Lecture 11: Bayesian Networks – More on Inference, Maybe Learning

- Homework 2 due NOW!
- Homework 3 out this evening
- Due MONDAY, Oct 12th

(inspect HW3)

Lecture 11: Bayesian Networks – More on Inference, Maybe Learning

#### **Bayesian Networks**

Bayesian networks are directed acyclic graphs with nodes representing random variables and edges representing dependency assumptions



#### **Bayesian Networks**

Joint distribution (factorization):

$$P(Lo, Li, S) = P(Lo) P(Li | Lo) P(S)$$





#### **Bayesian Networks Conditional independence:** $P(Li \mid Lo, S) = P(Li, Lo, S) / P(Lo, S)$ = P(Li|Lo) P(Lo) P(S) / P(Lo) P(S|Lo)= P(Li|Lo) Li⊥S | Lo P(Lo) = 0.5Conditional Conditional Long? **Dependencies Probability Tables** (CPTs) P(Li | Lo) = 0.4P(S | Lo) = 0.6Liked? Slept? P(Li | ¬Lo) = 0.7 $P(S \mid \neg Lo) = 0.2$

### **Bayesian networks: Inference**

- Algorithms for inferring the values of unobserved variables.
- Last time: Sampling

#### **Stochastic Inference**

We can easily sample the joint distribution to obtain possible instances:

- 1. Sample the free variables
- 2. For every other variable: If all parents have been sampled, sample based on conditional distribution

We end up with a new set of assignments for B,E,A,J and M which are a random sample from the joint



#### Weighted Sample Problem: What if the condition rarely for Computing happens?

- Set  $N_B$ ,  $N_c = 0$
- Repeat:

We would need lots and lots of samples, and most would be wasted

- Sample the joint setting the values for J and M, compute the weight, w, of this sample
- $-N_c = N_c + w$ - If B = 1,  $N_B = N_B + w$
- After many iterations, set:

$$P(B \mid J, \neg M) = N_B / N_C$$

#### **Bayesian networks: Inference**

- Algorithms for inferring the values of unobserved variables.
- · Last time: Sampling
  - fast, (often) approximate
- · Last time: Exact inference

#### Inference

We are interested in queries of the form:  $P(B \mid J, \neg M)$ 

This can also be written as a joint:

$$P(B \mid J,\neg M) = \frac{P(B, J,\neg M)}{P(B, J,\neg M) + P(\neg B, J,\neg M)}$$

How do we compute the new joint?

$$P(B, J, \neg M) = \sum_{a} \sum_{e} P(B, J, \neg M, a, e)$$



Sum all probabilities with these settings (B, J, ¬M): the sum is over the possible assignments to the other two variables, E and A)

#### Computing: P(B,J, ¬M)

 $P(B, J, \neg M) = \sum_{a} \sum_{e} P(B, J, \neg M, a, e)$ 

 $= P(B,J,\neg M,A,E) + P(B,J,\neg M,\neg A,E)$ 

+ P(B,J, ¬M,A,¬E) + P(B,J,¬M,¬A,¬E)

**=** 0.0007+0.00001+0.005+0.0003

= 0.00601

How can we reuse computations?





Instead of computing the value for every value of e







#### Computing: P(B,J, ¬M)

 $P(B)\sum_{e}P(e)\sum_{a}P(a\mid B,e)P(\neg M\mid a)P(J\mid a)$ 

"variable elimination"



Observed variables don't need to be eliminated (summed out)











## btw, we computed $P(B,J,\neg M)$ , but wanted $P(B|J,\neg M)$

$$P(B \mid J, \neg M) = \frac{P(B, J, \neg M)}{P(B, J, \neg M) + P(\neg B, J, \neg M)}$$

"normalization"

Also need to compute, but can reuse some computation again!



#### **Algorithm**

- e evidence (the variables that are observed)
- vars the conditional probabilities derived from the network in reverse order (bottom up)
- For each var in vars
  - factors <- make\_factor (var,e)
  - if *var* is a hidden variable then create a new factor by summing out *var*
- Compute the product of all factors
- Normalize

#### **Computational Complexity**

- We can reuse computations to reduce the running time
- However, there are still cases in which this algorithm will lead to exponential running time.
  - Exact Bayesian Inference is NP-Hard
- Consider the case of  $f_x(y_1 ... y_n)$ . When factoring x out we would need to account for all possible values of the y's.
- e.g. binary:  $f_x(y_1 ... y_n) = (f_x(0, ... 0) ... f_x(1, ... 1))$   $(f_x(1, ... 1))$   $(f_x(1, ... 1))$

