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Different Aspects of “Machine Learning”

* Supervised learning

— Classification - concept learning
— Learning from labeled data
— Function approximation

* Unsupervised learning

— Data is not labeled
— Data needs to be grouped, clustered
— We need distance metric

« Control and action model learning

— Learning to select actions efficiently
— Feedback: goal achievement, failure, reward
— Control learning, reinforcement learning



Goal Achievement - Rewards

“Reward” today versus future (promised) reward
Future rewards not worth as much as current.

$100K + $100K + $100K + ...
INFINITE sum

Assume reality ...: discount factor , say v.

$100K + y $100K + y2 $100K + ...
CONVERGES.



Reinforcement Learning Problem
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Stat#eward \ction
Environment
90 a .9
S ———— 97 — Sy
i, '] 2

Goal: Learn to choose actions that maximize

rot yritvy’r,t...,where 0 <y <1



Learning Conditions

« Assume world can be modeled as a Markov Decision
Process, with rewards as a function of state and action.

 Markov assumption:

New states and rewards are a function only of the
current state and action, i.e.,

- Sp1 T 5(St’ at)
_ rt=r(st, at)

» Unknown and uncertain environment:

Functions 0 and » may be nondeterministic and are not
necessarily known to learner.



Control Learning Task

Execute actions in world,
Observe state of world,
Learn action policy n: S — 4

Maximize expected reward

E[rz+ V¥ T Vzrt+2+ ]

from any starting state in S.
— 0 =y <1, discount factor for future rewards



Statement of Learning Problem

 We have a target functiontolearnn: S — 4
« We have no training examples of the form (s, @)
« We have training examples of the form ((s, a), »)

(rewards can be any real number)
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Policies

« There are many possible policies, of course not
necessarily optimal, i.e., with maximum expected reward

* There can be also several OPTIMAL policies.



Value Function

* For each possible policy =, define an evaluation function
over states (deterministic world)

V4 _ 2
Vo(s) =n+m+ 77+

o0

EZVi’?+i

i=0

where r, r,.4,... are generated by following policy =
starting at state s

* Learning task: Learn OPTIMAL policy

n* = argmax_V"(s), (Vs)




Learn Value Function

 Learn the evaluation function V™ - J*.

« Select the optimal action from any state s, i.e., have an
optimal policy, by using V* with one step lookahead:

7Z*(S) = arg max [r(s, a)+ 7V*(5(S, a))]
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Optimal Value to Optimal Policy

n*(s) = argmax [7(s,a) + yV*(0(s,2))]

A problem:

« This works well if agent knows ¢ : S x4 — S, and
r:SxA4A—R

 When it doesn't, it can’t choose actions this way
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0O Function

* Define new function very similar to V*

O(s,a) = r(s,a) + yV(d(s,a))

Learn O function — O-learning

« If agent learns Q, it can choose optimal action even
without knowing o or r.

7Z*(S) = arg max [r(s, a)+ 7V*(5(S, a))]

a

T (S) =argmax Q(s,a)

a
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O-Learning

Note that O and J* are closely related:

vV’ (S) = max Q(S, a')

a

Which allows us to write O recursively as

Q(St,at) = r(st,at)+ Q/V*(é‘(st,at))

— r(Sz"at)_'_ 7/ma2}X Q(sHl,a')

(O-learning actively generates examples.
It “processes” examples by updating its O values.
While learning, O values are approximations.
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Training Rule to Learn 0

Let Q denote current approximation to Q.
Then Q-learning uses the following training rule:

o\

O(s,a) < r+ymax, Q(S’, a')

where s’ is the state resulting from applying action « in state
S,
and r is the reward that is returned.
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Example - Updating é

72 100 90 100
I — I —
R 63 63 R
+81 - +81
aright
Initial state: S, Next state: S,

o\

Q(Slaaright) < 7’+}/maxQ(S2,al)
a

« 0+0.9 max{63,81,100 |
<~ 90
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0O Learning for Deterministic Worlds

