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Different Aspects of “Machine Learning”

• Supervised learning

– Classification - concept learning 
– Learning from labeled data
– Function approximation

• Unsupervised learning

– Data is not labeled
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– Data is not labeled
– Data needs to be grouped, clustered
– We need distance metric

• Control and action model learning

– Learning to select actions efficiently
– Feedback: goal achievement, failure, reward
– Control learning, reinforcement learning



Goal Achievement - Rewards

• “Reward” today versus future (promised) reward

• Future rewards not worth as much as current.

• $100K + $100K + $100K + ...

INFINITE sum

• Assume reality ...: discount factor , say γ.
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• Assume reality ...: discount factor , say γ.

• $100K + γ $100K + γ2 $100K + ...

CONVERGES.



Reinforcement Learning Problem
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Goal:  Learn to choose actions that maximize

r0 + γr1 + γ2r2 + ... , where 0 ≤ γ < 1



Learning Conditions

• Assume world can be modeled as a Markov Decision 
Process, with rewards as a function of state and action.

• Markov assumption:
New states and rewards are a function only of the  
current state and action, i.e.,

– s = δ(s , a )
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– st+1 = δ(st, at)

– rt = r(st, at)

• Unknown and uncertain environment:

Functions δ and r may be nondeterministic and are not 

necessarily known to learner.



Control Learning Task

• Execute actions in world,

• Observe state of world,

• Learn action policy π : S → A

• Maximize expected reward
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E[rt + γrt+1 + γ2rt+2 + ...]

from any starting state in S.

– 0 ≤ γ < 1, discount factor for future rewards



Statement of Learning Problem

• We have a target function to learn π : S → A

• We have no training examples of the form 〈s, a〉

• We have training examples of the form 〈〈s, a〉, r〉

(rewards can be any real number)

7

immediate reward values r(s,a)



Policies

• There are many possible policies, of course not 
necessarily optimal, i.e., with maximum expected reward

• There can be also several OPTIMAL policies.
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Value Function

• For each possible policy π, define an evaluation function 
over states (deterministic world)
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where rt, rt+1,... are generated by following policy π
starting at state s

• Learning task: Learn OPTIMAL policy

π* ≡ argmaxπV
π(s), (∀s)

=0i



Learn Value Function

• Learn the evaluation function Vπ* - V*.

• Select the optimal action from any state s, i.e., have an 
optimal policy, by using V* with one step lookahead:
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Optimal Value to Optimal Policy

A problem:

• This works well if agent knows δ : S × A → S, and 

π*(s) = argmaxa[r(s,a) + γV*(δ(s,a))]
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• This works well if agent knows δ : S × A → S, and 
r : S × A → ℜ

• When it doesn’t, it can’t choose actions this way



Q Function

• Define new function very similar to V*

Q(s,a) ≡ r(s,a) + γV*(δ(s,a))

Learn Q function – Q-learning
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• If agent learns Q, it can choose optimal action even 
without knowing δ or r.
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Q-Learning

Note that Q and V* are closely related:

Which allows us to write Q recursively as
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Q-learning actively generates examples.
It “processes” examples by updating its Q values.
While learning, Q values are approximations.

( ) ( ) ( )( )
( ) ( )asQasr

asVasrasQ

ta
tt

tttttt

′+=

+=

+′

∗

,max,

,,    ,

1
γ

δγ



Training Rule to Learn Q

Let Q denote current approximation to Q.

Then Q-learning uses the following training rule:

where s′ is the state resulting from applying action a in state 

ˆ

( ) ( )asQrasQ a
′′+← ′ ,ˆmax,ˆ γ
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where s′ is the state resulting from applying action a in state 
s,

and r is the reward that is returned.



Example - Updating Q̂
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Q Learning for Deterministic Worlds

For each s, a initialize table entry Q(s,a) ← 0

Observe current state s

Do forever:

• Select an action a and execute it

• Receive immediate reward r

ˆ
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• Receive immediate reward r

• Observe the new state s′

• Update the table entry for Q(s,a) as follows:

• s ← s′

ˆ
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Q Learning Iterations

Starts at bottom left corner – moves clockwise around perimeter;

Initially Q(s,a) = 0; γ = 0.8
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( ) ( )asQrasQ a
′′+← ′ ,ˆmax,ˆ γ



Problem - Deterministic

How many possible policies are there in this 3-state, 2-action 
deterministic world? 

A robot starts in the state Mild. It moves for 4 steps choosing 
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A robot starts in the state Mild. It moves for 4 steps choosing 
actions West, East, East, West. The initial values of its Q-table 
are 0 and the discount factor is γ = 0.5

Initial State: MILD Action: West
New State: HOT

Action: East
New State: MILD

Action: East
New State: COLD

Action: West
New State: MILD

East West East West East West East West East West

HOT 0 0 0 0 5 0 5 0 5 0

MILD 0 0 0 10 0 10 0 10 0 10

COLD 0 0 0 0 0 0 0 0 0 -5



Another Deterministic Example
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Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V, Q by taking expected values
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Nondeterministic Case

Q learning generalizes to nondeterministic worlds

Alter training rule to
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Nondeterministic Example
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Nondeterministic Example

π*(s) = D, for any s= S1, S2, S3, and S4, γ = 0.9.

-------------------------------------------------------------
V∗(S2) = r(S2,D) + 0.9 (1.0 V∗(S2))
V∗(S2) = 100 + 0.9 V∗(S2)
V∗(S2) = 1000.

V∗(S1) = r(S1,D) + 0.9 (1.0 V∗(S2))
V∗(S1) = 0 + 0.9 x 1000
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V∗(S1) = 0 + 0.9 x 1000
V∗(S1) = 900.

V∗(S3) = r(S3,D) + 0.9 (0.9 V∗(S2) + 0.1 V∗(S3))
V∗(S3) = 0 + 0.9 (0.9 x 1000 + 0.1 V∗(S3))
V∗(S3) = 81000/91.

V∗(S4) = r(S4,D) + 0.9 (0.9 V∗(S2) + 0.1 V∗(S4))
V∗(S4) = 40 + 0.9 (0.9 x 1000 + 0.1 V∗(S4))
V∗(S4) = 85000/91.



Nondeterministic Example

What is the Q-value, Q(S2,R)?

Q(S2,R) = r(S2,R) + 0.9 (0.9 V∗(S1) + 0.1 V∗(S2))

Q(S2,R) = 100 + 0.9 (0.9 x 900 + 0.1 x 1000)

Q(S2,R) = 100 + 0.9 (810 + 100)

Q(S2,R) = 100 + 0.9 x 910
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Q(S2,R) = 919.



Discussion

• How should the learning agent use the intermediate Q

values?

– Exploration
– Exploitation

• Scaling up in the size of the state space
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• Scaling up in the size of the state space

– Function approximator (neural net instead of table)
– Generalization 
– Reuse, use of macros
– Abstraction, learning substructure



Ongoing Research

• Partially observable state

• Continuous action, state spaces

• Learn state abstractions

• Optimal exploration strategies

• Learn and use    : S × A → Sδ̂
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• Learn and use    : S × A → S

• Multiple learners - Multi-agent reinforcement learning

δ̂



Summary

• Markov model for state/action transitions.

• Value, policy iteration

• Q-learning

– Deterministic, non-deterministic update rule

• Exploration, exploitation
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• Exploration, exploitation


