Reinforcement Learning

Manuela Veloso

see "Machine Learning" – Tom Mitchell, chapter 13 on RL

15-381, Fall 2009

Different Aspects of "Machine Learning"

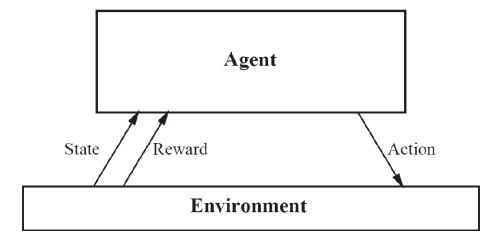
• Supervised learning

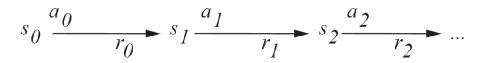
- Classification concept learning
- Learning from labeled data
- Function approximation
- Unsupervised learning
 - Data is not labeled
 - Data needs to be grouped, clustered
 - We need distance metric
- Control and action model learning
 - Learning to select actions efficiently
 - Feedback: goal achievement, failure, reward
 - Control learning, reinforcement learning

Goal Achievement - Rewards

- "Reward" today versus future (promised) reward
- Future rewards not worth as much as current.
- \$100K + \$100K + \$100K + ...
 INFINITE sum
- Assume reality ...: discount factor , say γ .
- \$100K + γ \$100K + γ² \$100K + ...
 CONVERGES.

Reinforcement Learning Problem





Goal: Learn to choose actions that maximize $r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$, where $0 \le \gamma < 1$

Learning Conditions

- Assume world can be modeled as a Markov Decision Process, with rewards as a function of state and action.
- Markov assumption: New states and rewards are a function only of the current state and action, i.e.,

$$- s_{t+1} = \delta(s_t, a_t)$$

$$- r_t = r(s_t, a_t)$$

• Unknown and uncertain environment: Functions δ and r may be nondeterministic and are not necessarily known to learner.

Control Learning Task

- Execute actions in world,
- Observe state of world,
- Learn action policy $\pi : S \rightarrow A$
- Maximize expected reward

$$E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ...]$$

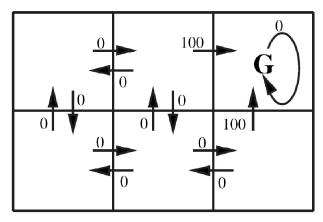
from any starting state in S.

 $-0 \le \gamma < 1$, discount factor for future rewards

Statement of Learning Problem

- We have a target function to learn $\pi : S \to A$
- We have **no** training examples of the form $\langle s, a \rangle$
- We have training examples of the form $\langle \langle s, a \rangle, r \rangle$

(rewards can be *any* real number)



immediate reward values r(s,a)

- There are *many possible* policies, of course not necessarily *optimal*, i.e., with maximum expected reward
- There can be also *several OPTIMAL* policies.

Value Function

 For each possible policy π, define an *evaluation function* over states (deterministic world)

$$V^{\pi}(s) \equiv r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+1} + \dots$$
$$\equiv \sum_{i=0}^{\infty} \gamma^{i} r_{t+i}$$

where r_t , r_{t+1} ,... are generated by following policy π starting at state *s*

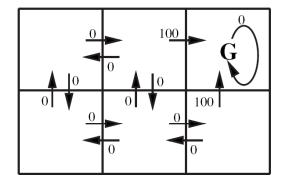
• Learning task: Learn OPTIMAL policy

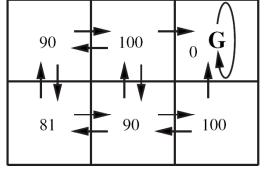
 $\pi^* \equiv \operatorname{argmax}_{\pi} V^{\pi}(s), \, (\forall s)$

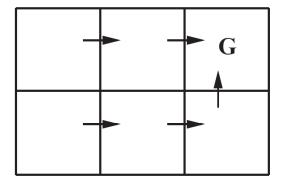
Learn Value Function

- Learn the evaluation function $V^{\pi*} V^*$.
- Select the optimal action from any state s, i.e., have an optimal policy, by using V* with one step lookahead:

$$\pi^*(s) = \arg\max_{a} \left[r(s,a) + \gamma V^*(\delta(s,a)) \right]$$







rewards

 $V^*(s)$ values

ONE optimal policy

Optimal Value to Optimal Policy

$$\pi^*(s) = \operatorname{argmax}_a[r(s,a) + \gamma V^*(\delta(s,a))]$$

A problem:

- This works well if agent knows $\delta : S \times A \rightarrow S$, and $r : S \times A \rightarrow \Re$
- When it doesn't, it can't choose actions this way

