Lecture 11: Bayesian
Networks — More on
Inference, Maybe Learning




* Homework 2 due NOW!

 Homework 3 out this evening
« Due MONDAY, Oct 12th

N

4 - -4 L1 a2\
(inspect nvvy)




Lecture 11: Bayesian
Networks — More on
Inference, Maybe Learning




Bayesian Networks

tlll 1 H" PO PN ~ s~ ~eala

works are directed acyclic graphs
with nodes representing random variables and
edges representing dependency assumptions

P(Lo)=0.5

Conditional
Conditional @ Dependencies
Probability Tables
(CPTs) \ /

\

P(Li| Lo) = 0.4 P(S|Lo)=0.6
P(Li| —Lo) = 0.7 P(S | =Lo) = 0.2




Bayesian Networks

Joint distribution (factorization):
P(Lo, Li, S) = P(Lo) P(Li | Lo) P(S)

P(Lo)=0.5

» Conditional
Conditional Dependencies
Probability Tables
(CPTs) \

P(Li|Lo)=0.4 P(S| Lo)=0.6
P(Li| —Lo) = 0.7 P(S | —Lo)=0.2




Bayesian Networks

Conditional independence:
P(Li| Lo, S)?

P(Lo)=0.5

» Conditional
Conditional Dependencies
Probability Tables
(CPTs) \

P(Li|Lo)=0.4 P(S| Lo)=0.6
P(Li| —Lo) = 0.7 P(S | —Lo)=0.2




Bayesian Networks

Conditional independence:
P(Li| Lo, S) =P(Li, Lo, S)/ P(Lo, S)
= P(Li|Lo) P(Lo) P(S) / P(Lo) P(S|Lo)

= P(Li|Lo)
LiLS | Lo
P(Lo)=0.5
Conditional
Conditional Dependencies
Probability Tables
(CPTs) \ /
\
P(Li|Lo)=0.4 P(S| Lo)=0.6
P(Li| —Lo) = 0.7 P(S | —Lo)=0.2




Bayesian networks: Inference

+ Algorithms for inferring the values of
unobserved variables.

+ Last time: Sampling




Stochastic Inference

We can easily sambple the joint

distribution to obtain possible
instances:

1. Sample the free variables

2. For every other variable: If all
parents have been sampled,
sample based on conditional
distribution

We end up with a new set of
assignments for B,E,A,J and M
which are a random sample from
the joint

P(B)=.05

P(J|A) =.7
P(J|-A) = .05

P(E) = .1

P(A|B,E) =.95
P(A|B,~E) = .85
P(A| = B,E)=.5
P(A| = B, — E)=.05

P(M|A) = .8
P(M|-A) = .15




Weighted Sam p|[ZE R TEETS

condition rarely

for Computin g

We would need lots and
* SetNg,N.=0 lots of samples, and
* Repeat: most would be wasted
— Sample the joint setting the values for
J and M, compute the weight, w, of
this sample

- N, = N +w
—fB=1, Ng= Ngtw

+ After many iterations, set:
P(B|J,—~M)=Ng/N,
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Bayesian networks: Inference

+ Algorithms for inferring the values of
unobserved variables.

+ Last time: Sampling
— fast, (often) approximate
« Last time: Exact inference
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Inference

We are interested in queries of the form:
P(B | J,—M)

\= | ¥y =

This can also be written as a joint:

&
P(B, J,—M)

P(B|J,—M)=
d ) P(B, J,—M) + P(-B, J,—-M) o

How do we compute the new joint?

