15-381: Al
Informed Search

Fall 2009

Manuela M. Veloso

Chapter 4, Russell and Norvig
Thanks to all past 381 instructors, and
http://www.cs.cmu.edu/~awm/tutorials

Carnegie Mellon

Uninformed Search Complexity

N = Total number of states

B = Average number of successors (branching factor)
L = Length for start to goal with smallest number of steps

Q = Average size of the priority queue
Lmax = Length of longest path from S7TARTto any state

oL

Algorithm Complete Optimal Time Space

BFS Breadth First Y Y, If all trans. o(#) o(#)
Search have same cost

BIBFS | Bi- Direction. Y Y, If all trans. 0(2872) 0(2872)
BFS have same cost

PCDFS | Path Check Y N O(B-max) O(BLax)
DFS

MEMDF | Memorizing Y N O(Bmax) O(Bmax)

S DFS

IDS Tterative Y Y, If all trans. o(#) ABL)
Deepening have same cost

15-381 AI

Fall 09

General Search Revisited

States ready to f(A)
be expanded

(\uic iinyce

1. Define some function f(s) at each state s
2. Choose the state with “lowest” f to expand next
3. Insert its successors

If f() is chosen carefully, we will eventually find the lowest-

15381 a1 COSt sequence
Fall 09

Note: In these examples s is just a state, not necessarily a start state

How does DFS expand? How do you decide which next node? Use a
stack...expand the states most recently added to the stack.

How does BFS expand? Use a queue...expand the states that were added first to
the queue.

Uninformed vs Informed

= Uninformed — only guided by
= Successor relationships
= topological structure (leftmost,...)
= length as number of nodes

= Informed
= assume cost of edges
= more knowledge?

15-381 AL
Fall 09

¢ UCS (Uniform Cost Search)
f(n) = g(n)

* g(n) - cost of each node already
length of shortest path from START to n

* Implementation — Store open successor states (waiting to be
expanded) in a priority queue for efficient retrieval of minimum f

» Optimal - Guaranteed to find lowest cost sequence, but

1ss@uidance is about known path...
Fall 09 5

Uninformed: has no information about how to get to the goal!

Estimate “"Cost” to Goal

* Introduce a function h(s) to estimate

tha 1inknnwn dietanra from
LING UTINNTIVVVLTL VIvwidAal IV 11 viid

state s to the goal

h(B) = 10

15-381 AI
Fall 09

We really want a “best guess”™ as informed as possible.

Heuristic Functions

= h is a heuristic function for the search problem
hl{c\ = petimate af the Cosi" o-F +he c‘lno'rﬂ"ec‘i'

nn+
) i 911 ~ | 'JUI

"\J}_QJIIII“—\'Q Vi LI] [}

from sto GOAL

= h cannot be computed solely from the states
and transitions in the current problem - If we
could, we would already know the optimal pathl!

= h(.) is based on external knowledge about the
problem > /nformedsearch
= Questions:
1 Typical examples of h?
2. How to use h?
5. What are desirable/necessary properties of h?

15-381 AL
Fall 09

Informed: Concept of “external knowledge”. Use more than just the state and the
actions.

For those of you who have taken 15-211: You wrote a heuristic for your chess
playing Al. Your heuristic would take the state (a state of the chess board) and
output how good or bad the board is, which is an estimate of how close you are to
winning.

Heuristic Functions Example

The straight-line
distance is lower
from s than from s’
so maybe s has a
better chance to be

/‘ on the best path

> = x — GOAL

START.

X

= h(s) = Euclidean distance to GOAL

15-381 AL
Fall 09

You can only move North, South, East, or West. Manhattan distance is the number
of moves you must make when moving this way on a grid. In this example, the
Manhattan distance from S to the goal is 8 (4 North, 4 East).

Is Euclidean distance an accurate estimate?
No- because you move based on Manhattan distance.
Is the Euclidean distance ever greater than the Manhattan distance? No.

Euclidean is a *lower bound®. It always underestimates the distance you must
travel, since you can’t go in a straight line or pass through walls.

Simon got the Nobel for introducing this concept of heuristic.
A guess of what's best, but not a proven best.

Heuristic Functions Example

GQAL

x*Q

START.

X

= h(s) = Euclidean distance to GOAL
n Fuclidean distance is an heuristic.

