Decision Trees |l

Revenge of the Entropy

X °
b4
] - X. XX
Decision Tree =
e ©® o
o o
[] .O
- X_xo
e xXX
xx
e ® o
e o
[} .0
|
X Py
¥. Rxx
xx
X °
b 4
[x xx
xX
[]
xx

Note we’re working with continuous splits here, which is an interesting problem we
covered in the last lecture.

Pure and Impure Leaves and
When to Stop Splitting

*
*

,; x All data in node comes from one class:
x x We declare the node to be a leaf and

x stop splitting. Leaf will output the class
X of the data it contains

Ki Data points have exactly the same
attributes even though they are from
¥ u different classes:

VWe cannot spiit any further. We siiii
declare the node to be a leaf, but it
outputs the class that is the majority of
the classes in the node

What if points have exactly same classes? Output whichever is the majority. If
there’s no majority, you could fip a coin, or just pick a “default” class.

DT Algorithm (Continuous Attributes)

LearnTree(X,Y)
* Input:

— Qat Y of Rtrainina vactare aach containina
SSU A O X raining veciors, eacn conaining ine va:u

(X45--sXy) Of M attributes (X,..,X})
— A vector Y of R elements, where y;= class of the jt" datapoint

+ If all the datapoints in X have the same class value y, return a
leaf node that predicts y as output

+ If all the datapoints in X have the same attribute value (x,..,xy),
return a leaf node that predicts the majority of the class values
in Y as output

* Try all the possible attributes X; and threshold t and choose the
one, j* for which IG(Y|Xj,t) is maximum

X, Y= set of datapoints for which x;. < t and corresponding
classes

* Xy, Yy = set of datapoints for which x;. >= t and corresponding
classes

» Left Child < LearnTree(X,,Y))

* Right Child < LearnTree(X};,Y,)

Decision Trees So Far

* Given R observations from training data, each with M

attributes X and a class attribute V construct a
ALl INUVULWYWY 7Y M ViAWY ALl IVULW L Ivii MWL

sequence of tests (decision tree) to predict the class
attribute Y from the attributes X

+ Basic strategy for defining the tests (“when to split”)
is to maximize the information gain on the training
data set at each node of the tree

* Problems (next):
— The tree will end up being much too big = pruning

— Evaluating the tree on training data is dangerous
(overfitting)

We saw that if we make enough splits, we can pretty much get 100% accuracy (with
some exceptions if points of different classes have the same attributes)

The Overfitting Problem: Example
% I
X

‘'ay!

1IasSs

VY]

—
Class A ==

1

» Suppose that, in an ideal world, class B is
everything such that X, 2 0.5 and class A is
everything with X,< 0.5

* Note that attribute X, is irrelevant
+ Seems like a decision tree would be trivial

The Overfitting Problem: Example

* However, we collect training examples from the
perfect world through some imperfect

Ak AAAA ‘:AI‘ AAI':A,A
UNOSTCIvalivill Ucyviue

» As aresult, the training data is corrupted by
noise

Welcome to the real world, where data is noisy and the answers aren’t in the back
of the book.

Because of the
noise, the resulting
decision tree is far
more complicated
than it should be

The learning
algorithm tries to
classify all of the
training set
perfectly. This is a
fundamental

problem in learning:

overfitting

x | %

xX

The effect of o
overfitting is that RN \
the tree is .
guaranteed to x
classify the training X
data perfectly, butit |- .° \
may do a terrible —
job at classifying
new test data. \
Example: (0.6,0.9) is
classified as ‘A’ x X x °

e ©
[XX

xX

This is not only a noise problem, but a matter of sparse data. Suppose you had one
female age 37 with brown hair and a white blood cell count of X and a family history
of cancer, and she has cancer. Does that mean that any 37-year-old women
brunettes with wbc count X and a family history have cancer?

x X

»~

x

10

x X

»~

x

11

Possible Overfitting Solutions

» Grow tree based on training data
(unpruned tree)

* Prune the tree by removing useless
nodes based on:
— Additional test data (not used for training)
— Statistical significance tests

Training and Test sets are a big deal. You never use all the data to train. Use some
fraction of the data for training, and the other is testing.

When you’re training, you’re automatically going to overfit. Any data sample will
have bias and noise. So you use the test data to test its “real” accuracy.

12

Unpruned decision tree
from training data

Training Data

13

0.8
0.67® d
—se 00 !
0.4} - Y
0.2-: . ¢ .
% 05 1

Training data with the
partitions induced by the
decision tree (Notice the tiny
regions at the top necessary
to correctly classify the ‘A’
outliers!)

