
Reinforcement Learning

Manuela VelosoManuela Veloso
see “Machine Learning” – Tom Mitchell,

chapter 13 on RL

15-381, Fall 2009

Different Aspects of “Machine Learning”

• Supervised learning

– Classification - concept learning
– Learning from labeled data
– Function approximation

• Unsupervised learning

– Data is not labeled

2

– Data is not labeled
– Data needs to be grouped, clustered
– We need distance metric

• Control and action model learning

– Learning to select actions efficiently
– Feedback: goal achievement, failure, reward
– Control learning, reinforcement learning

Goal Achievement - Rewards

• “Reward” today versus future (promised) reward

• Future rewards not worth as much as current.

• $100K + $100K + $100K + ...

INFINITE sum

• Assume reality ...: discount factor , say γ.

3

• Assume reality ...: discount factor , say γ.

• $100K + γ $100K + γ2 $100K + ...

CONVERGES.

Reinforcement Learning Problem

4

Goal: Learn to choose actions that maximize

r0 + γr1 + γ2r2 + ... , where 0 ≤ γ < 1

Learning Conditions

• Assume world can be modeled as a Markov Decision
Process, with rewards as a function of state and action.

• Markov assumption:
New states and rewards are a function only of the
current state and action, i.e.,

– s = δ(s , a)

5

– st+1 = δ(st, at)

– rt = r(st, at)

• Unknown and uncertain environment:

Functions δ and r may be nondeterministic and are not

necessarily known to learner.

Control Learning Task

• Execute actions in world,

• Observe state of world,

• Learn action policy π : S → A

• Maximize expected reward

6

E[rt + γrt+1 + γ2rt+2 + ...]

from any starting state in S.

– 0 ≤ γ < 1, discount factor for future rewards

Statement of Learning Problem

• We have a target function to learn π : S → A

• We have no training examples of the form 〈s, a〉

• We have training examples of the form 〈〈s, a〉, r〉

(rewards can be any real number)

7

immediate reward values r(s,a)

Policies

• There are many possible policies, of course not
necessarily optimal, i.e., with maximum expected reward

• There can be also several OPTIMAL policies.

8

Value Function

• For each possible policy π, define an evaluation function
over states (deterministic world)

()

∑
∞

=

+

++

≡

+++≡

0

1
2

1 ...

i

it
i

ttt

r

rrrsV

γ

γγπ

9

where rt, rt+1,... are generated by following policy π
starting at state s

• Learning task: Learn OPTIMAL policy

π* ≡ argmaxπV
π(s), (∀s)

=0i

Learn Value Function

• Learn the evaluation function Vπ* - V*.

• Select the optimal action from any state s, i.e., have an
optimal policy, by using V* with one step lookahead:

() () ()()[]asVasrs
a

,,maxarg
** δγπ +=

10

Optimal Value to Optimal Policy

A problem:

• This works well if agent knows δ : S × A → S, and

π*(s) = argmaxa[r(s,a) + γV*(δ(s,a))]

11

• This works well if agent knows δ : S × A → S, and
r : S × A → ℜ

• When it doesn’t, it can’t choose actions this way

Q Function

• Define new function very similar to V*

Q(s,a) ≡ r(s,a) + γV*(δ(s,a))

Learn Q function – Q-learning

12

• If agent learns Q, it can choose optimal action even
without knowing δ or r.

() () ()()[]

()),(maxarg

,,maxarg

*

**

asQs

asVasrs

a

a

=

+=

π

δγπ

Q-Learning

Note that Q and V* are closely related:

Which allows us to write Q recursively as

() ()asQsV
a

′=
′

∗ ,max

13

Q-learning actively generates examples.
It “processes” examples by updating its Q values.
While learning, Q values are approximations.

() () ()()
() ()asQasr

asVasrasQ

ta
tt

tttttt

′+=

+=

+′

∗

,max,

,, ,

1
γ

δγ

Training Rule to Learn Q

Let Q denote current approximation to Q.

Then Q-learning uses the following training rule:

where s′ is the state resulting from applying action a in state

ˆ

() ()asQrasQ a
′′+← ′ ,ˆmax,ˆ γ

14

where s′ is the state resulting from applying action a in state
s,

and r is the reward that is returned.