15-381 AL
Fall 09

Heuristic Functions Example

S GOAL

= How could we define h(s)?

Fall 09

10

15-381 AI
Fall 09

V09

Misplaced titles:
his)=7

Manhattan distance:
h,(s)=2+3+3+2+4+2+0+2=18

11

Why is h2 better?
See Pearl- even more sophisticated heuristics.

11

First Attempt: Greedy Best First Search

= Simplest use of heuristic function: Alway The heuristic value
i i i of a state is
node with smallest h(.) for expansion (i.¢. dependent of the
path to the state.

Initialize PQ
Insert START with value h(S7A

While (PQ not empty and no goal state is in PQ)
Pop the state s with the minimum value of h from PQ
For all s”in succs(s)

If s’is not already in PO and ha
&~ 19 11IVL ull\—u\.«ly mi 7 \{ Ul 1i1u

Insert ' in PQ with value h(s)

15-381 AL
Fall 09 12

How is this different from UCS?

Heuristic value of state is a property of state, not the path to get to the state. (All
step costs are the same).

h(s) is independent of path to reach s
BFS is generally good, but there can be some problems...

Prob4|em

h=4 h=3 h=2 h=1 h=0

= What solution do we find in this case?
= (START4)
| (A,3)
=« (C,1), (B,2)
= (Goal,0) START-A-C-Goal
= Greedy search clearly not optimal, even though the
.. neuristic function is “good.”

Fall 09 13

Queue for Greedy BFS is shown, and we always take the lowest h value. Path is
first node in each step if sorted by best heuristic.

But this isn’t the shortest path in terms of cost. So GBFS not optimal, even though
heuristic function is “good”.

H always *underestimates™ shortest path to goal.
But GBFS is very easy to implement, and there are problems for which it is great.

Fixing the Problem

‘ f(A) = g(A) + h(A) = 13

h(A) = 3

h(B) = 6

f(B) =9(B) + h(B) = 11

= g(s) is the (shortest cost so far) from S7ART to sonly

= h(s) estimates the cost from sto GOAL

= Key insight: g(s) + h(s) estimates the total cost of the
cheapest path from START to GOAL going through s

= 2> A* algorithm

15-381 Al
Fall 09 14

Can also do a modification— put weights:
F(n) = alpha * g(n) + (1-alpha) h(n). You can play around with the alphas.

A* Algorithm

= f(s) = a(s) + h(s)

= heuristics
= good, less good..., alternative
= “easy” to define...

= efficiency

15-381 AL
Fall 09 15

Heuristic should be easy to define— we don’t want heuristics to take longer
than the search itself.

Defining good heuristics is very important and can be very complicated. For
a search problem, choosing the heuristic is a big decision.

15

Can A* Fix the Problem?

4
2 17\ 2
START A B c GOAL
h=4 h=3 h=2 h=1 h=0
{(START,4)}
{(A5)}

(F(A)=g(A)+h(A) = g(START) + cost(START,A) +3 =0+ 2 + 3)
{(85) (G7)}

(f(O=a(O+h(0) =g(A +cost(4 0 +1=2+4+1)
{(G5)}

(f(O=9(O+h(0) =g(B) + cost(BO) +1 =3 +1+1)

15-381 Al {(GOAL,6)} 16

Fall 09

16

Can A* Fix the Problem?

h=4 h=3 h=2 h=1 h=0

{(START,4)}

{(A5)}
(START) + cost(START,A) =3+ 0+ 2)
{(B5) (G7)}
(f(O=h(O + g(O= 1 + g(A) + cost(4,

{(G5)}~"

(f(O=h(O +g(O=1+9g(B) + cost(5() =1+ 3 + 1)
{(GOAL,6)}

15-381 Al
Fall 09 17

(f(A)=h(A)+ g(A)=

In implementation you have to keep track of both g and h throughout

Be disciplined running A* and don’t take intuitive shortcuts. Manuela is “a master”
at coming up with graphs designed to trick you. And she’s been teaching this since

1992. That’s, like, a really long time!

17

A* Core Issues

= Termination condition

= Revisiting states

= Algorithm

= Optimality

= Avoiding revisiting states
= Choosing good heuristics
= Reducing memory usage

15-381 AL
Fall 09

18

These are what'’s really important.