Unpruned decision tree
from training data

14

1 -
o.a@, =

&8
0.6/ ®¢—"—» .|-%‘
_-_QJ_' 8 8o
04 s @ P
0.2} @
e ® Training data >
?o 05 . |
. 1
08w * * Unpruned decision tree
” - .
06 £%* % %, | from training d?ta
.4 Testdata 4| Performance (%
04t & o ° o correctly classified)
0.2l ° * o o Training: 100%
® . e © Test: 77.5%
% ¢ s

Oh hey we have 100% accuracy, awesome! Oh wait.

15

1 2
8
0.8——e —
0.6r®¢——e ﬁ
o T ® %y,
0.4} e o ®
0.2 o ®
e ® Training data °
?o 05 1
- ' |
0.8 * -
Rl " » . Pruned decision tree
06w #%* % = from training data
.4 Testdata 4 Parfarmance (.
04 ;. "'A I Clriviiiialivco \/U
L ¢ PY correctly classified)
02 @ ® o o Training: 95%
Oo‘ ®e - Q‘ o Test: 80%

Well this improves our test a little bit, if we try pruning based on our training data

(which still has bias)

16

1 -
o.af o N » j X2<05
e

5 %
0.6 * e & |
—-—‘ﬁ ® » “a A
| ¥] X2<0.96
0.4 . o ° g
0.2} =
e ® Training data >
?o 0.5 . |
- ' I
0.8% * " 7 Pruned decision tree from
® training data
® s 8” | g
N " * Test data « | Performance (% correctly
04 & o Y 1 classified)
_ ¢ Training: 80%
0.2 e o PY o)
* . e © Test: 97.5%
% ¢ 05 * -

Prune it a little more and the error is mostly from noise.

% Correct classification

Using Test Data
Classification rate

_— on training data

Classification rate
on test data

Size of tree

18

Using Test Data
Classification rate

_— on training data

Classification rate
on test data

% Correct classification

Size of tree

Aa ¢t Aavidks ~Af tha Alacaifiaw inAvanans tla ~AF
AS uie bUIIIpIcAII.y VIl UIT Lviaoolliel |||b|ca°c° \ut:pl.ll (9] |

the decision tree), the performance on the training data
increases and the performance on the test data
decreases when the classifier overfits the training data.

Why is testing usually below training accuracy? Because the training data is what
we’re actually trying to fit on.

19

Basic Questions

* If the tree is too large, how can it be
pruned?

20

Decision Tree Pruning

Construct the entire tree a
Qtartina at t}

-’ LeAR LI Is

splits:

— Evaluate performance of the tree on test data
(also called validation data, or hold out data
set)

— Prune the tree if the classification
performance increases by removing the split

- Q

Prune node if
classification
.,;---.,: :' Y
PP performange T ee i
on test set is e’
(1)

(7]
. O
®
-t
o
q
(1]

o laavace
W IWweA A A~

greater for (2) (2)
than for (1)

21

Possible Overfitting Solutions

— Statistical significance tests

22

Detecting Useless Splits

xo xx
x X

of Ain root node is N,=2
of B in root node is Ng=7

of Ain left node is N, =1
of B in left node is Ny =4

Problem is we split whenever the IG
increases, but never check if change in
entropy is statistically significant
Reasoning:
* Proportion of data going to the left
node: p; = (N4, + Ng,)I((N,+Ng) = 5/9
* Suppose now that the data is
completely randomly distributed (i.e., it
does not make sense to split):

The expected number of class A in
the left node: N’y = N, x p, = 10/9
* The expected number of class B in
the left node: N’g, = Ng x p, = 35/9
* Question: Are N,, and Ng,

sufficiently different from N’,, and N’g,.

If not, it means the split is not
statistically significant and we should
not split.

This keeps us from going too far down in the tree.

