Lecture 10: Bayesian
Networks — Construction
and Inference

(Russell and Norvig Chapter 14)




f(x) = # of adult males in the USA
with height x:

Probability distribution if area under curve = 1
Percentage of people shorter than 5'8”: area under the curve for —inf to 5’8”



Gaussian (Normal)
Distribution
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Two unbound variables in f(x) for a gaussian curve: sigma and mu




Gaussian (Normal)
Distribution

A lot of stuff is normally distributed!

Central Limit Theorem (loosely): Sum of a
large number of IID random variables is
approximately Gaussian

This is why a lot of stuff you measure looks like a Gaussian




Independence
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P(siept) = 0.5

P(slept | rain=1)= 0.5

In this case, the extra
knowledge about rain
does not change our
prediction. Slept and

rain are independent!

The joint distribution table gives you all the information you need to ask these types

of questions.




Independence
Events R and S are independent if: P(S | R) = P(S)
From this we can derive:

- P(=S | R) = P(=S)
- P(S;R) =P(S)P(R)
- P(R]|S)=P(R)




Conditional Independence

Two dependent random variables may
become independent when conditioned on a
third variable:

P(AB|C)=P(A|C)P(B]|C)

Example:
P(liked movie) = 0.5 Given knowledge
P(slept) = 0.4 of length, the two

P(liked movie, slept) = 0.1 |RUCAEHEIES

- = - . = N\ — A A D DITIC
P(liked movie | iong) = 0.4 independent
P(slept | long) 0.6

P(slept, like movie | long) = 0.24

A and B might be dependent on each other, however they are independent given c.
Therefore they are conditionally independent




Bayesian Networks

Bayesian networks are directed acyclic graphs
with nodes representing random variables and
edges representing dependency assumptions

P(Lo)=0.5
» Conditional
Conditional Dependencies
Probability Tables /

(CPTs) \
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Bayesian networks allow you to specify the joint distribution without needing a huge
table.

P(liked) = P(Li AND Lo) + P(Li AND not Lo) = P(Li|Lo)*P(Lo) + P(Li|not Lo)*P(not
Lo)=0.4*0.5+0.7*0.5=0.55




Constructing a Bayesian
Network

+ Step 1: Identify the random variables
« Step 2: Determine the conditional dependencies
« Step 3: Populate the CPTs




Example Problem

An alarm system:
B - Did a burglary occur?
E — Did an earthquake occur?
A - Did the alarm sound off?
M - Mary calls
J — John calls

How do we reconstruct the network for this
problem?

The scenario: My house is in LA equipped with an alarm, and | live in Pittsburgh.
Mary & John are my neighbors in LA. If the alarm sounds, Mary or John might call
me. Either a burglary or an earthquake can set off the alarm.
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Factoring Joint Distributions

Using the chain rule we can always factor a joint
distribution as follows:

P(A,B,E,J,M) =
P(A | B,E,J,M) P(B,E,J,M) =
P(A | B,E,J,M) P(B | E,J,M) P(E,J,M) =
P(A | B,E,J,M) P(B | E,J,M) P(E | J,M) P(J,M) =
P(A | B,E,J,M) P(B | E,J,M) P(E | J,M)P(J | M)P(M)

This type of conditional dependencies can also be
represented graphically

First, this is a naive way of calculating the joint distribution

11



A Bayesian Network
P(A | B,E,J,M) P(B | E,J,M) P(E | J,M)P(J | M)P(M)

Number of params in CPT:
A: 24

B: 23

E: 4

J: 2

M: 1

Total: 31 parameters
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Using Domain Knowledge

An alarm system:
B - Did a burglary occur?
E - Did an earthquake occur?
A - Did the alarm sound off?
M - Mary calls
J —John calls

Number of parameters:

A:4,B:1,E:1,J:2,M: 2 . .
By relying on domain

Total: 10 parameters knowledge we saved

21 parameters!