18

A* Termination Condition

Queue:

{(A.8), (G,10)}
= Stop only when GOAL is popped from the queue.

15-381 AI
Fall 09 19

If we stopped as soon as we see G, we’d lose. Would we stop if we had (G,8)?
Yes. And you wouldn’t find the optimal path because your heuristic sucks. Same if
h(A)=20. You'd pop (G,10) and you'd stop and lose. However, Manuela will blame
the bad heuristic for overestimating the cost to the goal from A.

Bad is well-defined too, not just slang.

19

Revisiting States

" ey
START h=3

A state that was already in the
queue is re-visited.

How is its priority updated? —

15-381 AL
Fall 09

TN @
= Ch=8
h 7@/ "

20

Unlike in GBFS, you have to revisit states.

(Start, 8)

(B, 4), (A, 8)

(A, 8), (C, 10)

(C, 9.5) (C has been updated!)
(D, 3.5)

(Goal, 9.5)

Done! (Popped the goal)

20

Revisiting States

" ey
START h=3

1/2

A state that had been already
expanded is re-visited.

| N \@)\1

C)h=2
1
h=1

(Careful: This is a different —
example.) GOAL
15-381 AL
Fall 09 21
Two cases:

1) Revisited state s is still in PQ. If new g(s) is smaller than old, update it.

2) Revisited state s has already been expanded. If new g(s) is smaller than old, re-

insert it

(Start, 8)

(B, 4), (A, 8)

(C, 4), (A, 8)

(D, 4), (A, 8)

(A, 8), (Goal, 10)

(C, 3.5), (Goal, 10) (Re-inserted C into PQ!)
(D, 3.5), (Goal, 10) (Re-inserted D into PQ!)
(Goal, 9.5) (Updated Goal)

Done! (popped goal)

Pay attention to these two slides, walk through it yourself.

21

Pop state swith lowest () in queue

If s = GOAL * :

return SUCCESS A™ Algorithm
Flce exnand < (InSIde Ioop)
CiSe€ expana s.

For all s”in succs (5):
=g(s) + h(s) = g(s) + cost(s,s) + h(s)
If (s’ not seen before OR
s’ previously expanded with f(s) > OR
s’in PQ with with f(s) > £)
Promote/Insert s’with new value #in PQ
previous(s) < s
Else

Ignore s’ (because it has been visited and
its current path cost f(s’) is still the lowest
15381 AT path cost from S7TART to) 2

Fall 09

22

Under what Conditions is A* Optimal?
{(START,6)}
1 \ {(GOAL,3) (A,8)}
Final path:
@ _ {START, GOAL}
h=7 with cost =3

= Problem: h(.) is a poor estimate of path
cost to the goal state

15-381 AL
Fall 09 23

Why doesn't it find the optimal? H is *overestimating®.
A good heuristic does not overestimate.

Let h* be actual cost from n to goal.

h(n) <= h*(n)

We’ve done one uninformed search that was always optimal (BFS).

What was the heuristic for BFS? h(s)=c, where c is some constant. Therefore
f(s)=g(s)+h(s)=g(s)+c.

Admissible Heuristics

= Define h*(s) = the true minimal cost to the
goal from s

= his admissible if

h(s) <= h*(s) for all states s

= Le., an admissible heuristic never
overestimates the cost to the goal.
"Optimistic" estimate of cost to goal.

A*% it mitimavamb A~ b Lim Al bl A cndbiiaa Al A~
A 1S Judidiitecu o Hnu uie optirial pdat
S

admissible.

15-381 AL
Fall 09

24

To be continued next lecture! Stay tuned, true believers!

24

Consistent (Monotonic) Heuristics

__on)

h(c)
o)

cost(s,s’)

h(s) <= h(s) + cost(s,s), h(G)=0
—_— f values are monotonically nondecreasing, f(s")>=f(s)

Fall 09 s

25

Pop state swith lowest () in queue
If s= GOAL /r
return SUCCESS h

Else expand s oy,
For all s”in succs (5): 1y
= g(s) + h(s) = g(s) + cost(s,s) + h(s)
If (s’ not seen before OR
s’in PQ with with f(s) > £)
Promote/Insert s’with new value #in PQ
previous(s) < s
Else

Ignore s’ (because it has been visited and
its current path cost f(s’) is still the lowest
15381 AT path cost from S7TART to) %

Fall 09

26

Examples

For the navigation problem:

The length of the shortest

o~ Y N

mmble P ok lmmad Ll o AL .
pdatil IS dt ieast Ulie disiudrice

4~ GOAL petween s and GOAL >

Euclidean distance is an

admissible heuristic

O L 4

S

15-381 AI
Fall 09

What about the puzzle?

h(s) ?

