

* nvariables, domain size d 2 O(d") complete
assignments

* e.g., Boolean CSPs, incl.~Boolean satisfiability
(NP-complete)

— infinite domains:
* integers, strings, etc.
* e.g., Job scheduling, variables are start/end days
for each job

* Continuous variables

- e.g., start/end times for Hubble Space Telescope
observations

— linear constraints solvable in polynomial time by
linear programming

14

Example: Scheduling

A set of N jobs, J,,..., J,,

Each job j is composed of a sequence of
operations O,,..., O

Each operation may use resource R, and has
a specific duration in time.

A resource must be used by a single
operation at a time.

All jobs must be completed by a due time.
Problem: assign a start time to each job.

15

<

R

g
Jy O%R

* 4 jobs
* 4 resources
* 10 operations

In addition to what we said before, need to wait for O/, to finish before O', can start,
etc.

<

. (0", R/ mm (0", R, memp (0", R}
Jy: (0°,R) === (07, R)
J;: (0% R memmp (0°,R) memp (0% R,
Jy (04, R === (0*,R)

Precedence Constraints: Deliver Constraints:
s, +T!, =81, $';+ T1; < Due
S, +T1,<81, S2, + T2, < Due

S3, + T3, < Due

S‘j: start time for operation j of job i
Tij: duration of operation j of job i

et (0, R) =t (0',R)
— (0.,
- [0°,R) ===10%, R == [0, R
(O .R) == (OR,

Resource constraints

Operations (1,1), (2,1), and (3,2) share the same
resource R1

18

CSP as a Standard Search Problem

Example state:
(V,=G,V,=B, V,;=?, V,=?, V=2, V;=?)

+ State: assignment to k variables with k+1,..,N unassigned

* Successor: Assignment of a value to variable k+1,
keeping the others unchanged

 Start state: (V,=?,V,=?, V;=?, V,=2, V;=?, V;=7)
* Goal state: All variables assigned with constraints
satisfied

* No concept of cost on transition; just a solution, no path

How to use DFS? For example, you'd have a tree with root as start state, children
as V1=red, V1=blue, V1=green, and then branch out on V2, etc.

19

/! Really dumb
assignment

How many possible successors? Number of colors.

You'll get to the bottom of the tree and have to backtrack because you made a
dumb assignment.

You can check if V1 and V2 don’t violate.

How do you pick which node to explore next? Choose the most constrained node.
But we’re not going to get that smart yet.

DFS Improvements

Evaluate only value assignments that
do not violate any constraints with the
current assignments

Don’t search branches that obviously
cannot lead to a solution

Predict valid assignments ahead
Control order of variables and values

21

Order of values:
(B,R,G)

22

Backtracking DFS

V, [V, |V, [V, [V, | Vg 0‘
2222]2]2 '@
ARVARVARVARVARTA
Bl2 121212 |2 Order of values:
= (B,R,G)
SN
Vi | Vs a | Vs | Ve | [Va|Vo Vs |V V5| Vs
B |B ’™N? | ? B|R|? |?2 |?|?
Don’teven conside
that branch because :
V2=B is inconsistent v1 v2 v3 v4 v5 VG Backtrack to the
with the parent st B |R|R|B|? |? previous state
because no valid
assignment can be
Vi | Vo | Vs | Va| Vs | Ve found for V;
B|R|R |B|G|?

23

Backtracking DFS

* For every possible value x in D:

— If assigning x to the next unassigned
variable V,,, does not violate any
constraint with the k already assigned
variables:

+ Set the variable V., to x

+ Evaluate the successors of the current
state with this variable assignment

 If no valid assignment is found: Backtrack to
previous state

» Stop as soon as a solution is found

This can be really slow.

24

Backtracking DFS Comments

+ Additional computation: At each step, we
need to evaluate the constraints associated
with the current candidate assignment
(variable, value).

* Uninformed search, we can improve by
predicting:
— What is the effect of assigning a variable on all of
the other variables?

— Which variable should be assigned next and in
which order should the values be evaluated?

— When a branch fails, how can we avoid repeating
the same mistake?

25

Forward Checking

+ Keep track of remaining legal values for
unassigned variables

« Backtrack when any variable has no legal

Warning: Different example
with order (R,B,G)

values

Vi [V [V [V Ve Ve @'@
R|? (2 |2 |2 |2 |? @
B|? |?2 |2 |2 |2 |?

G|?2 |2 |?2 |2 |?|? @m@

This works slightly better than DFS.

26

Forward Checking

+ Keep track of remaining legal values for
unassigned variables

« Backtrack when any variable has no legal

values
Vi Vo V3 |V, Vs | Vs 0’@
R O X |? X (X ? @
B 21?2 1?2 |72 |?
G| |7 7|7 |?|? @m@

Place X’s in places that can’t be red anymore. If V,is red, then V, V, and V5 can'’t
be assigned red.

27

Forward Checking

+ Keep track of remaining legal values for
unassigned variables

« Backtrack when any variable has no legal
values

V, [V, |V, |V,

] O
R |O 2 X | X |?
B O|X ? |[X |?