#### **Computational Complexity**

- We can reuse computations to reduce the running time
- However, there are still cases in which this algorithm will lead to exponential running time.
  - Exact Bayesian Inference is NP-Hard
- Easy on trees:



$$\sum_B P(B|A) \rightarrow f1(A)$$
  
\sum\_C P(C|A) \rightarrow f2(A)

→ never get functions (factors) with more than 1 argument (size 2)

#### **Bayesian networks: Inference**

- Algorithms for inferring the values of unobserved variables.
- · Last time: Sampling
  - fast, (often) approximate
- · Last time: Exact inference
  - variable elimination
- Also: "belief propagation", "variational inference"

BP on trees = variable elimination General DAGs need to be



#### **Density Estimation**

 A Density Estimator learns a mapping from a set of variables to a Probability, e.g. CPTs



### **Density estimation**

• Binary and discrete variables:

Easy: Just count!

• Continuous variables:

Harder (but just a bit): Fit a model

#### Learning a density estimator

a variable
$$\hat{P}(y_i = u) = \frac{\text{\# examples in which } y_i = u}{\text{total number of examples}}$$

A trivial learning algorithm!

#### Learning a density estimator

a variable
$$\hat{P}(y_i = u) = \frac{\text{\# examples in which } y_i = u}{\text{total number of examples}}$$



#### Learning a density estimator





# Maximum Likelihood Principle

 $\hat{P}(\text{dataset}|M) = \hat{P}(\mathbf{x}_1 \wedge \mathbf{x}_2 \dots \wedge \mathbf{x}_R|M) = \prod_{k=1}^R \hat{P}(\mathbf{x}_k|M)$ Model: CPTs, net structure,

• Fit models by maximizing the probability of generating the observed samples:

$$L(x_1, \dots, x_n \mid \Theta) = p(x_1 \mid \Theta) \dots p(x_n \mid \Theta)$$
e.g. "joint probability" from a CPT

- The examples are assumed to be independent
- For a binary random variable A with P(A=1)=q argmax<sub>α</sub> Likelihood = #(A=1)/#examples
- Why?

# Maximum Likelihood Principle

•For a binary random variable A with P(A=1)=q argmax<sub>α</sub> Likelihood = #(A=1)/#examples

• Why?

 $n_1$ : #examples w/ A=1  $n_2$ : #examples w/ A=0

Data likelihood:  $P(D|q) = q^{n_1}(1-q)^{n_2}$ 

We would like to find:  $\arg\max_{q} q^{n_1} (1-q)^{n_2}$ 

How?

### Maximum Likelihood

Data likelihood:  $P(D|q) = q^{n_1}(1-q)^{n_2}$ 

We would like to find:  $\arg \max_{q} q^{n_1} (1-q)^{n_2}$ 

$$\frac{\partial}{\partial q} q^{n_1} (1-q)^{n_2} = n_1 q^{n_1-1} (1-q)^{n_2} - q^{n_1} n_2 (1-q)^{n_2-1}$$

$$\boxed{\frac{\partial}{\partial q} = 0} \Rightarrow$$

$$n_1 q^{n_1 - 1} (1 - q)^{n_2} - q^{n_1} n_2 (1 - q)^{n_2 - 1} = 0 \Rightarrow$$

$$q^{n_1-1}(1-q)^{n_2-1}(n_1(1-q)-qn_2) = 0 \Longrightarrow$$

$$n_1(1-q)-qn_2=0 \Longrightarrow$$

$$n_1 = n_1 q + n_2 q \Longrightarrow$$

$$q = \frac{n_1}{n_1 + n_2}$$

#### Log Probabilities

When working with products, probabilities of entire datasets often get too small. A possible solution is to use the log of probabilities, often termed 'log likelihood'

$$\log \hat{P}(\text{dataset}|M) = \log \prod_{k=1}^{R} \hat{P}(\mathbf{x}_{k}|M) = \sum_{k=1}^{R} \log \hat{P}(\mathbf{x}_{k}|M)$$

Log values between 0 and 1



Maximize that!

#### **Density estimation**

• Binary and discrete variables:

Easy: Just count!

• Continuous variables:

Harder (but just a bit): Fit a model

But what if we only have very few samples?