OO

P(B, J,—M) == = P(B, J, =M, a, ¢)
a e

Sum all probabilities with these
settings (B, J, —M): the sum is over the

possible assignments to the other two
variables, E and A)
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Computing: P(B,J, —-M)

P(B) = .05 P(E)= .1
P(B, J,-M)=X X P(B, J, —M, a, e)
a e

= P(B,J,-M,A,E) + P(B,J,—M,- A,E)

(A|B,E) =.95
+ P(B,J, —-M,A,~E) + P(A|B,—E) = .85
P(B,J,—~M,— A,—E) P(A| - BE) = .5

P(A| - B, - E)=.05
=0.0007+0.00001+0.005+0.0003

= 0.00601

P(JIA)=.7 P(M|A)=.8

How can we reuse P(J|-A) = .05 P(M|-A) = .15
computations?
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Computing: P(B,J, —-M)

P(B) = .05 P(E)= .1

P(B, J,—M) == = P(B, J, =M, a, ¢)
a e

= P(B,J,-M,A,E) + P(B,J,—M,- A,E)

(A|B,E) =.95
+ P(B,J, —-M,A,~E) + P(A|B,—E) = .85
P(B,J,—~M,— A,—E) P(A| - BE) = .5

R(A| - B, - E) =.05
= 2. 2P(B)P(e)P(a | B,e)P(—M | a)P(J | a)

= P(B)2P(e)2P(a | B,e)P(-=M | a)P(J | a)

e |a PLIA) =7 P(M|A)=.8

| D(JI-A) = .Q P(M|-A) = .15
“sum out” A, and store as a function of e and

use whenever necessary (no need to recompute

for each value of e)

Instead of computing the value for every value of e



Computing: P(B,J, —-M)

“factors” ~~
\ O
1

| \
PBZP\EP B,e)P(-M | a)P(J
(B)Z (e| (a| B,e)P(-M | a)P( Ia') o

\ Em
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Computing: P(B,J, —-M)

Conditional

...............

(CPTs)
/

P(B)Zelp(e)ialp(a | B,e)P(=M | a)P(J | a) &
H =
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Computing: P(B,J, —-M)

Conditional

...............

e (CPTs)
/
P(B)Zelp(e)ialp(a | B,e)P(=M | a)P(J | a) &
H =

Observed variables
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Computing: P(B,J, —-M)

Conditional

(CPTs)

/

B

P(B)XP(e)2P(a | B,e)P(—M | a)P(J | a) o

Observed variables
don’t need to be
eliminated (summed
out)

i
0
0
-

»

»
0
@
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Computing: P(B,J, —-M)

Conditional

...............

(CPTs)

/

P(B)EP(e)‘ZP(a | B,e)P(=M | a)P(J | a)
e a ]
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Computing: P(B,J, —-M)

rezrC O o




Computing: P(B,J, —-M)

f()
A

|
r(@)Ze o [N
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Computing: P(B,J, —-M)

| SewTreismiarele gy
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Actually Computing fg(e)

J

fa(a) =( P(-MJ|A) P(J|A) )

P(=M|-A) P(J|-A)
1
P(B)XP(e)2P(a | B,e)'P(—.M | a)P(J | a)‘
e |2 )
|

/ P(A|B,E) fA(A)
fe(e) =

+ P(—A|B,E) fA(—A) <

P(A|B,—E) f,(A) don’t recompute!

+ P(—A|B,—=E) fA(A)
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btw, we computed P(B,J,—M),
but wanted P(B|J, —M)

P(B,J,—M)
P(B,J,—M) +|P(—B,J,—M)

N

P(B|J—M)=

Also need to compute,

“normalization” but can reuse some

computation again!
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Actually Computing f(e)

.

P(B)XP(e)2P(a | B,e)’P(ﬁM | a)P(J | a) ‘
e |a ]
| HE m

/ P(A|B,E) f,(A)

+ P(-A|B,E) fA(—-A) <§
P(A|B,—E) f,(A) don’t recompute!

+ P(-A|B,—E) fo(A) )

fa(a) =( P(=M|A) P(J|A) ‘)
P(=M|-A) P(J|-A)
]
\

fe(e) =
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Algorithm

e - evidence (the variables that are observed)

vars - the conditional probabilities derived from the
network in reverse order (bottom up)

For each var in vars
- factors <- make_factor (var,e)

- if var is a hidden variable then create a new factor
by summing out var

Compute the product of aii factors
Normalize
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Computational Complexity

We can reuse computations to reduce the running
time

However, there are still cases in which this algorithm
will lead to exponential running time.