? ?

? |2 |7 @m

Forward Checking

+ Keep track of remaining legal values for
unassigned variables

« Backtrack when any variable has no legal
values

AAAIAIAL @'@
R |O o X |X |X '®

B 0 ? |x |?

G ? |2 |? @m

Forward Checking

+ Keep track of remaining legal values for
unassigned variables

« Backtrack when any variable has no legal

vV, |V, |V,]|V,

B O O

values
v, (v,
x| &/
a |
2

Vs
RO| 0| X
X
?

Forward Checking

+ Keep track of remaining legal values for
unassigned variables

« Backtrack when any variable has no legal
values

Vi | Vo V5 |V, Vs | Ve @'@
R |O (0 X @
B (0 (0 X
o ol o w

There are no valid assignments
left for V; we need to backtrack 27f

The X’s mean there are whole branches of the search tree that we don’t look at.
We still need to backtrack, but this is much more efficient. This is an example of

pruning a search tree (chopping off branches)

31

looking at the constraints which contain the current
variable.

Constraint Propagation

* Forward checking does not detect all the
inconsistencies, only those that can be detected by

* Can we look ahead further?

At this point, it is already obvious that this branch will
not lead to a solution because there are no consistent
values in the remaining domain for V; and V.

v, v, v, [v, [v; |V,
R |0 0 X |x
B 0 o |x |x
G ? |?

32

Constraint Propagation,
not “just” checking
+ V=variable being assigned at the current level
» Set variable V to a value in D(V)
* For every variable V’ connected to V:

— Remove the values in D(V’) that are
inconsistent with the assigned variables

— For every variable V” connected to V’:

* Remove the values in D(V”) that are no
longer possible candidates

* And do this again with the variables
connected to V”

—...until no more values can be discarded

This is even better.

33

« V= variable beina assigne

Constraint Propagation,

not “just cr#b@anrd Checking

New: Constraint |, in 1 as before

Propagation connect to V:

—k we the values in D(V7, that are
int. sistent with the assigned variables

— For" rery variable V” connected to V’:

* Reinove the values in D(V”) that are no
longer possible candidates

* And do this again with the variables
connected to V”

—...until no more values can be discarded

34

CP For Graph Coloring

Propagate (node, color)

1. Remove color from the domain of
all of the neighbors
2. For every neighbor N:

If D(N) was reduced to only one color
after step 1 (D(N) = {c}):
Propagate (N,c)

35

After Propagate (V,, R):

ANATAAI AL
Rlo|x|? |x |x|?
B| |2]2 2|2]2
G| |22]2 |2 |2

36

After Propagate (V,, B):
v1 v2 v3 v4 v5 v6
RO X | X | X |?
B O |X |? X |[X
G 7?7 X |? | X
Propagation order: 2
/\
3 5
—
4 6
%\
3 5 6
/\
3 4 5

Uh oh, V5 can only be one color. Take it. This is a key difference
Now that you set V5, V, can now only be one color!

After Propagate (V,, B):

Vi | Vs

(0

vy

v3 v5
RO X |X |X
X |? |X
? ?

X%~V

Note: We get directly to a solution in one
step of CP after setting V, without any
additional search

Some problems can even be solved by
applying CP directly without search

38

Variable and Value Heuristics

So far we have selected the next variable
and the next value by using a fixed order

1. Is there a better way to pick the next
variable?

2. Is there a better way to select the next
value to assign to the current variable?

39

CSP Heuristics: Variable Ordering |

Most Constraining Variable

Selecting a variable which contributes to the largest
number of constraints will have the largest effect on
the other variables

Equivalent to finding the variable that is connected to

the largest number of variables in the constraint graph.

v1 VZ v3 v4 v5 v6 v7
R |2 |2 |2 |72 |2 |2

Setting variable V; affects 4
variables

Setting variable V, (or V;, V,)
affects fewer variables

40

CSP Heuristics: Variable Ordering Il

Minimum Remaining Values (MRV)

+ Selecting the variable that has the least number of
candidate values is most likely to cause a failure
early (“fail-first” heuristic)

R O X|X |[X|? |0
B OoO|? |? (X |?
G 21?2 12 |?

V; is the most constrained variable and is
the most likely to prune the search tree

Fail-first is good, because you don’t waste your time looking at branches of the
search tree that can’t possibly work.

41

CSP Heuristics: Value
Ordering

» Least Constraining Value

* Choose the value which causes the smallest
reduction in the number of available values
for the neighboring variables

@ Four colors: D={R, G, B, Y}

‘\ Which value to try next for V,?
L (WY =

G |[R |72 |2 |?2 |?2 |?

Pick green for V; as it adds no new constraints (We already know that V, can’t be
green!)

Conclusion — Generic CSP Solution

Apply a consistency enforcement procedure
— Forward checking

— Constraint propagation

If no solutions left:

— Backtrack to a previous variable

Else

— select the next variable to be assigned
+ Using variable ordering heuristic

— Select a value to try for this variable
 Using value ordering heuristic

Repeat until all variables have been assigned:

43

