15-381: Al — Fall 2009
More on Path Planning

Manuela Veloso

Thanks to previous instructors

Carnegie Mellon University
Computer Science Department

Robot Motion Planning

* Probabilistic approaches:

—PRM .
—RRT, ERRT Reduce the intractable

. problem in continuous
 Non-probabilistic apprispace to a tractable

—Visibility graphs problem in a discrete
—Voronoi diagrams SEEE = B MIE

Coll d .. search techniques (A*,
—Ce e.cor.npOSItIOn stochastic search, etc.)
—Potential fields

 Path planning by analogy

Sampling, etc can help us reduce it to a discrete space.

pProbabilistic Road Mapping

Forbidden Space

Free Space

Probabilistic Road Mapping

Sample random locations

Now the space is discretized...we only need to consider the sampled points.

Probabilistic Road Mapping

Remove the samples in the forbidden regions

Probabilistic Road Mapping

Link each sample to its K nearest neighbors

Here K =4

Probabilistic Road Mapping

Remove the links that cross forbidden regions

Probabilistic Road Mapping

Remove the links that cross forbidden regions

O"/O

D

The resulting graph is a probabilistic roadmap (PRM)

Probabilistic Road Mapping
Link the start and goal to the PRM and search using A*

Probabilistic Road Mapping

Continuous Space

!

Discretization

!

A* Search
» “Good” sampling strategies are important:
— Uniform sampling
— Sample more near points with few neighbors
— Sample more close to the obstacles
— Use pre-computed sequence of samples

Is this complete? We get a good approximation, IF we do the sampling well. You
can’t just sample the left side of the map or else you can’t plan on the right...you
need to sample uniformly.

How do we do that?

Fewer links (successors) implies obstacles, so we should do more sampling of
points.

Sampling Techniques

+ Remarkably, we can find a solution by using
relatively few randomly sampled points.

* In most problems, a relatively small number of
samples is sufficient to cover most of the feasible
space with probability 1

» For alarge class of problems:

— Prob(finding a path) = 1 exponentially with the number
of samples

» But, cannot detect that a path does not exist

The more you sample, the more you're covering the space. So you ought to be
able to get epsilon close to optimal.

You can’t say there doesn’t exist a path since in continuous space you can’t really
cover the entire space.

Searching for a path through the PRM gets more time consuming as the number of
samples goes to infinity

RRT Properties

Ry
N 3, i{%
FENS oy

Tends to explore the space rapidly in all directions
Does not require extensive pre-processing
Single query/multiple query problems

Needs only collision detection test > No need to
represent/pre-compute the entire C-space

ERRT — RRT with Replanning

1) Start with initial state as root of tree

2) Pick a random target state
o Goal configuration with probability p
o Random item from waypoint cache with probability q
o Random configuration with probability 1-g-p

3) Find the closest node in the tree

4) Extend the closest node toward the target

5) Goto step 2

13

Robot Motion Planning

* Probabilistic approaches:
—PRM
—RRT, ERRT

* Non-probabilistic approaches:
—Visibility graphs
—\Voronoi diagrams
—Cell decomposition
—Potential fields

 Path planning by analogy

Roadmaps

Saa ik’ fe Zﬁ‘é‘id Carriags Rd #, o

~ b,
Holyrood Rd~ gegler St 7%,
Henton Ry %

» General idea:
— Avoid searching the entire space

— Pre-compute a (hopefully small) graph (the roadmap)
such that staying on the “roads” is guaranteed to
avoid the obstacles

— Find a path between g, and q,, by using the
roadmap

15

Visibility Graphs

qend

Astart

In the absence of obstacles, the best path
is the straight line between g, and qg,,,

16

Visibility Graphs

qstart

Shortest path includes vertices of the shapes.

17

Visibility Graphs

qend

qstart

* Assuming polygonal obstacles: It looks like
the shortest path is a sequence of straight lines
joining the vertices of the obstacles.

* Is this always true?

18

Visibility Graphs

Astart

When the world is static, you can do a lot of geometrical computation like this.
Dynamic environments depend more on probability, since as the world changes
your geometric computations become invalid.

19

Visibility Graphs

qend

start

* Visibility graph G = set of unblocked lines between

vertices of the obstacles + g, and q,,
* Anode Pis linked to a node P’if P’is visible from P
« Solution = Shortest path in the visibility graph

20

Sweep your ray until you hit a vertex of a shape.