Q Function

• Define new function very similar to V^*

$$Q(s,a) \equiv r(s,a) + \gamma V^*(\delta(s,a))$$

Learn *Q* function – *Q*-learning

• If agent learns Q, it can choose optimal action even without knowing δ or r.

$$\pi^*(s) = \arg\max_a \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$
$$\pi^*(s) = \arg\max_a Q(s, a)$$

Q-Learning

Note that Q and V^* are closely related:

$$V^*(s) = \max_{a'} Q(s, a')$$

Which allows us to write Q recursively as

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t))$$

= $r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$

Q-learning actively generates examples. It "processes" examples by updating its *Q* values. *While* learning, *Q* values are approximations.

Training Rule to Learn *Q*

Let \hat{Q} denote current approximation to Q.

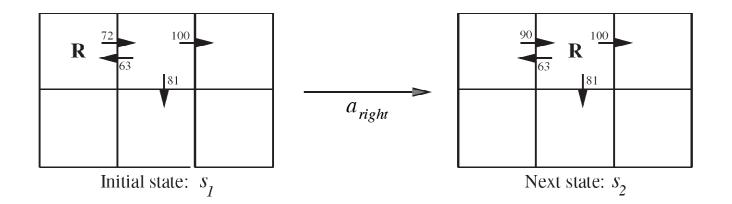
Then Q-learning uses the following training rule:

$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$$

where s' is the state resulting from applying action a in state s,

and r is the reward that is returned.

Example - Updating \hat{Q}



$$\hat{Q}(s_1, a_{right}) \leftarrow r + \gamma \max_{a'} \hat{Q}(s_2, a')$$

$$\leftarrow 0 + 0.9 \max\{63, 81, 100\}$$

$$\leftarrow 90$$

Q Learning for Deterministic Worlds

For each *s*, *a* initialize table entry $\hat{Q}(s,a) \leftarrow 0$

Observe current state *s*

Do forever:

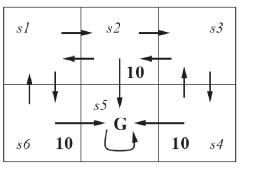
- Select an action *a* and execute it
- Receive immediate reward r
- Observe the new state s'
- Update the table entry for $\hat{Q}(s,a)$ as follows:

$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$$

• $s \leftarrow s'$

Q Learning Iterations

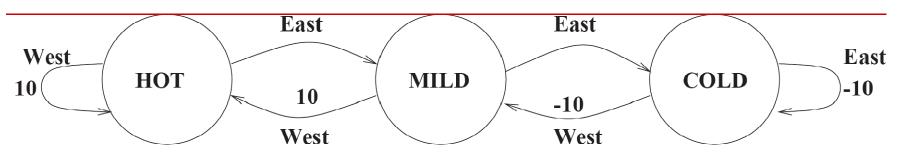
Starts at bottom left corner – moves clockwise around perimeter; Initially Q(s,a) = 0; $\gamma = 0.8$



$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$$

Q(\$1,E)	Q(\$2,E)	Q(\$3,\$)	Q(\$4,W)
0	0	0	$r + \gamma \max{Q(s5,loop)} =$
			10 + 0.8 . 0 = 10
0	0	$r + \gamma \max{Q(s4,W),Q(s4,N)} =$	
		0 + 0.8 max{10,0}= 8	10
0	$r + \gamma \max{Q(s3,W),Q(s3,S)} =$		
	$0 + 0.8 \max\{0.8\} = 6.4$	8	10

Problem - Deterministic

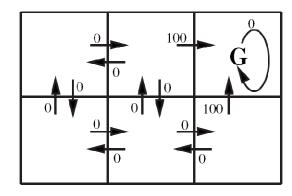


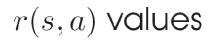
How many possible **policies** are there in this 3-state, 2-action deterministic world?

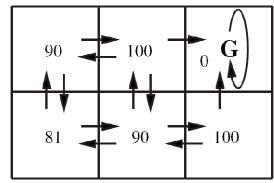
A robot starts in the state Mild. It moves for 4 steps choosing actions **West, East, East, West**. The initial values of its Q-table are 0 and the discount factor is $\gamma = 0.5$

	Initial State: MILD		Action: West New State: HOT		Action: East New State: MILD		Action: East New State: COLD		Action: West New State: MILD	
	East	West	East	West	East	West	East	West	East	West
НОТ	0	0	0	0	5	0	5	0	5	0
MILD	0	0	0	10	0	10	0	10	0	10
COLD	0	0	0	0	0	0	0	0	0	-5

