15-381: Al — Fall 2009
Probabilistic Path Planning

(First review planning as search)

Manuela Veloso

See J.Bruce, M. Veloso, “Real-Time Randomized Path
Planning for Robot Navigation”, IROS’02
www.cs.cmu.edu/~mmv/papers/02iros.pdf

Carnegie Mellon University
Computer Science Department

Outline

» Review: Classical planning as search
— Choice points

 Probabilistic robot path planning

GPS - Classical Planning
Means-Ends Analysis — “reduce differences”

« Choose a goal (stack, set...)
— one that is not true in state

Focus on a single goal that you want to reach first.

Search Stack

State

On(A, C) On(C, B)

Goal

Clear(B)
Clear(C)
On(C,A)
On(A, Table)
On(B, Table)

Handempty

C Hard to have an heuristic to
4 choose which goal ordering is the
most promising — so any is fine.

2. Search Stack

State

On(A, C) On(C, B)

Clear(B)
Clear(C)
On(C,A)
On(A, Table)
On(B, Table)
Handempty

2. Search Stack State

On(A, C) On(C, B) Clear(B)
Clear(C)
On(C,A)
On(A, Table)
On(B, Table)
Handempty

Here you have a conjunction of things that need to be true

Often we just flip a coin to decide which goal we will go for first.

GPS - Classical Planning
Means-Ends Analysis — “reduce differences”

« Choose a goal (stack, set...)
— one that is not true in state
« Choose an action that adds the goal

Search Stack State

On(A, C) On(C, B) Clear(B)
On(A, €) onC
On(C,A)
Put Rlael(C R) On(A, Table)
||
. On(B, Table)
Holding(C) Clear(B) Handempty

Choose action that “best matches”
the current state: C is not on the
table, so choose UNSTACK.

— -

UNSTACK_BLOCK (C ?b) PICK_UP_BLOCK (C)
Unstack C from some block ?b Pick up C from table
Pre: On(C ?b) Pre: On(C, Table)
Clear (C) Clear (C)
Handempty Handempty
Add: Holding (C) Add: Holding (C)
Clear (?b) Del: On (C, Table)
Del: On(C,?b) Handempty
Handempty Clear(C)

Clear(C)

6. Search Stack State UNSTACK_BLOCK (C ?b)
Clear(B Unstack C from some block ?b
On(A, €) On(C, B) CIZZS C; Pre: On(C ?b)
On(A, C) On(C. A) Clear (C)
= On(A, Table) Handempty
R On(B, Table) Add: Holding (C)
oine(OClean) Handempty Clear (?b)
Choose instantiation that “best Del: On(C,?b)
matches” the current state: Handempty

more preconditions true

UNSTACK_BLOCK (C A)

Preconds in state:

UNSTACK_BLOCK (C B)

Preconds in state:

Preconds not in state:
On(C,B)

Clear(C)
*\?Fc

UNSTACK_BLOCK (C ©)

Preconds in state:

On(C,A) Clear(C) Clear(C)
Clear(C) Handempty Handempty
Handempty

Preconds not in state:
On(C,0)

3 choices of what can be ?b

Only one satisfies the pre-conditions. Still, there are 3 choices, even though 2 will

immediately fail.

GPS - Classical Planning
Means-Ends Analysis — “reduce differences”

[]

Anen a AAal (etanly et
11VUOCT A yual \Ol.aur\, 9C L.
onet

hat is not true in state

Choose an action that adds the goal

— one that has more preconditions true in state
If the action is applicable in state

— apply action, change state, add action to
solution plan

If the action is not app
rJ
of

— Add preconditions

\
)

_(

action as goals

©

Classical Planning

* Deterministic actions
— Known preconds, adds, and deletes

« Many algorithms besides GPS

— All have some advantages and some
disadvantages

— No universal dominance
— Planning is NP-complete

Complete state: you know everything about a state
Every action has deterministic results

Robot Motion Planning

7\ 111

A mohile rohnt neade
NIING T VUNVV L \w v\ A

— Navigation is carrying out locomotion
primitives to move between points

— Navigation includes avoiding obstacles.

10

10

Robot Path Planning Problem

Initial location
Goal location
Obstacles

At its most simple, you go from initial location to the goal location, avoiding

obstacles.

11

Robot Motion Planning

* A mobile robot needs to navigate:

T I . T N N o

— Navigation is carrying out locomotion
primitives to move between points

— Navigation includes avoiding obstacles.

* \WWe need to define:
— The state — a model of the environment

— The actions — a model of the robot’s motion
primitives

12

12

Environment Models

» An environment model is composed of
— Knowledge of the robots location (Localization)
— Knowledge of the location of obstacles

» Complicating factors
— Number of obstacles and complexity of geometry

— Complexity of robot state
— Error or uncertainty from sensors

13

It is VERY hard for a robot to know where itis. For now lets assume we solved this

problem
It is VERY hard for a robot to know where the obstacles are. For now lets assume

we solved this problem

13

Action Models

* Action models

— Knowledge of how an action affects the environment
 preconditions and effects....