21

Construction: Sweep Algorithm

N

,l qstart
* Sweep a line originating at each vertex
* Record those lines that end at visible vertices

22

Visibility Graphs: Weaknesses

» Shortest path but:
— Tries to stay as close as possible to obstacles
— Any execution error will lead to a collision
— Complicated in >> 2 dimensions

* \We may not care about strict optimality so
long as we find a safe path. Staying away

from obstacles is more important than
finding the shortest path

* Need to define other types of “roadmaps”

You can increase the size of the obstacles to avoid collisions (if you pretend a rock
is bigger than it is, then you will stay further away from the rock).

Note we assume polygons. Round obstacles will probably screw you up.

These algorithms generally have trouble in the real world, where you don’t have
perfect knowledge of obstacles, and you have noisy observations of these
obstacles.

Voronoi Diagrams

O O

* Given a set of data points in the plane:

— Color the entire plane such that the color of any point
in the plane is the same as the color of its nearest
neighbor

24

Voronol Diagrams

O O

* Voronoi diagram = The set of line segments separating
the regions corresponding to different colors
* Line segment = points equidistant from 2 data points
* Vertices = points equidistant from > 2 data points

The space is colored by the nearest obstacle. The boundaries between colored
regions are the points equidistant from two or more obstacles. Here the wall (the

edge of the state space) is not considered to be an obstacle, though sometimes it
is.

Voronol Diagrams

- -~

~

Vertices are equidistant
from 3 points

Points on the edge are
equidistant from the blue
and red points

* Voronoi diagram = The set of line segments separating
the regions corresponding to different colors
* Line segment = points equidistant from 2 data points
* Vertices = points equidistant from > 2 data points

26

Voronol Diagrams

® (See for example http://www.cs.cornell.edu/Info/People/chew/Delaunay.html
for an interactive demo)

Black dots are obstacles.

27

Here the walls are obstacles.

28

Voronol Diagrams: Planning

.
qgoal
 Find the point g*,; of the Voronoi
diagram closest to qg

 Find the point g*,,, of the Voronoi
diagram closest to q,,

« Compute shortest path from q*, to
q*;0a ON the Voronoi diagram

You navigate on the edges of the Vonoroi Diagram. The edges are the safest ways
to get around the obstacles. On a plane with point obstacles, you can generate the
diagram in O(nlogn) for n points. This gets harder for weird shapes and higher
dimensions.

30

Voronoi: Weaknesses

Difficult to compute in higher dimensions or
nonpolygonal worlds

Approximate algorithms exist

Use of Voronoi is not necessarily the best
heuristic (“stay away from obstacles”) Can lead
to paths that are much too conservative, or lead
to “ranging sensor deprivation”

Can be unstable - Small changes in obstacle

configuration can lead to large changes in the
diagrams

31

Approximate Cell Decomposition
qend

qsta
Define a discrete grid in C-Space

Mark any cell of the grid that intersects C_,, as
blocked

Find path through remaining cells by using (for
example) A* (e.g., use Euclidean distance as
heuristic)

Cannot be complete as described so far. Why?

Not complete because we mark some open space as blocked. Therefore we can
potentially mark the only path to the goal as blocked, even when it is open.

32

Subdivide cells that are only partially covered by an obstacle. No matter how small
you make the grid, it still won’t be complete, because there’s a tiny continuous spot
you’re missing.

33

Approximate Cell Decomposition

—0

V

° "4

Cannot find a path in this case even though one exists
Solution:

Distinguish between

— Cells that are entirely contained in G, (FULL) and

— Cells that partially intersect G, (MIXED)

Try to find a path using the current set of cells

If no path found:

— Subdivide the MIXED cells and try again with the new set of
cells

You only need to refine granularity in the gray mixed cells. Probably need some
stopping condition for when there is no path possible. Easy to define when you
have a robot with a radius...your robot can't go through a gap smaller than its
diameter.

Approximate Cell Decomposition:
Limitations

* Good:

— Limited assumptions on obstacle
configuration

— Approach used in practice
— Find obvious solutions quickly

« Bad:

— Trade-off completeness/computation
— Still difficult to use in high dimensions

In 3d subdivide into 8, in 4d subdivide into 16, etc.

36

Exact Cell Decomposition

\

7

Any path within one cell is guaranteed to not
intersect any obstacle

Create strangely shaped cells that don’t intersect with any obstacles.

37

Exact Cell Decomposition

o/

» Define a graph — roadmap — using the cells

Nodes in cells are chosen such that they can connect to their neighboring cells’

nodes.