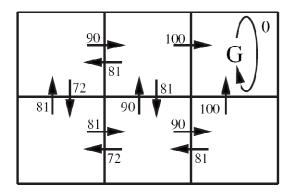
Another Deterministic Example



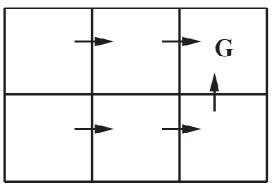




 $V^*(s)$ values



Q(s,a) values



One optimal policy

Nondeterministic Case

What if reward and next state are non-deterministic? We redefine V, Q by taking expected values

$$V^{\pi}(s) \equiv E\left[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \dots\right]$$
$$\equiv E\left[\sum_{i=0}^{\infty} \gamma^{i} r_{t+i}\right]$$

$$Q(s,a) \equiv E[r(s,a) + \gamma V^*(\delta(s,a))]$$

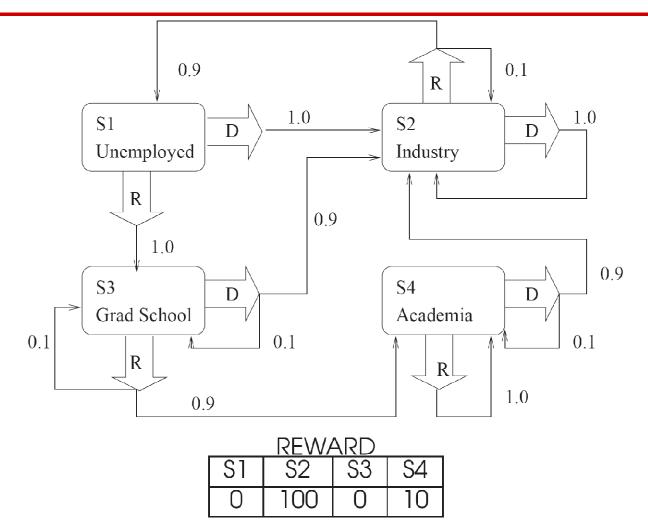
Nondeterministic Case

Q learning generalizes to nondeterministic worlds Alter training rule to

$$\hat{Q}_{n}(s,a) \leftarrow (1-\alpha_{n})\hat{Q}_{n-1}(s,a) + \alpha_{n} \left[r + \gamma \max_{a'} \hat{Q}_{n-1}(s',a')\right],$$

where
$$\alpha_n = \frac{1}{1 + visits_n(s,a)}$$
, and $s' = \delta(s,a)$.
 \hat{Q} still converges to Q^* (Watkins and Dayan, 1992)

Nondeterministic Example



Nondeterministic Example

```
\pi^*(s) = D, for any s = S1, S2, S3, and S4, \gamma = 0.9.
V*(S2) = r(S2, D) + 0.9 (1.0 V*(S2))
V*(S2) = 100 + 0.9 V*(S2)
V*(S2) = 1000.
V*(S1) = r(S1, D) + 0.9 (1.0 V*(S2))
V*(S1) = 0 + 0.9 \times 1000
V*(S1) = 900.
V*(S3) = r(S3, D) + 0.9 (0.9 V*(S2) + 0.1 V*(S3))
V*(S3) = 0 + 0.9 (0.9 \times 1000 + 0.1 V*(S3))
V*(S3) = 81000/91.
V*(S4) = r(S4, D) + 0.9 (0.9 V*(S2) + 0.1 V*(S4))
V*(S4) = 40 + 0.9 (0.9 \times 1000 + 0.1 V*(S4))
V*(S4) = 85000/91.
```

Nondeterministic Example

What is the Q-value, Q(S2,R)?

$$Q(S2,R) = r(S2,R) + 0.9 (0.9 V*(S1) + 0.1 V*(S2))$$

 $Q(S2,R) = 100 + 0.9 (0.9 \times 900 + 0.1 \times 1000)$

- Q(S2,R) = 100 + 0.9 (810 + 100)
- $Q(S2,R) = 100 + 0.9 \times 910$

Q(S2, R) = 919.

Discussion

- How should the learning agent use the *intermediate Q* values?
 - Exploration
 - Exploitation
- Scaling up in the size of the state space
 - Function approximator (neural net instead of table)
 - Generalization
 - Reuse, use of macros
 - Abstraction, learning substructure

Ongoing Research

- Partially observable state
- Continuous action, state spaces
- Learn state abstractions
- Optimal exploration strategies
- Learn and use $\hat{\delta}: S \times A \to S$
- Multiple learners Multi-agent reinforcement learning

Summary

- Markov model for state/action transitions.
- Value, policy iteration
- Q-learning
 - Deterministic, non-deterministic update rule
- Exploration, exploitation