We are assuming here that Burglaries and earthquakes are independent (in the real
world people might loot after an earthquake.)
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Constructing a Bayesian
Network: Revisited

» Step 1: Identify the random variables

» Step 2: Determine the conditional
dependencies
- Select an ordering of the variables
- Add them one at a time
- For each new variable X added select the
minimal subset of nodes as parents such that
X is independent from all other nodes in the
current network given its parents

» Step 3: Populate the CPTs
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Reconstructing Networks

Suppose we
wanted to add a
new variable to the
network:

R - Did the radio
announce that
there was an
earthquake?

How should we
insert it?
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Bayesian Network Inference

* Once the network is constructed, we can use
algorithms for inferring the values of unobserved
variables.

* For example, in our previous network the only
observed variables are the phone call and the radio
announcement. However, what we are really
interested in is whether there was a burglary or not.

« How can we determine that?

When you draw the bayes net, you are making assumptions about independence
(like burglaries and earthquakes are independent). After it is drawn, you can ask
any question.



Inference

Lets start with a simpler question: How can we
compute a joint distribution from the network?

For example, P(B,—E,A,J, —M).
P(B)=.05 P(E)= 1
P(B,—-E,A,J, -M) =

P(B)P(—-E)P(A | B, —E)
P(J | A)P(-M | A)

P(A|B,E) =.95
P(A|B,~E) = .85

= 0.05*0.9*0.85*0.7*0.2 P(A| -B,E)=.5
P(A| - B, - E)=.05
= 0.005355
PJA)=.7 P(M|A) = .8
P(J|-A) = .05 P(M|-A) = .15
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Inference

We are now interested in queries of the
form: P(B | J,-M)

B|J,—-
This can also be written as a joint:

P(B, J,—M)
P(B|J,—M)=

How do we compute the new joint?

P(B, J,—M) + P(-B, J,—-M) o

()
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Computing: P(B,J, —-M)

P(B)=.05 P(E)= .1

P(B,J,—M) =

P(B,J,-M,A,E) + P(B,J,-M,- A,E) +
P(B,J, -M,A,—E) +
P(B,J,—-M,- A,—E) =

0.0007+0.00001+0.005+0.0003 =
0.00601

P(A|B,E) =.95
P(A|B,~E) = .85
P(A| = B,E)=.5
P(A| = B, — E)=.05

P(JIA)=.7 P(M|A)=.8
P(J|-A) = .05 P(M|-A) = .15
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Computing Partial Joints

P(B, J,—M)
P(B, J,—M) + P(=B, J,—M)

P(B|J,-M)=

Sum all instances with these settings (the sum is over
the possible assignments to the other two variables, E
and A)
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Computing: P(B,J, —-M)

P(B)=.05 P(E)= .1

P(B,J,—M) =

P(B,J,-M,A,E) + P(B,J,-M,- A,E) +
P(B,J, -M,A,—E) +
P(B,J,—-M,- A,—E) =

0.0007+0.00001+0.005+0.0003 =
0.00601

P(A|B,E) =.95
P(A|B,~E) = .85
P(A| = B,E)=.5
P(A| = B, — E)=.05

P(JIA)=.7 P(M|A)=.8

computations?
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Computing: P(B,J, —-M)

P(B) = .05 P(E)= .1

P(B,J,—M) =

P(B,J,-M,A,E) + P(B,J,-M,- A,E) +
P(B,J, -M,A,—E) +
P(B,J,—-M,- A,—E) =

P(A|B,E) =.95
P(A|B,~E) = .85
P(A| = B,E)=.5
P(A| = B, — E)=.05

22P(B)P(e)P(a | B,e)P(M | a)P(J | a)

[/

Store as a function of a and P(JIA) =.7
P(J|-A) = .05

P(M|A) = .8
P(M|-A) = .15

use whenever necessary (no
need to recompute each time)
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Computational Complexity

* We can reuse computations to reduce the running
time

+ However, there are still cases in which this algorithm
will lead to exponential running time.