38

Exact Cell Decomposition

©)
/

O

|

/
qstart

» The graph can be used to find a path
between any two configurations

\
qend

39

1

Critical event: Critical event:
Create new cell Spilit cell

40

Plane Sweep algorithm

Initialize current list of cells to empty
Order the vertices of G, along the x direction

For every vertex:
— Construct the plane at the corresponding x location

— Depending on the type of event:
 Split a current cell into 2 new cells OR
» Merge two of the current cells

— Create a new cell
Complexity (in 2-D):
— Time: O(N log N)

— Space: O(N)

41

Exact Cell Decomposition
‘9 o "2—1‘:'% 33

36
4 15 27 '\'\
> &)\
20 29

1¢ 3 13 25 35 ¢ 37

23 |
- Y d B
B b-_—ql/ 20
1w |y | 22

Y

» A version of exact cell decomposition can be extended
to higher dimensions and non-polygonal boundaries
(“cylindrical cell decomposition”)

* Provides exact solution - completeness

» Expensive and difficult to implement in higher
dimensions

42

Potential Fields

field from T
obstacles r—>/ l \ /
/ ! \

Repulsive L - ~

/

|

.

Attractive
field from
goal

generate a repulsive field

« Stay away from obstacles: obstacles

* Move closer to the goal: goal location is a
particle that generates an attractive field

Good for dynamic environments

43

ttractive Field

Move toward
lowest potential
Steepest descent
(Best first search)
on potential field

44

Ug(q) — dz qﬁqgoal)

Distance to goal state

1
d’(q,Obstacles)

Distance to nearest obstacle point.
Note: Can be computed efficiently by
using the distance transform

U(q)=U,(q)+AU,(q)

A controls how far we
stay from the obstacles

U,(q)=

Trying to tweak these parameters is hard— you get some dramatic changes (hooray
for nonlinearity)

45

Potential Fields: Limitationsr

Can you spot
the problem?

Potential field Zoomed in view

« Completeness?
* Problems in higher dimensions

You can get stuck in the middle of the obstacles. Can’t get to the blue from the
center of this obstacle.

46

Local Minimum Problem

x qgoal

Local minimum
of potential

» Potential fields in general exhibit local minima
» Special case: Navigation function

- U(qgoal) =0
— For any q different from q,,, there exists a
neighbor g’ such that U(q’) < U(q)

Less of a problem in dynamic world. If you get stuck in a local minimum, the world
changes and you are no longer in a local minimum.

47

Getting out of Local Minima |
* Repeat
—If U(q) = O return Success
—If too many iterations return Failure
—Else:
* Find neighbor q, of q with smallest U(q,,)

If U(q,) < U(q) OR g, has not yet been
visited
—Move to q, (9 € q,)
—Remember q,

May take a long
time to explore

region “around”
local minima

48

Getting out of Local Minima Il

* Repeat
—If U(q) = 0 return Success
— If too many iterations return Failure
— Else:
* Find neighbor q,, of g with smallest U(q,,)

. <
It U(q,) < U(q) Similar to stochastic search
—Move to q, (q €qy) and simulated annealing:
We escape local minima

. Else faster

— Take a random walk for T steps starting at q,

— Set g to the configuration reached at the end of
the random walk

49

®. @
Sampling | Potential | Approx. Cell | Voronoi | Visibility
Fields | Decomposition
Practical in Y Y Y Y Y
~zDorsD More exact/Complete >
Practical in Y Y 77 N N
>> 2-D or rfcl;sing .
ranaomize:
3-D version)
Fast Y Y Y Inlow | In2-D
= dim.
Online Qster/More practical in highdim.,| N
Extensions =]
Complete? | Probabilis | Probabilis Resolution- Y Y
tically tically- Complete
complete | resolution
complete

50

Humans?

What do you think humans do?

Planning by analogy....

51

Exa_mp__le - Route Plannin__g

A particular time/day situation: b-m0 solved by Analogy:

Relevant cases for b-m0 red shows the extra planning done;

the three cases are merged with extra planning;

irelevant parts of the cases are not used.

(Haigh & Veeloso - ICCBR’95, Haigh, Shewchuk & Veloso - JETAI'97)

The subway system, for example, is a discretization.

52

Route Planning

Routes are accumulated in a case library.

Routes are abstracted and indexed according to situational
parameters, such as: time of the day, day of the week, and driver.

Geometric features are used by the similarity metric used at
retrieval time.

Multiple routes are merged at planning time.
Planning cases are integrated with generative planning.
Relevant parts of the cases are validated, pursued and merged.

Generative planner does any extra planning work needed to merge
the planning cases.

53

Replaying Multiple Cases

C— .

|

‘oo

10000000000
{
0|

//
-

/
(\&

Merge together different parts of different paths. Blank spots show additional
planning you need to do.

Summary — Points to Know

* Visibility graphs

Voronoi diagrams

Cell decomposition
Potential fields

Route planning by analogy

95

