Neural Networks
(Russell and Norvig Chapter 20.5)

Decision trees are used a little, neural Networks a used quite a bit

Brain works pretty well, we should be able to make an algorithm that emulates the
brain that also works well!



The Learning Problem

Given a set of points and labels:
(3.9, 2380, Mt. Lebanon) —»> A

(3.2, 1930, Alderdice) > B

Build a classifier C that can accurately
predict the label of new points:

W
($)}

~7
“l

such that

A0nn PSR WAy Ty |
y 14UV, A0IMMe oCNnool) =D

[

he classifier has “low error”

These points can be *very* high dimensional. For, example the points above (GPA,
SAT, HS) could be (GPA, SAT, HS, PlaysTennis, PlaysPiano, PlaysFootball,
PlaysClarinet, LikedZombieland...).

The admissions department can learn to predict your GPA! Each admitted student
is a vector of attributes, and the output is their GPA when they graduate.



Dendrites )

P

/

o> e
0

Cell body \/ S —

A neuron. Has inputs (dendrites) and outputs (axon). Some inputs are positive

(make it more likely the neuron will fire), and some are negative (make it less likely
the neuron will fire)

Lots of neurons in your brain.



Mathematical Model of Neuron

%,i a, = g(in,) Output
\ N Links
in J
7l
Activation Qutput

N -

| -
I Uulriviivili ruricCuolIl

Links

a; = g(zwj,iaj)

Wij is the weight from neuron i to neuron j
Activation function g is a function of the weighted sum of the input neurons

A0 doesn't come from another neuron, rather it is the bias. Bias is a constant factor
and determines how much input it takes for the neuron to fire. “How hard is it to
make the neruon fire”



Example

— 3= i g(x) =
(=l = y | 0if x<o

1if x=20

in, = (-1)(0.25) + (1)(0.5) + (0)(-1) = 0.25

The in3 is the weighted sum of all the inputs to the neuron



Example

— 3= i g(x) =
(=l = 3 | 0ifx<0

1if x=20

in, = (-1)(0.25) + (1)(0.5) + (1)(-1) = -0.75




Activation Function g

Threshold Sigmoid

A A

+1 G +1

\ 4
v

——l)
[oifx<o0

= = 1/(1+e*
g =9 1 50 g(x) = 1/(1+e>)

We can *always* center this at 0, because of the bias term. Note if we didn’t have
bias (b) we’d just have it centered at whatever the bias was.

Threshold activation functions are very common.

The sigmoid is continuous and differentiable. This is really nice, as we will see later.
These two functions are very similar...almost always practically equal

We are assuming all neurons use the same activation function



Y: =0.5
W, =1 -
g(x) =
> gifx<o
/7 1 if x=20
W, =1

OR is like adding— you need at least one.



YF 1.5
W, =1 -
g(x) =
> gifx<o
/7 1 if x=20
W, =1

Here you need both.



g(x) =
0 if x<0
1if x=20

Try to make an XOR. Actually, you can’t, and we’ll tell you why later.

10



Neural Networks

\AJ p—
'V1 3

—>| 1 > 3 N W5
Wi,
5
W,,
—> 2 4 W,

11



Feed-Forward Versus
Cyclic Networks

v v v v

2 1 2 1

Feed forward neural networks do not have any cycles.

Cycles make things much more difficult. With cycles whether 4 fires or not would
potentially not converge. Luckily we almost always do feed forward neural networks

12



Terminology

—>

3 NW;;

13



Terminology

14



Terminology
|

Input
Units

Hidden
Units

Output
Units

15



Single Layer Feed-Forward
NNs (Perceptrons)

Only one layer of weights. Slightly confusing name, as there are two layers of
neurons (the input layer and the output layer.

16



Single Layer Feed-Forward
NNs (Perceptrons)

1

2

3

e

Only need to analyze with a single output unit.

17



What functions can
be represented by a
perceptron?

18



The Majority Function

Outputs 1 if and only if at least half of its
n inputs are 1:

-1
Y::n/z
W, =1
Wi=1_~>
,'/ \/

=1

n

If this were a decision tree, it'd have to be really big. Isn’t that nice?

19



A threshoid preceptron returns 1 if and only if:
n

Zijj >0

=0

20



WX>0

This equation defines a half space, so the
perceptron returns 1 if and only if the
input is on one side of a hyperplane

A threshoid preceptron returns 1 if and only if:

A vector of weights dot product with a vector of inputs.

21



Functions represented by a perceptron

linearly separable

X4 X4 X4
1 ® 1 o 1 O
?
0 0 0
0 1 X2 0 1 X2 0 1 X2
X, and x, X4 OF X, X4 XOrF X,

Linearly separable means all negative and positive examples can be separated by a
line (in higher dimensions, separable by a hyperplane)

And *this* is why you can’t do XOR, as it is not linearly separable. Therefore a
single threshold perceptron cannot do XOR

However, if you have multiple perceptrons, you can do a lot more.