— ~ A -~

31415
6718

GOAL

27

Misplaced titles:
his)=7

Manhattan distance:
h,(s)=2+3+3+2+4+2+0+2=18

15-381 Al
Fall 09 28

Are these heuristics admissible?
They both underestimate the number of moves you need to solve!

28

h, = misplaced tiles

Comparing Heuristics — States expanded

h, = Manhattan

distance

L=4steps | L=8steps | L=12
steps

Iterative 112 6,384 364,404
Deepening
A* with 13 39 227
heuristic h,
A* with 12 25 73
heuristic h,

= Data is averaged over 100 instances of the

8-puzzle for various solution lenghts.

15-381 AL

Fall 09

Example from Russell&Norvig

29

Using a heuristic you only have to look at far, far fewer nodes!

29

Comparing Heuristics

g -
» ;Ag
LI

hi(s)=7
h,s)=2+3+3+2+4+2+0+2=18

h, is larger than h; and, at same time, A* seems to be more
efficient with h,

h, dominates h,, if h,(s) >= h,(s) for all s

For any two heuristics h, and h;, :
If h, dominates h, then A* is more efficient (expands
fewer states) with h,

;31}33391 Aintuition: since h <= h*, a larger h is a better approximation of the true path cgst

Manhattan distance h, (s) is a tighter lower bound, so it works better.

Domination is always good if the dominating heuristic is admissible, however
domination does NOT imply admissibility.

30

Limitations

= The good news: A* is optimally efficient
- For a given h(.), no other optimal
algorithm will expand fewer nodes

15-381 AL
Fall 09

31

31

IDS (Iterative Deepening Search)
= Need to make DFS optimal

= IDS (Iterative Deepening Search):

= Run DFS by searching only path of length 1
(DFS stops if length of path is greater than 1)

=« If that doesn't find a solution, try again by
running DFS on paths of length 2 or less

= If that doesn't find a solution, try again by
running DFS on paths of length 3 or less

= Continue until a solution is found

15-381 AL

Fall 09

32

32

Example: IDA* (Iterative Deepening A*)
= Same idea as Iterative Deepening DFS except use f(s) to
control depth of search instead of the number of transitions
= Example; assuming integer costs:
1. Run DFS, stopping at states s such that f(s) > 0
Stop if goal reached
2. Run DFS, stopping at states ssuch that f(s) > 1
Stop if goal reached
3. Run DFS, stopping at states s such that f(s) > 2
Stop if goal reached
........ Keep going by increasing the limit on f by 1 every time

= Complete
= Optimal
= More expensive in computation cost than A*

.. %, Memory order L as in DFS
Fall 09 33

For IDS you iterate depth.
For IDA* you iterate f(s)

15-381 AL
Fall 09

Summary

Informed search and heuristics

Ract-Firct Grooady coarr
DCSL-Tirot Grecdy SCardii
A* algorithm

= Admissible heuristics, optimality
= Condition on heuristic functions
= Completeness, efficiency

IDA*

Nils Nilsson. Problem Solving Methods in Artificial
Intelligence. McGraw Hill (1971)

Judea Pearl. Heuristics: Intelligent Search Strategies for

Computer Problem Solving (1984)
Chapters 3&4 Russell & Norvig

34

34

Proof of A* Optimality with Admissible h

= By contradiction — assume that a suboptimal
goal state, G’ is returned.

= Let G be a goal state with optimal path cost f*
and let n be a node in the path to G. h
admissible, therefore f* >= f(n)

= If n is missed for expansion and instead G’ is
chosen, then f(n) >= f(G’)

= So f* >= f(G'), and f* >= g(G") + h(G"), and f*
>= g(G’"), which contradicts the assumpt

that G" is suboptimal.

1A
I

Ulipuvll

15-381 AL
Fall 09

35

You don’t need to know this proof...just here in case you're interested.

35