+ Exact Bayesian Inference is NP-Hard because it
includes inference in propositional logic as a special
case

However, on average using bayesian networks saves us time
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Stochastic Inference

We can easily sambple the joint P(B)=.05 P(E) = .1

distribution to obtain possible
instances:

1. Sample the free variables
2. For every other variable: If all
parents have been sampled,

sample based on conditional
distribution

P(A|B,E) =.95
P(A|B,~E) = .85
P(A| = B,E)=.5
P(A| = B, — E)=.05

We end up with a new set of

assignments for B,E,A,J and M P(IIAY = 7 P(MIA) = .8
Whl?h' are a random sample from P(J|-A) = .05 P(M|-A) = .15
the joint

Prove that it must be possible
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Using Sampling For Inference

Lets revisit our problem to compute P(B | J,—M)
Looking at the samples we can count:
- N: total number of samples

- N, : total number of samples in which the condition holds
(J,-M)

- Ng: total number of samples where the joint is true (B,J,—M)
For a large enough N:

-N./N=~P(J,-M)

-Ng /N =~ P(B,J,-M)

And so, we can set:

P(B | J,=M) = P(B,J,—M) / P(J,=M) ~ Ng/ N,
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Using Sampling For Inference

* Lets revisit our problem to compute P(B | J,-M)
* Looking at the samples we can count:
- N: total number of samples

- N, : total number of samples ifla gl HRAUTIETR) 1T
(J,—M) condition rarely

- Ng: total number of samples viyETeJol-13 ¥4

For a large enough N:
- N,/ N ~ P(J,~M)
-Ng I N =~ P(B,J,—M)

And so, we can set:

P(B | J,=M) = P(B,J,—M) / P(J,=M) ~ Ng/ N,

We would need lots and

lots of samples, and
most would be wasted
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Weighted Sampling

P(B)=.05 P(E)= .1
+ Compute P(B | J,-M)
* Given an assignment to
parents, we assign a
value of 1toJand 0 to M

* This way, all samples will
contain the correct values
for the conditional

P(A|B,E) =.95
P(A|B,~E) = .85
P(A| = B,E)=.5
P(A| = B, — E)=.05

variables
« We record the probability  p(ja) =7 P(M|A) = .8
of this assignment (w = P(J|-A) = .05 P(M[-A) = .15

p.*p,) and we weight the
new joint sample by w

P(J=1|...) = 0.05, P(M=0]...) = 0.85, so we’re going to weigh this sample by
0.05*0.85

Luis strongly recommends you to read Ch.14 of Russell and Norvig



Weighted Sampling Algorithm
for Computing P(B | J,-M)

* SetNgN_.=0
* Repeat:

— Sample the joint setting the values
for J and M, compute the weight,
w, of this sample

- N.=N_+w
—IfB=1, Ng= Ngtw

+ After many iterations, set:
P(B|J,—~M)=Ng/N,
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Bayesian Networks for Cancer
Detection

(ot aua 10X
Visit To Asia Smoking [1
Visit Smoker |
No Visit ; NonSmoker |
A"" A
Tuberculosis Lung Cancer Bronchitis
Present | | Present Present < aa |
Absent o Absent 3 Absent d |
A » i
Tuberculosis or Cancer 2
True l |
False ‘ - ls
Chest Clinic
F 3 A ra
XRay Result Dyspnea
Abnormal I ! Prasent I :
Normal [ ‘ Absent I X ‘
4 l 2
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Important Points

Bayes Rule

Joint distribution, independence,
conditional independence

Attributes of Bayesian networks
Constructing a Bayesian network
Inference in Bayesian networks
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Don’t Take so Many Classes!

research company

Ben Maurer

If you want to go If you want to make
to grad school, do money, start a

Luis’s special public announcement

31