Example - Updating Q̂

15

() ()

{ }
90

 100 ,81 ,63 max 9.0 0

,ˆ
max ,ˆ

21

←

+←

′+←
′

asQrasQ
a

right γ

Q Learning for Deterministic Worlds

For each s, a initialize table entry Q(s,a) ← 0

Observe current state s

Do forever:

• Select an action a and execute it

• Receive immediate reward r

ˆ

16

• Receive immediate reward r

• Observe the new state s′

• Update the table entry for Q(s,a) as follows:

• s ← s′

ˆ

() ()asQrasQ
a

′′+←
′

,ˆ
max,ˆ γ

Q Learning Iterations

Starts at bottom left corner – moves clockwise around perimeter;

Initially Q(s,a) = 0; γ = 0.8

17

() ()asQrasQ a
′′+← ′ ,ˆmax,ˆ γ

Problem - Deterministic

How many possible policies are there in this 3-state, 2-action
deterministic world?

A robot starts in the state Mild. It moves for 4 steps choosing

18

A robot starts in the state Mild. It moves for 4 steps choosing
actions West, East, East, West. The initial values of its Q-table
are 0 and the discount factor is γ = 0.5

Initial State: MILD Action: West
New State: HOT

Action: East
New State: MILD

Action: East
New State: COLD

Action: West
New State: MILD

East West East West East West East West East West

HOT 0 0 0 0 5 0 5 0 5 0

MILD 0 0 0 10 0 10 0 10 0 10

COLD 0 0 0 0 0 0 0 0 0 -5

Another Deterministic Example

19

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V, Q by taking expected values

() []rrrEsV ttt ... 2
2

1 γγπ



+++≡

∑
∞

++

20

() () ()()[]asVasrEasQ

rE

i

it
i

,, ,

*

0

δγ

γ

+≡














≡ ∑

=

+

Nondeterministic Case

Q learning generalizes to nondeterministic worlds

Alter training rule to

() () ()

() ,,ˆmax

 ,ˆ1 ,ˆ

1n

1

asQr

asQasQ

n

nnn

γα

α





 ′′+

+−←

−

−

21

()

()
()

1992) Dayan, and (Watkins toconverges still ˆ

., and , where

,,max

*

,1

1

1n

QQ

ass

asQr

asnvisitsn

n
a

δα

γα

=′=


′′+

+

−
′

Nondeterministic Example

22

Nondeterministic Example

π*(s) = D, for any s= S1, S2, S3, and S4, γ = 0.9.

V∗(S2) = r(S2,D) + 0.9 (1.0 V∗(S2))
V∗(S2) = 100 + 0.9 V∗(S2)
V∗(S2) = 1000.

V∗(S1) = r(S1,D) + 0.9 (1.0 V∗(S2))
V∗(S1) = 0 + 0.9 x 1000

23

V∗(S1) = 0 + 0.9 x 1000
V∗(S1) = 900.

V∗(S3) = r(S3,D) + 0.9 (0.9 V∗(S2) + 0.1 V∗(S3))
V∗(S3) = 0 + 0.9 (0.9 x 1000 + 0.1 V∗(S3))
V∗(S3) = 81000/91.

V∗(S4) = r(S4,D) + 0.9 (0.9 V∗(S2) + 0.1 V∗(S4))
V∗(S4) = 40 + 0.9 (0.9 x 1000 + 0.1 V∗(S4))
V∗(S4) = 85000/91.

Nondeterministic Example

What is the Q-value, Q(S2,R)?

Q(S2,R) = r(S2,R) + 0.9 (0.9 V∗(S1) + 0.1 V∗(S2))

Q(S2,R) = 100 + 0.9 (0.9 x 900 + 0.1 x 1000)

Q(S2,R) = 100 + 0.9 (810 + 100)

Q(S2,R) = 100 + 0.9 x 910

24

Q(S2,R) = 919.

Discussion

• How should the learning agent use the intermediate Q

values?

– Exploration
– Exploitation

• Scaling up in the size of the state space

25

• Scaling up in the size of the state space

– Function approximator (neural net instead of table)
– Generalization
– Reuse, use of macros
– Abstraction, learning substructure

Ongoing Research

• Partially observable state

• Continuous action, state spaces

• Learn state abstractions

• Optimal exploration strategies

• Learn and use : S × A → Sδ̂

26

• Learn and use : S × A → S

• Multiple learners - Multi-agent reinforcement learning

δ̂

Summary

• Markov model for state/action transitions.

• Value, policy iteration

• Q-learning

– Deterministic, non-deterministic update rule

• Exploration, exploitation

27

• Exploration, exploitation