## The danger of joint density estimation

P(summer & size  $\ge 20$  & evaluation = 3) = 0

- No such example in our dataset

Now lets assume we are given a new ("test") dataset. If this dataset contains

Summer Size Evaluation
1 30 3

Then the probability we would assign to the *entire* dataset is 0

| Summer? | Size | Evaluation |
|---------|------|------------|
| 1       | 19   | 3          |
| 1       | 17   | 3          |
| 0       | 49   | 2          |
| 0       | 33   | 1          |
| 0       | 55   | 3          |
| 1       | 20   | 1          |

#### **Naïve Density Estimation**

The problem with the Joint Estimator is that it just mirrors the training data.

We need something which generalizes more usefully.

The naïve model generalizes strongly:

Assume that each attribute is distributed independently of any of the other attributes.

#### Joint estimation, revisited

Assuming independence we can compute each probability independently

 $P(Summer) = \frac{1}{2} = 0.5$ 

P(Evaluation = 1) = 1/3 = 0.33

 $P(Size \ge 20) = 2/3 = 0.66$ 

How do we do on the joint?

P(Summer & Evaluation = 1) = 1/6

 $P(Summer)P(Evaluation = 1) = \frac{1}{2}*\frac{1}{3} = \frac{1}{6}$ 

P(size  $\ge 20$  & Evaluation = 1) = 1/3 = 0.33 P(size  $\ge 20$ )P(Evaluation = 1) = 2/3\*1/3 = 0.22

| Summer? | Size | Evaluation |
|---------|------|------------|
| 1       | 19   | 3          |
| 1       | 17   | 3          |
| 0       | 49   | 2          |
| 0       | 33   | 1          |
| 0       | 55   | 3          |
| 1       | 20   | 1          |

Okay

#### Joint estimation, revisited

Assuming independence we can compute each probability independently

 $P(Summer) = \frac{1}{2} = 0.5$ 

P(Evaluation = 1) = 1/3 = 0.33

 $P(Size \ge 20) = 2/3 = 0.66$ 

How do we do on the joint?

 $P(Summer \& Size \ge 20) = 1/6 = 0.16667$ 

 $P(Summer)P(Size \ge 20) = \frac{1}{2} \times \frac{2}{3} = \frac{1}{3} = 0.333$ 

| Summer? | Size | Evaluation |
|---------|------|------------|
| 1       | 19   | 3          |
| 1       | 17   | 3          |
| 0       | 49   | 2          |
| 0       | 33   | 1          |
| 0       | 55   | 3          |
| 1       | 20   | 1          |

We must be careful when using the Naïve density estimator

#### **Contrast**

| Joint DE                                                                       | Naïve DE                                                         |
|--------------------------------------------------------------------------------|------------------------------------------------------------------|
| Can model anything                                                             | Can model only very boring distributions                         |
| No problem to model "C is a noisy copy of A"                                   | Outside Naïve's scope                                            |
| Given 100 records and more than 6<br>Boolean attributes will screw up<br>badly | Given 100 records and 10,000 multivalued attributes will be fine |

#### **Naïve Density Estimation**

The problem with the Joint Estimator is that it just mirrors the training data.

We need something which generalizes more usefully.

Joint estimator: 2<sup>n</sup>-1 parameters

Naïve estimator: n parameters

The naïve model generalizes strongly:

Assume that each attribute is distributed independently of any of the other attributes.

### another way to deal with small datasets

- We just discussed one possibility: Naïve estimation
- Assume we want to compute the probability of heads in a coin flip (50/50)
  - What if we can only observe 3 flips?



- 25% of the times a maximum likelihood estimator will assign probability of 1 to either the heads or tails

#### **Pseudo counts**

- Use prior belief about the 'fairness' of most coins to influence the resulting model.
- We assume that we have "observed" 10 flips with 5 tails and 5 heads
- Thus P(heads) = (#heads+5) / (#flips+10)
- Advantages: 1. Never assign a probability of 0 to an event
  - 2. As more data accumulates we can get very close to the real distribution (the impact of the pseudo counts will diminish rapidly)

#### **Pseudo counts**

Use prior belief about the 'fairness' of most coins to influen

- We ass and 5 h
- Thus F Sometimes you can even justify this by incorporating a *real* distribution into your model!
- Advan
  2. As moderated distribut
  nt
  real apidly)

## Lets go back to Naïve vs.full model

What should I use?

This can be determined based on:

- Training data size
- Cross validation
- Likelihood ratio test

Cross validation is one of the most useful tricks in model fitting

Statistically valid!

Divide up data set into m parts, train on m-1, test on the 1 (do m times)

→ Which model does better?

50

#### **Important points**

- Showing conditional independence
- Inference: sampling & exact (variable elimination)
- Maximum likelihood estimation (MLE)
- Pseudo counts
- Cross-validation