

Sampling, etc can help us reduce it to a discrete space.

Now the space is discretized…we only need to consider the sampled points.

Here K = 4

Is this complete? We get a good approximation, IF we do the sampling well. You

can’t just sample the left side of the map or else you can’t plan on the right…you

need to sample uniformly.

How do we do that?

Fewer links (successors) implies obstacles, so we should do more sampling of

points.

The more you sample, the more you’re covering the space. So you ought to be

able to get epsilon close to optimal.

You can’t say there doesn’t exist a path since in continuous space you can’t really

cover the entire space.

Searching for a path through the PRM gets more time consuming as the number of

samples goes to infinity

13

15

16

Shortest path includes vertices of the shapes.

17

18

When the world is static, you can do a lot of geometrical computation like this.

19

Dynamic environments depend more on probability, since as the world changes

your geometric computations become invalid.

20

Sweep your ray until you hit a vertex of a shape.

21

22

You can increase the size of the obstacles to avoid collisions (if you pretend a rock

23

is bigger than it is, then you will stay further away from the rock).

Note we assume polygons. Round obstacles will probably screw you up.

These algorithms generally have trouble in the real world, where you don’t have

perfect knowledge of obstacles, and you have noisy observations of these

obstacles.

24

The space is colored by the nearest obstacle. The boundaries between colored

25

regions are the points equidistant from two or more obstacles. Here the wall (the

edge of the state space) is not considered to be an obstacle, though sometimes it

is.

26

Black dots are obstacles.

27

Here the walls are obstacles.

28

29

You navigate on the edges of the Vonoroi Diagram. The edges are the safest ways

30

to get around the obstacles. On a plane with point obstacles, you can generate the

diagram in O(nlogn) for n points. This gets harder for weird shapes and higher

dimensions.

31

Not complete because we mark some open space as blocked. Therefore we can

32

potentially mark the only path to the goal as blocked, even when it is open.

Subdivide cells that are only partially covered by an obstacle. No matter how small

33

you make the grid, it still won’t be complete, because there’s a tiny continuous spot

you’re missing.

You only need to refine granularity in the gray mixed cells. Probably need some

34

stopping condition for when there is no path possible. Easy to define when you

have a robot with a radius...your robot can't go through a gap smaller than its

diameter.

35

In 3d subdivide into 8, in 4d subdivide into 16, etc.

36

Create strangely shaped cells that don’t intersect with any obstacles.

37

Nodes in cells are chosen such that they can connect to their neighboring cells’

38

nodes.

39

40

41

42

Good for dynamic environments

43

44

Trying to tweak these parameters is hard– you get some dramatic changes (hooray

45

for nonlinearity)

You can get stuck in the middle of the obstacles. Can’t get to the blue from the

46

center of this obstacle.

Less of a problem in dynamic world. If you get stuck in a local minimum, the world

47

changes and you are no longer in a local minimum.

48

49

50

51

The subway system, for example, is a discretization.

52

53

Merge together different parts of different paths. Blank spots show additional

planning you need to do.

54

55