Learning in Perceptrons

Learning algorithm that will fit a threshold
perceptron to any linearly separabie function

Idea: adjust the weights to minimize some
notion of error

We will use the notion of squared error

For a single example with input x and true
outputy:

E = (1/2)Err? = (1/2)(y — hyy(x))?
Where h(x) is the output of the perceptron

We’re doing local search on the weights, trying to minimize the squared error.

23



Minimizing Squared Error
Recall that: E = (1/2)Err2 = (1/2)(y — hy(x))?

E E
0 =Errxa rr

oW, oW,

n
= Err x y- 9(2 W, xy)
k=0

j

= -Err x g'(in) x Xx;

Perceptron learning rule:

W, < W, + a x Err x g'(in) x x;

We can derive the equation to minimize the squared error. If the error (not squared
error) is positive, we’'ll make the weight increase. If the error is negative (you're
overshooting), you decrease the weights.

This is why using a g which has continuous partial derivatives in respect to the
weights is useful.

The black box tells you how to update the weights when learning. ¢'is the
derivative of g.



With a single sufficiently large hidden layer
can represent any continuous function with
arbitrary accuracy

BIG QUESTION: What structure to use for a
given problem?

Hidden layer is the layer between the input layer and the output layer.

Just guess a structure.

Often people guess a structure, learn the weights, then go back and revise if the

error is bad.

Structure learning is another interesting problem.

25



Learning Weights

T Wiz 7\ Was 7\

X =—>1 3 5 as

W1 4 W3,6

W>s W, s
X,=—>| 2 W 4 vy 6 ag

24 4,6

Tha arrar will nAaw ha a vantar Evr=/(u _a v _a )
11IC C1101 wiil 110vw @ a veUwOr. =ii \Y1-95, yo-<dgJ

We will treat each component separately, so let
Err; be the component associated with a;

26



Learning Weights

x1 # 1
W1,4 W3,6
W2,3 W4,5
X, =—>| 2 4

W, /:'3\ W3,55\5\

ag

Ag = Errs x g'(ing)

6

W2,4 W4,6

6

The output unit is like a perceptpon, so we
update its weight iike we did fyr percepirons:

W;5 W;5+ax

Err; x g'(ing)

Xa3

W, 5« W, 5+ axErrxg'(ing) x a,

27



Learning Weights
Wi 7N\ W3,55\\

X =—> 1 3 5 as
Wi, W; 6 Ag = Errg x g'(in)
W2,3 W4,5
—>
X2 2 W2,4 4 W4’6 6 aG

The output unit is like a perceptron, so we
update its weight iike we did for perceptrons:
W;5 W;5+ a0 xAgxa,
W s W,s+axA;xa,

28



Learning Weights

_ W1,3 /.\ W3,5 77\
x;=—> 1 3 5 ag
Wi, W; 6 Ag = Errg x g'(in)
W,, W, s
—>
ERESITNa U ag

The output unit is like a perceptron, so we
update its weight iike we did for perceptrons:
W;5 W;5+ a0 xAgxa,
W s W,s+axA;xa,

29



Learning Weights

= Wiz 7\ Was /7N
X1 % 1 3 5 a5
W4 W, As = Errg x g'(ing)
W, W, s Ag = Errg x g'(ing)
—>
X2 2 W24 4 W, J -

The output unit is like a perceptron, so we
update its weight iike we did for perceptrons:
W;6 W6+ 0 xAgxa,
W e WyetaxAgxa,

30



Learning Weights

x;—>| 1 —> 3 (5 a5
W, , W, . Ag = Errg x g'(ing)
Was Vas Ag = Errg x g'(ing)
—
R RIW AU

How do we define the error at unit 3?
Az = g'(in3)(W; sAg + W3 cAg)

W1,3(—W1,3+a><A3><a1 W2,3<—W2,3+axA3xa2

Okay, so since we know what the output of 5 and 6 should have been we can
calculate that easily. But what about unit 3?

31



X1%

Xy =

Learning Weights

_ W1_,3 /.\ W3,5 77\
1 3 5 as
W, , W, . Ag = Errg x g'(ing)
Was W Ag = Errg x g'(ing)
2 4 6 a
W,, 4,6 °

How do we define the error at unit 4?
Ay = g'(Ing) (W, sA5 + W, 6Ag)

Wi Wi taxAyxa;, Wy, W, +axA;xa,

32



Back-Propagation Algorithm

Caoamniita tha A valhiiae far t
vvlllv“lv LIl L “Al Wwe? 1IWVI L

using the observed error

Starting with the output layer, repeat the
following for each layer:

Propagate the A values back to the
previous layer

Update the corresponding weights

This is the back-propagation algorithm. The idea is that you are back-propagating
the errors from the units in the end layers. Then once you can calculate the error,
you can learn the weights.



34



