


K-means Clustering: Step 1
Algorithm: K-means, Distance Metric: Euclidean Distance
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Review from last lecture



K-means Clustering: Step 2

Algorithm: K-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 3

Algorithm: K-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 4

Algorithm: K-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 5

Algorithm: K-means, Distance Metric: Euclidean Distance
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Linear Separators
(Russell and Norvig Chapter 20.6)




Two-Dimensional
Learning Problem
A X2

Back to standard machine learning problem. 2 dimensions (2 attributes, x1 and x2).
2 classes (red and blue). A classifier would classify each point as red or blue.

The points are clearly linearly separable (blue can be separated from red with a line)



Perceptron Learning

W, = g(x) =
X In
> 0 if x<0

7 2 | 1if x20
XZ W2= [

Outputs 1 exactly when:

1. Pick some weights
arbitrarily




Perceptron Learning

W1 =1 g(x) =
X In
> 0 if x<0
7 2 | 1ifx20
XZ W2 —

Outputs 1 exactly when:

1. Pick some weights
arbitrarily
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Perceptron Learning

g(x) =
0 if x<0
1 if x20

Outputs 1 exactly when:
(-1)(0.5) + x,(1) + x,(1) 2 0

1. Pick some weights
arbitrarily
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Perceptron Classifier

N L OAX2

Outputs 1 exactly when: 1 )
(-1)(0.5) + x4(1) +x(1) 20

This is how the perceptron with the initial weights will classify points. Points above
the line are classified as 1.

Not very surprising that this isn't very good, as we randomly set the weights
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Perceptron Learning 1. Pick some weights

arbitrarily

2. Feed examples

=1
70N - one by one and
xvjo =0.5 update the weights
W according to:
= . x) = : : ) _
X4 1\) in Ogl(f )Z<0 W;W;+a(y - out)x;
/ Z 1 if x>0 (We will use o = 0.1)
XZ W2 —

Outputs 1 exactly when:

The algorithm we showed you last time needs to take the derivative of g. Here, g
does not have a derivative. For now, we will just ignore that.



Perceptron Classifier

A X2
W, + x.W., >0 \ ®* 1 ¢ o

W, + W, + x, W,
W,=0.5
W, =1
W, =1

<
Update weights:

W;W;+a(y - out)x;
W,<Wy+a(0 - 1)(-1) = 0.6

W . W\ a~iD A2\ =07
W < v T OV 1[\Vv) Vi

W,<W,+a(0 - 1)(2) = 0.8

So here’s what’s happening in a perceptron with those weights.

Picked a mislabeled point, and update the weights
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Yo * X T XoW,
W, = 0.6
W, =0.7
W, =0.8

Perceptron Classifier

A X2
,w,+xwzg\ °* 1 (G) o
A 4

Update weights:
W;W;+a(y - out)x;
W,<Wy+a(0 - 1)(-1) = 0.7

W . W\ a~iD_ AN\ =0 E
W < v T OV 1J\&«) V.J

W,<W,+a(0 - 1)(5) = 0.3

Pick another mislabeled point, update weights again
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Perceptron Classifier

\ Xz

W, + X, W, + X, W, 2 0 OO
W, =0.7

W, =0.5

W,=0.3

Update weights:
W;W;+a(y - out)x;

W, <W,+o(0 - 1)(-1) = 0.8

\AJ &« \l\l .|.~ln 1A =D 1
W < v T OV IJ\"7] = V.1

W,<W,+a(0 - 1)(5) = -0.2

And again...
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Perceptron Classifier

. MX2
Wy + X, W, + X, W, 20 T o @
W, =0.8 1 .
W, = 0.1
W, =-0.2

Note that each time we pick a blue point essentially nothing happens.



After Many Iterations
e /

Note: w0 could only ever change by alpha. If alpha is too small, it will move too
slow. If alpha is too big, you might not have the resolution to find the answer.
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How does a affect
the learning?
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Many Possible Separators
A X2 [/

All these lines separate red from blue. But is one better than the other?
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Which is Best?

<€
Each direction S\,// °
(slope) has a v

“margin”
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Which is Best?

Each direction S
(slope) has a v
“margin”
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Which is Best?

:4: X2 //

Each direction
(slope) has a
“margin”
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Idea: Maximizing Margin

Find the direction | AX2 A
with the largest 1
margin and put
the separator in °

the middle °

<€ i >
/k °® X4
The points that the 1 .
margin pushes A o
against are called 1 °
“support vectors” v

Pick the direction with the largest margin, and then put the separator in the middle
of the margin. There is a pretty efficient algorithm to find this separator (but the
algorithm is a bit mathy to present here)

When the data is not linearly separable then there’s a thing called “soft margin” you
can look at.

The points on the dotted line are considered the “support vectors”
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Given all the examples,
the margin can be
maximized efficiently
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One-Dimensional Learning

1 il L L
- T Il ‘l |‘-.
=1 w,=7
\ in g(x) =
0 if x<0
Mﬁ 2 [ 1ifx20

nll‘“ll‘ﬂ ‘ \Y ¥ ~ -
JULPULO 1 WiliCll.

Perceptron will
approach from one
side and stop when
all examples are
classified correctly

Running a perceptron on this data
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One-Dimensional Learning

A

\ ;

The maximum margin separator
will be between the two “support
vectors”

27



One-Dimensional Learning

The data isn'’t linearly separable. Boo.
How can we make this data linearly separable?



Mapping These Data to 2 Dimensions
Makes it Linearly Separable!

We can use a perceptron or a
“support vector” algorithm to

. . . . I . 2
learn this in 2 dimensions. 1 X = X4

But you can make it linearly separable by using a transformation . For example,
you can make points (x1, x1/2).

By mapping the one dimensional examples to higher dimensions you can make
them linearly separable!



How to do the mapping?

4

N
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How to do the mapping?
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Oh hey check this out mapping to higher dimensions is actually a pretty good idea.
The trick is just choosing how to map it.



This works in higher dimensions:
http://Iwww.youtube.com/watch?v=3liCbRZPrZA

This is very pretty, watch it!

32



Demo:
http://[svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml
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