— For planning, model must be known without executing
the action

» Complicating factors

— Constraints on robot actions
* Motion (kinematic) constraints (e.g. car-like robots)
* Bounded velocity and acceleration

— Dynamics effects at high speeds
— Error or uncertainty in actions

14

14

Deterministic Path Planning

o A*

7\

— Discretize the state

— Enumerate a set of actions

— Search
» Generate successors of actions
* Use admissible heuristic

— Partially successful

.
N P P .

s & . . ~f Ak
* CXLENSIONS Ol A

15

Discretize the state...perhaps by making state space into a grid

Simple actions: move north/south/east/west. Do higher level planning, and lower
level routines can be written to execute the actions. Trade off between branching
factor and finding best path when deciding how many actions you have (should you
include diagonals, etc?)

Robot Path Planning Problem

Initial location
Goal location
Obstacles

x|
| S

6

Much simpler problem than the real world analogue.

16

Probabilistic Robot Path Planning

Continuous actions

PRM (Kavraki & many successors)
RRT (Lavalle & many successors)

17

17

PRM - Probabilistic Road Map

— “Learning” Phase
* random samples of free configurations (vertices)

» Attempt to connect pairs of nearby vertices with a
local planner

« if a valid plan is found, add an edge to the graph
— Query Phase

« find local connections to graph from initial and goal
positions

18

Local planner can be as simple as just trying to connect nearby vertices with a

straight line.

18

PRM Example — Learning Phase

Learning Phase:

o o

19

PRM Example — Learning Phase

Learning Phase:

o o

20

PRM Example — Query Phase

Query Phase:

| X

x.

Connect start and goal states to the graph.

21

PRM Discussion

e \/arv intfaractin
V \wli 1 I\l

<

— Continuous spaces

» General learning phase
— Not targeted at specific initial and goal states

* Not Optimal

22

Instead of discretizing, you are sampling.
Not optimal, or even complete (well, it is probabilistically complete)

Bad side: you have to make a graph of whole state space, even if you are just
moving around in a small area

Rapidly Exploring Random Trees

o R

NI N1

— Explore continuous spaces efficiently
* No need for an artificial grid

— Basic for probabilistically complete planner
* RRT uses random search

23

23

Basic RRT Example

nit
g-init

24

Basic RRT
Just Search. No use of Goal

target

Find the closest node in the tree

25

8
ot
\\\\\

g-init

26

How far do you extend toward the target? Well, you generally just set a step size,
and step that far. Sometime RRT algorithms will extend less than the step size if
they hit an obstacle.

26

Basic RRT Search Example

target

./exegend

step 1 step 2

Q R ::"";g\n f

step 4 step 8

Start with g-init

27

No bias (so far, we will add bias in a few slides). We will extend in any direction with
equal probability

RRT with Obstacles

* Resulting tree contains only valid paths

Record valid extension

Ignore invalid extension

28

28

RRT As a Planner

« Once a node of the tree is a goal, the plan
is the path back up the tree

q-init q-init

goal goal

29

Stop when you find the goal, because you know there is a path! We don’t care that
it might not be optimal.

RRT-GoalBias Algorithm

1) Start with initial state as root of tree
Pi

2) Pick a random target state

o Goal configuration with probability p

o Random configuration with probability 1-p
3) Find the closest node in the tree

4) Extend the closest node toward the
target

B\ P
v) YUV O

30

Even better: add bias towards the goal!

30

RRT for Planning

Probability p : Extend closest node in tree towards goal

Probability 7-p : Extend closest node towards a
random point

Random
Goal Extend Goal Extend / Goal
Sta Sta

31

31

Planning and Replanning

— Value of p?
* Dynamic environments

 When failure, what to do?

32

Replanning is very important when the environment (other obstacles, goals, etc) is
moving. Maybe an obstacle moved into your way. No need to throw away all your
previous work, you can reuse it

ERRT — RRT with Replanning

(Bruce & Veloso 2002)

Introduce past path as a bias!

1) Start with initial state as root of tree

2) Pick a random target state
o Goal configuration with probability p
o Random item from waypoint cache with probability q
o Random configuration with probability 1-g-p

3) Find the closest node in the tree
4) Extend the closest node toward the target
5) Goto step 2

33

33

ERRT: Replanning with Advice

Probability p : Extend closest node in tree towards goal
Probability r: Extend closest node in tree towards random cache point
Probability 7-p-r: Extend closest node towards a random point

. Random
Goal Extend Waypoint
Goal Extind L Goal Extend Goal
Sta
AN

34

34

Summary

PRM
— Sampling and search among sample nodes

Planning with RRT

— Extend towards random target, or towards goal
— High p — few known obstacles

— Low p — many known obstacles

Replanning with ERRT

— Extend towards random target, goal, or past plan
— High q — small dynamics (no state change)

— Low g — high dynamics (lots of state change)

RRT and ERRT - probabilistic convergence

35

35