— Exact Bayesian Inference is NP-Hard

Consider the case of f,(y, ... y,). When factoring x
out we would need to account for all possible values
of the y’s.

e.g. binary:

FlYs --- Vo) =[50, Jm&@\g
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Computational Complexity

* We can reuse computations to reduce the running
time

+ However, there are still cases in which this algorithm
will lead to exponential running time.

— Exact Bayesian Inference is NP-Hard

+ Easy on trees: / \

®a@\©\é

\sum_B P(B|A) ->f1(A)
\sum_C P(C|A) ->f2(A)
-> never get functions (factors) with more than 1 argument (size 2)
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Bayesian networks: Inference

+ Algorithms for inferring the values of
unobserved variables.

+ Last time: Sampling
— fast, (often) approximate
« Last time: Exact inference
— variable elimination

« Also: “belief propagation”, “variational
inference”

BP on trees = variable elimination
General DAGs need to be

29



Inference: compute
probabilities from CPTs

P(B) = .05 P(E) = .1

But where do we get
them?

(A|B,E) =.95
P(A|B,~E) = .85
P(A| = B,E)=.5
P(A| - B, —E)=.05

Density estimation

J M
“learning” parameters U U

P(JIA) =.7 P(M|A) = .8
P(J|-A) = .05 P(M|-A) = .15




Density Estimation

* A Density Estimator learns a mapping from a set of
variables to a Probability, e.g. CPTs

Input data: Density o
“examples” —> Probability

P(B) = .05 P(E)= 1

Q ) =.95
A P(A|B,—E) = .85

P(A| = B,E)= .5
P(A| - B, —E) = .05

- (e) ()
(e)
W
OO O B et rwas

P(J|-A)=.05 P(M|-A) = .15
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Density estimation

* Binary and discrete variables:

Easy: Just count!

* Continuous variables:

Harder (but just a bit): Fit
a model

32



Learning a density estimator

a variable

A / #examples in whichy. = u
P(y=u)= 2200 -

total number of examples

A trivial learning algorithm!
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Learning a density estimator

a variable

A / #examples in whichy. = u
P(y=u)= 2200 -

total number of examples

.\/@ ‘\ /@ - FE-

g P(A|B E)=
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Learning a density estimator

a variable

A / #examples in whichy. = u
P(y=u)= 2200 -

total number of examples

.\ /@ ‘\ /@ ) ﬁg;/s

’ P(A|B E)=1/2
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Maximum Likelihood
Rramglple

~. =
P(dataset|M) P(x A x2 NX M) = l P(x,|M)
Model: CPTs, net structure, k=
gaussian parameters, ...
* Fit models by maximizing the probability of
generating the observed samples:
L(xy, ... X, | ©) = p(x;] ©) ... p(X, | ©)
e.g. “joint probability” from a CPT
* The examples are assumed to be independent
For a binary random variabie A with P(A=1)=q
argmax, Likelihood = #(A=1)/#examples
* Why?
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Maximum Likelihood

Principle

*For a binary random variable A with P(A=1)=q
argmax, Likelihood = #(A=1)/#examples

* Why?

n,: #examples w/ A=1
n,: #examples w/ A=0

Data likelihood: P(D|q)=q¢" (1-¢)"

We would like to find: argmax, ¢" (1-¢)"

OV
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Maximum Likelihood
Data likelihood: P(J?qrzl 9&!8‘:9

We would like to find: argmax_ ¢"(1-¢)"

a n, Ny n - n- n, ny—
—q¢"(1-9)" =ng" " 1-¢9)" —¢"n,(1-¢)""
0q
— -0
oq
ng" ' (1-q)" —q"n,(1-q)
g"(A=g)" " (m(1-q)—gqny) =0=

n(l-g)—qn,=0=

ny -1

=0=

n=nq+n,q =
__ M

n +n,

38



Log Probabilities

When working with products, probabilities of
entire datasets often get too small. A possible
solution is to use the log of probabilities, often
termed ‘log likelihood’

~ R ~ R A~
log P(dataset|M ) = logHP(xk|M) = Z log P(x,|M)
k=1 k=1

0

Logvalues | _eemmemmTT
2 ‘,a
between 0 and —
1 4l ,'
i
st |1
I
8

0 02 04 06 08 1
0.00000233...