23

Detecting Useless Splits

Measure of statistically significance:

x.

xox xR
2 X s __ IANY AN \21ary . AAFY AN \21mary -
N=Np =Ny)TN 4 T\N'g = Ng,) IN'g; F
L. 2 ’ L. 2 y
(N’ag= Nar)?IN’pr + (N’gr- Nggr)?IN’gg
xox xx.x
x x

K measures how much the split deviates from what we
would get if the data where random
K small means increase in IG of split is not significant
In this example (primes are expected):

K = (10/9 — 1)2/(10/9) +(35/9 — 4)?/(35/9) + ...= 0.0321

24

v? Criterion: General Case

P, N data points Px
s —
N, data points Ng data points

"'\2
K- Y (N; =N;)
all classes i N ij
children j

N;; = Number of points from class i in child j

N’; = Number of points from class 7 in child j assuming
a random selection

N’;= N, x P,

25

XZ Crite ri Difference between the distribution
of class i from the proposed split
p < and the distribution from randomly
L = drawing data points in the same

—— proportions as the proposed split
N, data poirits w

K = Z (Ny_Ny)Z

all classes i N ij
children j

N;; = Number of points from class i in child j

N’; = Number of points from class 7 in child j assuming
a random selection

N’;= N, x P,

26

XZ Criterion: smail (Chi-square) values

indicate low statistical
P @a' significance > Remove the
L - splits that are lower than a

threshold K< t.
N, data points) Lower t - bigger trees
(more overfitting).

Larger t > smaller trees
(less overfitting, but worse

K = Z classification error).

all classes i LV ij
children j

* N;; = Number of points from class i in child j

* N’; = Number of points from class i in child j assuming
a random selection

« N’;j=N;x P,

You need to choose a threshold, which is hacky.

27

Decision Tree Pruning

« Construct the entire tree as before
 Starting at the leaves, recursively
eliminate splits:

— At a leaf N:
+ Compute the K value for N and its parent 2.

* If the K values is lower than the threshold t:

— Eliminate all of the children of ?
— P becomes a leaf
— Repeat until no more splits can be
eliminated

28

"o’:‘xx.x
K=10.58 |="—
° o
° °
e ——
"oxxx.x
x X

K=0.0321

| x * | Thegains %]
K=0.83| x* obtained by
these splits are
not significant
—
. x X "xx

29

X)
X. xxx
xX
o ® o
® o
° ®e
Xy, 0
X
X. %X
xX
e ® o
® o
° ..

* By thresholding K we end up with the
decision tree that we would expect (i.e., one
that does not overfit the data)

* Note: The approach is presented with

continuous attributes in this example but it
works just as well with discrete attributes

When reporting accuracy, you'll still want to use the test set.

v2 Pruning

 The test on K is a version of a standard
statistical test, the %2 (‘chi-square’) test.

* The value of tis retrieved from statistical
tables. For example, K > ft means that, with
confidence 95%, the information gain due to
the split is significant.

« If K< t, with high confidence, the information
gain will be 0 over very large training
samples

— Reduces overfitting
— Eliminates irrelevant attributes

31

Note: Inductive Learning

The decision tree approach is one example of an
inductive learning technique:

o e N - sSSaaaas

Suppose that data x is related to output y by a
unknown function y = f(x)

Suppose that we have observed training examples
{(x1!y1),"a(xn,yn)}

Inductive learning problem: Recover a function h
(the “hypothesis”) such that h(x) = f(x)

y = h(x) predicts y from the input data x

The challenge: The hypothesis space (the space of
all hypothesis h of a given form; for example the
space of all of the possible decision trees for a set of
M attributes) is huge + many different hypotheses
may agree with the training data.

Now here’s a big problem. How do we decide what “features” to use?

32

Inductive Learning

[®
I N
X1 X2 Xn

Training data) Hypothesis h(x)

« What property should h have?
* It should agree with the training data...

For example, polynomial fitting. We could use linear regression, or quadratic, or ...

Inductive Learning

T

/\/{\\ “ \

/\/\/)

Two stupid hypotheses that fit the training
data perfectly

* What property should h have?
It should agree with the training data...

But that can lead to arbitrarily complex hypotheses and
there are many of them; which one should we choose?...

OR THIS. AWESOME.

Inductive Learning
(] :)
o Y L ¢
[] ° ° o () ®
° ° ° ‘e ® °
o ® g
[]
{] ®
° ° (]
d []
Compiex hypothesis with Simpler hypothesis with
poor generalization better generalization
Different illustration, same concept....

Of course, there’s a tradeoff between accuracy and simplicity. Note that on the right
we have a lower accuracy. Chances are we can say that other point is an error, or
noise, but it's not always that simple. Sometimes there’s a big gap in accuracy for
an only-slightly-simpler model. How do we decide how complicated we’re willing to
make it? For more on this, read the wikipedia article on regularization:

http://en.wikipedia.org/wiki/Regularization_(mathematics)

35