For each s, a initialize table entry O(s,a) « 0
Observe current state s

Do forever:

* Select an action a and execute it

* Receive immediate reward r

* QObserve the new state s’

« Update the table entry for Q(s,a) as follows:

N

Q(S, a) —r+ 7 max Q(S', a')

a
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0O Learning lterations

Starts at bottom left corner - moves clockwise around perimeter;
Initially O(s,a) = 0; y=10.8

s —_— 82 83
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o\

O(s,a) < r+ymax, Q(S’, a')

Q(s1.E) Q(s2,E) Q(s3.9) Q4. W)
0 0 0 I+~ Max{Q(sd.loop) }=
10+08.0=10
0 0 r+~ max{Q(sd W), Q(s4 N) } =
0+ 0.8max{10,0}= 8 10
0 r+ v max{Q(s3.W),Q(s3.9)}=
0+0.8max{0.8}=6.4 8 10
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Problem - Deterministic

East

e

How many possible policies are there in this 3-state, 2-action
deterministic world?

A robot starts in the state Mild. It moves for 4 steps choosing
actions West, East, East, West. The initial values of its Q-table
are 0 and the discount factoris y = 0.5

Initial State: MILD Action: West Action: East Action: East Action: West

New State: HOT | New State: MILD | New State: COLD | New State: MILD

East West East West East West East West East West
HOT 0 0 0 0 5 0 5 0 5 0
MILD 0 0 0 10 0 10 0 10 0 10
COLD 0 0 0 0 0 0 0 0 0 -5
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Another Deterministic Example
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Nondeterministic Case

What if reward and next state are non-deterministic?
We redefine V, O by taking expected values

y7(s)

Er+7/rt+1+7/ t+2 ]

o0

E 27/’?“

| =0

O(s,a) = Elr(s.a)+ 7" (5(s.a))
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Nondeterministic Case

0 learning generalizes to nondeterministic worlds

Alter training rule to

N

Qn(S9a)(_ (1—0(n)QAn_1(S,Cl)‘|‘
a, [r + y max Qn_l (S', a')},

1
wherer, = —— ,and s’ = 5(S,a).
1+visitsy, ( S,a)

Q still convergesto Q" (Watkins and Dayan,1992)
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Nondeterministic Example

0.1
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Nondeterministic Example

n*(s) = D, for any s= S1, S2, S3, and S4, y=0.9.

= r(S2,D) + 0.9 (1.0 V*(S2))
= 100 + 0.9 V*(S2)
= 1000.

= r(S1,D) + 0.9 (1.0 V*(S2))
=0+ 0.9 x 1000
= 900.

= r(S3,D) + 0.9 (0.9 v*(S2) + 0.1 V*(S3))
=0+ 0.9 (0.9 x 1000 + 0.1 V*(S3))
= 81000/91.

= r(S4,D) + 0.9 (0.9 vx(S2) + 0.1 V*(S4))
= 40 + 0.9 (0.9 x 1000 + 0.1 V*(S4))
= 85000/91.
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Nondeterministic Example

What is the Q-value, Q(S2,R)?

Q ( ) = r(S2,R) + 0.9 (0.9 v¥(S1l) + 0.1 V*(S2))
Q ( ) = 100 + 0.9 (0.9 x 900 + 0.1 x 1000)
Q(s2,R) = 100 + 0.9 (810 + 100)

Q ( ) = 100 + 0.9 x 910

Q ( ) = 919.
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Discussion

 How should the learning agent use the intermediate O
values?

— Exploration
— Exploitation

« Scaling up in the size of the state space

— Function approximator (neural net instead of table)
— Generalization

— Reuse, use of macros

— Abstraction, learning substructure
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Ongoing Research

Partially observable state
Continuous action, state spaces
Learn state abstractions
Optimal exploration strategies
Learn and use 5:S x4 — S

Multiple learners - Multi-agent reinforcement learning
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Summary

Markov model for state/action transitions.
Value, policy iteration

Q-learning

— Deterministic, non-deterministic update rule

Exploration, exploitation
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