Maximize that!
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Density estimation

* Binary and discrete variables:

Easy: Just count!

But what if we
* Continuous variables:

only have very
few samples?

Harder (but just a bit): Fit
a model

40



The danger of joint density
estimation

P(summer & size = 20 & evaluation = 3) =
0

- No such example in our dataset

Now lets assume we are given a
new (“test”) dataset. If this dataset
contains

Summer Size Evaluation
1 30 3

Then the probability we would
assign to the entire dataset is 0

Summer? | Size Evaluation
1 19 3
1 17 3
0 49 2
0 33 1
0 55 3
1 20 1
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Naive Density Estimation

The problem with the Joint Estimator is that it just
mirrors the training data.

We need something which generalizes more usefully.

The naive model generalizes strongly:

Assume that each attribute is distributed
independently of any of the other attributes.

42



Joint estimation, revisited

Assuming independence we can compute
each probability independently

P(Summer) =% =0.5
P(Evaluation= 1) =1/3=0.33
P(Size 2 20) = 2/3 =0.66

How do we do on the joint?
P(Summer & Evaluation = 1) = 1/6
)=%*1/3=1/8

P(Summer)P(Evaluation = 1

P(size = 20 & Evaluation=1) =1/3 =0.33
P(size = 20)P(Evaluation = 1) = 2/3*1/3 = 0.22

Summer? | Size Evaluation
1 19 3
1 17 3
0 49 2
0 33 1
0 55 3
1 20 1
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Joint estimation, revisited

Assuming independence we can compute
each probability independently

P(Summer) =% =0.5
P(Evaluation= 1) =1/3=0.33
P(Size 2 20) = 2/3 =0.66

How do we do on the joint?
P(Summer & Size = 20) = 1/6 = 0.16667

Summer? | Size Evaluation
1 19 3
1 17 3
0 49 2
0 33 1
0 55 3
1 20 1

We must be careful when using the Naive
density estimator

44



Contrast

Joint DE

Naive DE

Can model anything

Can model only very boring
distributions

No problem to model “C is a noisy
copy of A”

Outside Naive’s scope

Given 100 records and more than 6
Boolean attributes will screw up
badly

Given 100 records and 10,000
multivalued attributes will be fine
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Naive Density Estimation

The problem with the Joint Estimator is that it just
mirrors the training data.

We need something which generalizes more usefully.

Joint estimator: Naive estimator:
2"-1 parameters n parameters

The naive model generalizes strongly:

Assume that each attribute is distributed
independently of any of the other attributes.
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L]

L]

another way to deal with
small datasets

We just discussed one possibility: Naive estimation

Assume we want to compute the probability of heads in
a coin flip (50/50)

- What if we can only observe 3 flips?
111 Yoo
110 101
011 100
010 001

- 25% of the times a maximum likelihood estimator will
assign probability of 1 to either the heads or tails
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Pseudo counts

llea nrinr h
o N’ v v

fa)
influence the

iof ahniit tha
nouil AAvw Ll

resulting model.

We assume that we have “observed” 10 flips with 5 tails
and 5 heads

Thus P(heads) = (#heads+5) / (#flips+10)

Advantages: 1. Never assign a probability of 0 to an event

2. As more data accumulates we can get very close to the real
distribution (the impact of the pseudo counts will diminish rapidly)
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Sometimes you can even justify this by
incorporating a real distribution into your
model!
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Lets go back to Naive vs.full

model

What should | use?
This can be determined based on:
+ Training data size

* Cross validation the most useful tricks in
* Likelihood ratio test model fitting

Cross validation is one of

Divide up data set into m parts,

train on m-1, test on the 1

(do m times)
Statistically valid!

- Which model does better?

50



Important points

Showing conditional independence
Inference: sampling & exact (variable elimination)

Maximum likelihood estimation (MLE)
Pseudo counts
Cross-validation

51



